Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

Гидроаккумулятор: принцип работы, устройство, схема, расчет, установка, подключение. Акпп гидроаккумулятор


Гидроаккумуляторы и преобразователи АКПП

____________________________________________________________________________

____________________________________________________________________________

Гидроаккумуляторы и преобразователи АКПП

Использование гидравлических аккумуляторов позволяет обеспечить безударность переключений АКПП при относительно малой инерционности срабатывания клапанов переключения.

Аккумуляторы призваны выполнять роль своего рода амортизаторов и позволяют контролировать скорость срабатывания сервоприводов за счет ступенчатого перекачивания гидравлической жидкости из одной промежуточной камеры в другую.

В автомобильных автоматических коробках передач используются гидроаккумуляторы двух базовых типов: поршневого и клапанного.

Гидроаккумулятор АКПП поршневого типа

Как и во многих других компонентах клапанной сборки АКПП в число основных компонентов аккумулятора входят поршень и пружина. Однако, в отличие от исполнительных устройств, в данном случае поршень не используется для привода каких-либо компонентов, выполняя исключительно роль поглощающего энергию демпфера.

При подаче напора поток гидравлической жидкости попадает в демпферную камеру аккумулятора и начинает, преодолевая сопротивление пружины, постепенно смещать поршень, благодаря чему удается избежать скачкообразного подъема давления в рабочем контуре.

Подача управляющего давления с противоположной (подпружиненной) стороны поршня аккумулятора позволяет контролировать интенсивность демпфирования, сообразуя его с текущими потребностями.

Так, в качестве управляющего может выступать давления дроссельной линии, давление главного системного тракта или давление аккумулируемого регулятора, отдельным узлом входящего в состав клапанной сборки.

В качестве поршневого аккумулятора могут выступать две отдельных камеры в теле клапанной сборки или корпусе сервопривода АКПП. Организация аккумулятора в корпусе исполнительного устройства позволяет сократить на единицу количество управляющих контуров, однако ведет к увеличению размеров сервопривода.

Выполненный же отдельным блоком аккумулятор может быть размещен в любом месте клапанной сборки, что позволяет осуществлять «горячую» настройку его управляющей пружины, корректируя соответствующим образом интенсивность демпфирования.

Рассмотрим в качестве примера поршневой гидроаккумулятор сервопривода тормозной ленты заднего хода (реверса) и понижающих передач АКПП:

- давление центробежного регулятора удерживает поршни сервопривода и аккумулятора в отпущенном положении.

- управляющее давление сцепления включения второй передачи подается также в сборки аккумулятора и сервопривода, заставляя их поршни смещаться, преодолевая сопротивление пружины и противодавления аккумулируемого регулятора.

Тормозная лента включения первой передачи АКПП продолжает оставаться в отпущенном положении до тех пор, пока управляющее давление не будет подано на противоположную сторону поршня сервопривода, обеспечивая также вывод жидкости из поршневой камеры аккумулятора.

Управляя скоростью нарастания давления в обоих направлениях, данный аккумулятор позволяет осуществлять контроль плавности ввода в зацепление двух различных тормозных барабанов.

Гидроаккумулятор АКПП клапанного типа

Широко применяемые в АКПП производства компании Ford клапанные аккумуляторы действуют не менее эффективно, чем поршневые, заметно отличаясь от последних принципом функционирования.

Давление в рабочей линии удерживает золотник в аккумуляторе клапанного типа в отжатом положении.

При срабатывании клапана переключения управляющий поток жидкости через демпфирующее дроссельное отверстие подается на сервопривод и (одновременно) на подпружиненную заднюю сторону золотника аккумулятора, который под суммарным воздействием, развиваемым пружиной и управляющим давлением, начинает опускаться, преодолевая противодавление со стороны системного тракта.

Использование двойного демпфирования управляющего потока (за счет дросселирования потока и применения аккумулятора) позволяет обеспечить требуемую инерционность срабатывания сервопривода.

Преобразователь вращения АКПП

Принцип функционирования преобразователя вращения

Одним из основных узлов гидромеханической передачи является преобразователь вращения (гидротрансформатор), который служит для автоматического и бесступенчатого (плавного) изменения крутящего момента двигателя (аналог сцепления в механической трансмиссии). Внутри гидротрансформатора АКПП находится три лопастных колеса: насос (ротор), турбина и реактор.

Во время работы двигателя он полностью заполняется маслом под давлением, которое совершает сложное движение, передавая крутящий момент двигателя от насосного колеса на турбину.

В процессе своей работы любой гидротрансформатор коробки-автомат может находиться одном из двух состояний: функционирования в режиме редуктора и функционирования в режиме жидкостной муфты сцепления.

Характерным отличием первой фазы является большая скорость вращения насоса (ротора) по сравнению с турбиной, когда преобразователь вращения выступает в роли редукторного блока.

В механических редукторах для привода шестерни большего размера используется шестерня меньшего размера, причем вал большей шестерни вращается медленнее, развивая при этом больший крутящий момент (за счет увеличения плеча).

В преобразователе вращения, когда насос вращается быстрее турбины, основная энергия затрачивается на раскручивание рабочей жидкости.

Благодаря специфичности формы лопаток центр давления смещается к наружной стороне колеса турбины, которое на данном этапе может быть уподоблено большей шестерне механического редуктора.

До определенного предела, чем больше составляет разница скоростей вращения турбины и насоса, тем сильнее проявляется редукторный эффект.

Кроме того, реактор, удерживаясь от вращения обгонной муфтой, обеспечивает возврат большей части неиспользуемого турбиной потока назад к насосу, дополнительно усиливая эффективность передачи крутящего момента.

При полном открывании дроссельной заслонки и нераскрученной турбине насос обеспечивает максимальный подъем давления рабочей жидкости с концентрацией центра давления на наружных концах турбинных лопаток (максимальное плечо).

Предельный, развиваемый преобразователем вращения крутящий момент иногда называют также моментом пробуксовки гидротрансформатора.

Максимальное передаточное отношение, обеспечиваемое преобразователями вращения, в большинстве АКПП составляет 2:1 - 2.5:1, что определяется не пределом возможностей преобразователя вращения, а компромиссом, достигаемым с учетом таких отрицательных эффектов, сопровождающих дальнейший рост усиления, как повышение температуры и увеличение расхода топлива.

Когда турбинное колесо раскручивается, давление вращающейся жидкости на его лопатки, естественно, падает, что приводит к автоматическому снижению обеспечиваемого преобразователем передаточного отношения.

В момент, когда скорости вращения турбины и насоса максимально сближаются, преобразователь вращения АКПП превращается из подобия редуктора в обычную жидкостную муфту сцепления. Следует заметить, что полного выравнивания скоростей насоса и турбины достигнуть не возможно ввиду неизбежности естественных потерь энергии.

Обычно турбина разгоняется не более чем до 90% от скорости насоса. На этом этапе необходимость в реакторе отпадает и происходит его отпускание за счет переключения обгонной муфты.

В процессе движения транспортного средства, в зависимости от изменения нагрузки (степени выжимания педали газа), преобразователь вращения может непрерывно переходить из состояния редуктора в состояние сцепления и обратно.

Преобразователи АКПП неблокируемого типа

Преобразователь вращения помещается в купол AКПП, приворачивается к приводному диску коленчатого вала двигателя и обеспечивает передачу крутящего момента первичному (входному) валу трансмиссии.

Типичный преобразователь коробки-автомат состоит из трех главных компонентов: насоса, иногда называемого также ротором, турбины и реактора.

Насос встроен в корпус преобразователя, жестко соединенный с приводным диском. Вращение насоса приводит к раскручиванию находящейся внутри преобразователя жидкости, которая, в свою очередь, передает крутящий момент турбине, посредством шлицов соединенной с первичным валом трансмиссии.

Насос и турбина АКПП в совокупности формируют жидкостную муфту сцепления. Соответствующим образом просчитанная форма лопаток обоих элементов обеспечивает максимальную эффективность передачи крутящего момента от двигателя трансмиссии.

Следует заметить, что наибольший крутящий момент развивается двигателем на холостых оборотах и при его величине приблизительно 23 Нм даже самая эффективная жидкостная муфта сцепления способна обеспечить достаточную приемистость автомобилю, масса которого составляет около тонны, только за счет полного открывания дроссельной заслонки на оптимальных оборотах.

Использование реактора в автоматических коробках передач позволяет значительно повысить эффективность функционирования жидкостной муфты в полном диапазоне изменения эксплуатационных параметров двигателя (обороты и нагрузка).

Реактор призван обеспечивать максимальное повышение эффективности передачи крутящего момента от насоса к турбине.

Реактор коробки автомат представляет собой установленное в центр сборки преобразователя вращения турбинное колесо, лопатки которого обеспечивают перенаправление возвращающегося к насосу вихревого потока, который теперь начинает уже не препятствовать, а содействовать вращению коленчатого вала.

В ступичную часть реактора устанавливается роликовая обгонная муфта, вал которой жестко соединен с корпусом сборки. Муфта обеспечивает возможность вращения ректора лишь в одном направлении, полностью блокируя противоположное.

Когда скорости вращения насоса и турбины максимально сближаются, что обычно происходит при движении автомобиля с крейсерской скоростью или во время деселерации, реактор отпускается и начинает свободно вращаться на роликах подшипника муфты.

При превышении относительной скоростью насоса некоторого определенного значения происходит блокировка обгонной муфты АКПП за счет воздействия на лопатки реактора гидравлического давления, что приводит к включению механизма перенаправления потока.

В некоторых преобразователях, когда требуется максимальное повышение эффективности передачи крутящего момента двигателя используются два реактора, - первичный развернут в сторону насоса, вторичный в сторону турбины.

При повышенных нагрузках на двигатель оба реактора блокируются своими обгонными муфтами и к насосу перенаправляется большая часть вихревого потока.

По мере разгона турбины нагрузка постепенно падает и вторичный реактора отпускается, сокращая передачу крутящего момента, одновременно ограничивая проскальзывание, что обеспечивает повышение эффективности отдачи сборки.

Преобразователи АКПП блокируемого типа

Главной задачей, которую призвана решать жидкостная муфта коробки-автомат является обеспечение ограниченного проскальзывания между ведущим и ведомым элементами автоматической коробки передач.

Проскальзывание не только обеспечивает безударность ввода компонентов в зацепление, но также позволяет избежать развития вибраций, вызываемых крутильными колебаниями.

Однако любое инженерное решение основано на компромиссах, и в данном случае платой за преимущества, выигранные благодаря использованию жидкостной муфты вместо механического или фрикционного зацепления, становится снижение эффективности отдачи силового агрегата и повышение расхода топлива.

Даже в самых современных преобразователях автоматических коробок передач максимальная скорость вращения турбины не превышает 90% от скорости вращения насоса. Сказанное означает, что на каждые 10 оборотов насоса приходится лишь 9 оборотов турбины.

В настоящее время на большинстве АКПП легковых автомобилей и легких грузовиков используются преобразователи вращения блокируемого типа.

По конструкции блокируемые преобразователи отличаются от рассмотренных выше неблокируемых очень незначительно, добавляется лишь еще один узел, обеспечивающий механическое зацепление коленчатого вала двигателя с первичным валом коробки-автомат.

В настоящее время наиболее широкую популярность приобрели три основных типа блокируемых преобразователей, подробному описанию конструкций и принципа функционирования которых посвящен материал приведенных ниже подразделов.

Преобразователи АКПП оборудованные блокиратором поршневого типа с гидравлическим приводом

В данной простейшей схеме в качестве блокирующего элемента коробки-автомат обычно используется нажимной фрикционный диск с торсионными демпферными пружинами, аналогичный, применяемым в сцеплениях ручных коробок передач. Посредством оборудованной шлицами ступицы диск жестко сочленяется с турбинным колесом преобразователя.

Фрикционной поверхностью диск развернут к приводному диску секции кожуха преобразователя. При включении сцепления диск прижимается к кожуху, обеспечивая восприятие турбиной крутящего момента непосредственно от коленчатого вала двигателя.

Активация блокиратора происходит за счет подачи гидравлического давления на всю заднюю поверхность нажимного диска коробки-автомат. Для вывода турбины из зацепления с кожухом преобразователя давление подается на противоположную сторону диска.

В подобной схеме нажимной диск работает как посаженный на шлицевой вал поршень, что собственно и определяет этимологию названия блокиратора.

В продуктах компании Chrysler, не смотря на некоторые конструктивные отличия, используется та же концепция. Вместо оборудованной шлицами ступицы здесь используются торсионные демпферные пружины, равномерно распределенные по наружному периметру блокирующего поршня (диска сцепления) и обеспечивающие блокировку последнего с турбинным колесом преобразователя.

При подаче управляющего давления поршень (диск) прижимается к закрепленному на приводном диске кожуху преобразователя.

Преобразователи АКПП оборудованные блокиратором вязкостного типа

Данная схема широко используется в преобразователях вращения автоматических коробок передач разработки компании GM. Использование вязкостной муфты позволяет полностью устранить вероятность рывков при включении блокировки.

Несмотря на отсутствие возможности полного устранения проскальзывания преобразователя при движении автомобиля в крейсерском режиме, применение такого блокиратора позволяет все же заметно сократить расход топлива.

Основными конструктивными элементами муфты коробки-автомат являются корпус, ротор и заполняющая полость между ними специальная силиконовая жидкость. Ротор посредством шлицов соединен с турбинным колесом преобразователя.

При подъеме давления трансмиссионной жидкости наружная стенка корпуса муфты прогибается, в результате чего роторный диск под воздействием силиконового наполнителя плотно прижимается к крышке преобразователя.

В данной схеме силикон выполняет функцию демпферной пружины. Обеспечивая высокую инерционность зацепления, блокираторы вязкостного типа могут использоваться при движении транспортного средства практически на любой передаче, кроме первой.

Отсутствие возможности полного устранения проскальзывания, приводит к быстрому разогреву корпуса такого преобразователя при высоких нагрузках.

С целью устранения риска недопустимого перегрева компонентов в электронную систему управления оборудованных вязкостным блокиратором автоматической коробки передач обычно добавляется специальный контур, обеспечивающий автоматическое выключение сцепления по сигналу специального информационного датчика, считывающего температуру жидкости непосредственно с корпуса ротора.

Преобразователи, оборудованные механическим блокиратором прямого действия

Преобразователи с механической схемой включения блокировки используются в 4-ступенчатых АКПП AOD разработки компании Ford, а также в трансмиссиях ZF Chrysler.

Крышка преобразователя оборудована пружинным торсионным демпфером и встроенной шлицевой муфтой.

Внутрь полого первичного (входного) вала коробки-автомат помещен приводной вал прямого действия, один конец которого введен в зацепление со встроенной в корпус преобразователя шлицевой ступицей, а второй соединен с муфтой сцепления 3-й и 4-й передач внутри трансмиссионной сборки.

При движении на 3-й передаче 40% крутящего момента передается через преобразователь вращения и 60 - через приводной вал. На 4-й передаче весь крутящий момент передается непосредственно по валу, в обход преобразователя.

 

____________________________________________________________________________

____________________________________________________________________________

  • Блок цилиндров и головка двигателей Тойота 3S-FE, 3S-GE
  • ГРМ Тойота 3S-FE, 3S-GE
  • Топливная система Тойота 3S-FE, 3S-GE
  • Двигатели toyota 1AZ-FE и 2AZ-FE и их компоненты
  • Блок управления и датчики двигателя toyota 1AZ-FE и 2AZ-FE
  • Поршни, шатуны и коленвал 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Проверка и регулировки двигателей Toyota 4A-FE, 5A-FE, 7A-FE и 4A-GE
  • Разборка и сборка блока цилиндра Тойота 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Ремень привода ГРМ Toyota 4A-GE
  • Ремень привода ГРМ Тойота 4A-FE, 5A-FE, 7A-FE
  • Система впрыска топлива 4A-FE, 4A-GE, 5A-FE и 7A-FE
  • Замена цепи привода ГРМ Тойота 1ZZ-FE
  • Блок и головка цилиндров 1ZZ-FE
  • Замена ремня привода ГРМ Тойота 1G-FE
  • Проверка и регулировка зазоров в клапанах двигателя 1JZ-GE/2JZ-GE

____________________________________________________________________________

____________________________________________________________________________

avtodvc.ru

Гидроаккумуляторы в АКПП - Гидравлика АКПП, Гидроаккумуляторы АКПП

Posted on 26 Июн in Гидравлика АКПП Гидроаккумуляторы АКПП Гидроаккумулятор АКПП

Гидроаккумулятор представляет собой обычный цилиндр с подпружиненным поршнем, который устанавливается параллельно гидроцилиндру или бустеру фрикционного элемента управления АКПП, и его задачей является снижение скорости нарастания давления в гидроприводе. В настоящее время используются два типа аккумуляторов: обычные и управляемые клапаном.

В случае использования обычного гидроаккумулятора (рис.6-30), процесс включения любого фрикционного элемента можно разделить на четыре этапа (рис.6-31):

  • этап заполнения цилиндра или бустера;
  • этап перемещения поршня;
  • этап неуправляемого включения фрикционного элемента;
  • этап управляемого включения фрикционного элемента.После того, как клапан переключения переместится и соединит основную

магистраль с каналом подвода давления в гидропривод фрикционного элемента управления АКПП, жидкость начинает заполнять цилиндр или бустер (этап заполнения). По окончании этого этапа поршень гидропривода под действием давления начинает перемещаться, выбирая при этом зазор во фрикционном элементе (этап перемещения поршня). При соприкосновении поршня с пакетом фрикционных дисков поршень останавливается и начинает сжимать пакет фрикционных дисков. Причем, поскольку перемещение поршня прекратилось, то давление в гидроцилиндре или бустере, практически мгновенно изменяется до некоторой величины, которая определяется жёсткостью и величиной предварительной деформацией пружины гидроаккумулятора.

Следует отметить, что жёсткость и предварительная деформация пружины подбираются таким образом, чтобы на первых трех этапах работы поршень гидроаккумулятора оставался неподвижным. После того, как давление в гидроприводе и, следовательно, в гидроаккумуляторе достигнет величины, при которой сила давления на поршень гидроаккумулятора, будет способна преодолеть силу пружины, начнется заключительный, этап управляемого включения фрикционного элемента. Перемещение поршня гидроаккумулятора приводит к снижению интенсивности нарастания давления в гидроприводе, и в результате происходит плавное включение фрикционного элемента. В момент остановки поршня гидроаккумулятора давление в гидроцилиндре или бустере должно стать равным давлению основной магистрали. На этом процесс включения фрикционного элемента заканчивается.

Гидроаккумулятор АКПП

 

Нетрудно показать, что, чем меньше жёсткость или предварительная деформация пружины гидроаккумулятора, тем меньше скачок давления на третьем этапе включения фрикционного элемента управления и тем более растянут этап управляемого скольжения фрикционного элемента (рис.6-31а). И, наоборот, увеличение жёсткости или величины предварительной деформации пружины приводят к большему скачку давления в гидроприводе и уменьшению времени скольжения фрикционного элемента.

Следует отметить, что изменение жёсткости пружины в ту или иную сторону от номинальной величины приведет к ухудшению качества включения фрикционного элемента. Уменьшение жёсткости или величины предварительной деформации пружины вызовет чрезмерное длительное скольжение фрикционного элемента, и, как следствие этого, быстрый износ фрикционных накладок. При увеличении этих двух параметров включение фрикционного элемента должно происходить ударно, что будет ощущаться пассажирами автомобиля в форме неприятных толчков.

Таким образом, качество включения фрикционного элемента определяется тем, насколько правильно подобраны жёсткость и величина предварительной деформации пружины гидроаккумулятора. Однако, такое устройство гидроаккумулятора не позволяет изменять время включения фрикционного элемента в зависимости от того, с какой интенсивность водитель нажимает на педаль управления дроссельной заслонкой. Как уже отмечалось выше, если водитель спокойный и не нажимает до упора на педаль управления дроссельной заслонкой, то гидросистема должна обеспечивать мягкие, практически незаметные переключения. Если же водитель предпочитает разгон с большим ускорением, то основная задача системы управления в этом случае — обеспечить быстрые во времени переключения, принося в жертву этому качество переключения. И все это должен обеспечивать один и тот же гидроаккумулятор. Для решения этой задачи в автоматических коробках передач используется весьма простой прием. К поршню гидроаккумулятора со стороны расположения пружины подводится давление, называемое давлением подпора (рис.6-32).

Как правило, в качестве давления подпора используется TV-давление или давление, формируемое специальным клапаном пропорционально TV-давлению. Для малых углов открытия дроссельной заслонки характерно малое давление клапана-дросселя, и поэтому включение фрикционных элементов будет происходить мягко. Чем больше угол открытия дроссельной заслонки, тем больше TV-давление и давление подпора и тем жестче будет происходить переключения передач.

Давление подпора

Для эффективной работы гидроаккумулятора, его рабочий объём должен быть соизмерим с объёмом гидропривода включаемого элемента управления, поэтому все вышеописанные гидроаккумуляторы имеют достаточно большие размеры.

 

remont-korobki.com

Обзор гидроаккумуляторов и преобразователей применяемых в АКПП

_____________________________________________________________________________

Обзор гидроаккумуляторов и преобразователей применяемых в АКПП

Использование гидравлических аккумуляторов позволяет обеспечить безударность переключений АКПП при относительно малой инерционности срабатывания клапанов переключения.

Аккумуляторы призваны выполнять роль своего рода амортизаторов и позволяют контролировать скорость срабатывания сервоприводов за счет ступенчатого перекачивания гидравлической жидкости из одной промежуточной камеры в другую.

В автомобильных автоматических коробках передач используются гидроаккумуляторы двух базовых типов: поршневого и клапанного.

Гидроаккумулятор АКПП поршневого типа

Как и во многих других компонентах клапанной сборки АКПП в число основных компонентов аккумулятора входят поршень и пружина.

Однако, в отличие от исполнительных устройств, в данном случае поршень не используется для привода каких-либо компонентов, выполняя исключительно роль поглощающего энергию демпфера.

При подаче напора поток гидравлической жидкости попадает в демпферную камеру аккумулятора и начинает, преодолевая сопротивление пружины, постепенно смещать поршень, благодаря чему удается избежать скачкообразного подъема давления в рабочем контуре.

Подача управляющего давления с противоположной (подпружиненной) стороны поршня аккумулятора позволяет контролировать интенсивность демпфирования, сообразуя его с текущими потребностями.

Так, в качестве управляющего может выступать давления дроссельной линии, давление главного системного тракта или давление аккумулируемого регулятора, отдельным узлом входящего в состав клапанной сборки.

В качестве поршневого аккумулятора могут выступать две отдельных камеры в теле клапанной сборки или корпусе сервопривода АКПП.

Организация аккумулятора в корпусе исполнительного устройства позволяет сократить на единицу количество управляющих контуров, однако ведет к увеличению размеров сервопривода.

Выполненный же отдельным блоком аккумулятор может быть размещен в любом месте клапанной сборки, что позволяет осуществлять «горячую» настройку его управляющей пружины, корректируя соответствующим образом интенсивность демпфирования.

Рассмотрим в качестве примера поршневой гидроаккумулятор сервопривода тормозной ленты заднего хода (реверса) и понижающих передач АКПП:

- давление центробежного регулятора удерживает поршни сервопривода и аккумулятора в отпущенном положении.

- управляющее давление сцепления включения второй передачи подается также в сборки аккумулятора и сервопривода, заставляя их поршни смещаться, преодолевая сопротивление пружины и противодавления аккумулируемого регулятора.

Тормозная лента включения первой передачи АКПП продолжает оставаться в отпущенном положении до тех пор, пока управляющее давление не будет подано на противоположную сторону поршня сервопривода, обеспечивая также вывод жидкости из поршневой камеры аккумулятора.

Управляя скоростью нарастания давления в обоих направлениях, данный аккумулятор позволяет осуществлять контроль плавности ввода в зацепление двух различных тормозных барабанов.

Гидроаккумулятор АКПП клапанного типа

Широко применяемые в АКПП производства компании Ford клапанные аккумуляторы действуют не менее эффективно, чем поршневые, заметно отличаясь от последних принципом функционирования.

Давление в рабочей линии удерживает золотник в аккумуляторе клапанного типа в отжатом положении.

При срабатывании клапана переключения управляющий поток жидкости через демпфирующее дроссельное отверстие подается на сервопривод и (одновременно) на подпружиненную заднюю сторону золотника аккумулятора, который под суммарным воздействием, развиваемым пружиной и управляющим давлением, начинает опускаться, преодолевая противодавление со стороны системного тракта.

Использование двойного демпфирования управляющего потока (за счет дросселирования потока и применения аккумулятора) позволяет обеспечить требуемую инерционность срабатывания сервопривода.

Преобразователь вращения АКПП

Принцип функционирования преобразователя вращения

Одним из основных узлов гидромеханической передачи является преобразователь вращения (гидротрансформатор), который служит для автоматического и бесступенчатого (плавного) изменения крутящего момента двигателя (аналог сцепления в механической трансмиссии).

Внутри гидротрансформатора АКПП находится три лопастных колеса: насос (ротор), турбина и реактор.

Во время работы двигателя он полностью заполняется маслом под давлением, которое совершает сложное движение, передавая крутящий момент двигателя от насосного колеса на турбину.

В процессе своей работы любой гидротрансформатор коробки-автомат может находиться одном из двух состояний: функционирования в режиме редуктора и функционирования в режиме жидкостной муфты сцепления.

Характерным отличием первой фазы является большая скорость вращения насоса (ротора) по сравнению с турбиной, когда преобразователь вращения выступает в роли редукторного блока.

В механических редукторах для привода шестерни большего размера используется шестерня меньшего размера, причем вал большей шестерни вращается медленнее, развивая при этом больший крутящий момент (за счет увеличения плеча).

В преобразователе вращения, когда насос вращается быстрее турбины, основная энергия затрачивается на раскручивание рабочей жидкости.

Благодаря специфичности формы лопаток центр давления смещается к наружной стороне колеса турбины, которое на данном этапе может быть уподоблено большей шестерне механического редуктора.

До определенного предела, чем больше составляет разница скоростей вращения турбины и насоса, тем сильнее проявляется редукторный эффект.

Кроме того, реактор, удерживаясь от вращения обгонной муфтой, обеспечивает возврат большей части неиспользуемого турбиной потока назад к насосу, дополнительно усиливая эффективность передачи крутящего момента.

При полном открывании дроссельной заслонки и нераскрученной турбине насос обеспечивает максимальный подъем давления рабочей жидкости с концентрацией центра давления на наружных концах турбинных лопаток (максимальное плечо).

Предельный, развиваемый преобразователем вращения крутящий момент иногда называют также моментом пробуксовки гидротрансформатора.

Максимальное передаточное отношение, обеспечиваемое преобразователями вращения, в большинстве АКПП составляет 2:1 - 2.5:1, что определяется не пределом возможностей преобразователя вращения, а компромиссом, достигаемым с учетом таких отрицательных эффектов, сопровождающих дальнейший рост усиления, как повышение температуры и увеличение расхода топлива.

Когда турбинное колесо раскручивается, давление вращающейся жидкости на его лопатки, естественно, падает, что приводит к автоматическому снижению обеспечиваемого преобразователем передаточного отношения.

В момент, когда скорости вращения турбины и насоса максимально сближаются, преобразователь вращения АКПП превращается из подобия редуктора в обычную жидкостную муфту сцепления.

Следует заметить, что полного выравнивания скоростей насоса и турбины достигнуть не возможно ввиду неизбежности естественных потерь энергии.

Обычно турбина разгоняется не более чем до 90% от скорости насоса. На этом этапе необходимость в реакторе отпадает и происходит его отпускание за счет переключения обгонной муфты.

В процессе движения транспортного средства, в зависимости от изменения нагрузки (степени выжимания педали газа), преобразователь вращения может непрерывно переходить из состояния редуктора в состояние сцепления и обратно.

Преобразователи АКПП неблокируемого типа

Преобразователь вращения помещается в купол AКПП, приворачивается к приводному диску коленчатого вала двигателя и обеспечивает передачу крутящего момента первичному (входному) валу трансмиссии.

Типичный преобразователь коробки-автомат состоит из трех главных компонентов: насоса, иногда называемого также ротором, турбины и реактора.

Насос встроен в корпус преобразователя, жестко соединенный с приводным диском. Вращение насоса приводит к раскручиванию находящейся внутри преобразователя жидкости, которая, в свою очередь, передает крутящий момент турбине, посредством шлицов соединенной с первичным валом трансмиссии.

Насос и турбина АКПП в совокупности формируют жидкостную муфту сцепления. Соответствующим образом просчитанная форма лопаток обоих элементов обеспечивает максимальную эффективность передачи крутящего момента от двигателя трансмиссии.

Следует заметить, что наибольший крутящий момент развивается двигателем на холостых оборотах и при его величине приблизительно 23 Нм даже самая эффективная жидкостная муфта сцепления способна обеспечить достаточную приемистость автомобилю, масса которого составляет около тонны, только за счет полного открывания дроссельной заслонки на оптимальных оборотах.

Использование реактора в автоматических коробках передач позволяет значительно повысить эффективность функционирования жидкостной муфты в полном диапазоне изменения эксплуатационных параметров двигателя (обороты и нагрузка).

Реактор призван обеспечивать максимальное повышение эффективности передачи крутящего момента от насоса к турбине.

Реактор коробки автомат представляет собой установленное в центр сборки преобразователя вращения турбинное колесо, лопатки которого обеспечивают перенаправление возвращающегося к насосу вихревого потока, который теперь начинает уже не препятствовать, а содействовать вращению коленчатого вала.

В ступичную часть реактора устанавливается роликовая обгонная муфта, вал которой жестко соединен с корпусом сборки.

Муфта обеспечивает возможность вращения ректора лишь в одном направлении, полностью блокируя противоположное.

Когда скорости вращения насоса и турбины максимально сближаются, что обычно происходит при движении автомобиля с крейсерской скоростью или во время деселерации, реактор отпускается и начинает свободно вращаться на роликах подшипника муфты.

При превышении относительной скоростью насоса некоторого определенного значения происходит блокировка обгонной муфты АКПП за счет воздействия на лопатки реактора гидравлического давления, что приводит к включению механизма перенаправления потока.

В некоторых преобразователях, когда требуется максимальное повышение эффективности передачи крутящего момента двигателя используются два реактора, - первичный развернут в сторону насоса, вторичный в сторону турбины.

При повышенных нагрузках на двигатель оба реактора блокируются своими обгонными муфтами и к насосу перенаправляется большая часть вихревого потока.

По мере разгона турбины нагрузка постепенно падает и вторичный реактора отпускается, сокращая передачу крутящего момента, одновременно ограничивая проскальзывание, что обеспечивает повышение эффективности отдачи сборки.

Преобразователи АКПП блокируемого типа

Главной задачей, которую призвана решать жидкостная муфта коробки-автомат является обеспечение ограниченного проскальзывания между ведущим и ведомым элементами автоматической коробки передач.

Проскальзывание не только обеспечивает безударность ввода компонентов в зацепление, но также позволяет избежать развития вибраций, вызываемых крутильными колебаниями.

Однако любое инженерное решение основано на компромиссах, и в данном случае платой за преимущества, выигранные благодаря использованию жидкостной муфты вместо механического или фрикционного зацепления, становится снижение эффективности отдачи силового агрегата и повышение расхода топлива.

Даже в самых современных преобразователях автоматических коробок передач максимальная скорость вращения турбины не превышает 90% от скорости вращения насоса. Сказанное означает, что на каждые 10 оборотов насоса приходится лишь 9 оборотов турбины.

В настоящее время на большинстве АКПП легковых автомобилей и легких грузовиков используются преобразователи вращения блокируемого типа.

По конструкции блокируемые преобразователи отличаются от рассмотренных выше неблокируемых очень незначительно, добавляется лишь еще один узел, обеспечивающий механическое зацепление коленчатого вала двигателя с первичным валом коробки-автомат.

В настоящее время наиболее широкую популярность приобрели три основных типа блокируемых преобразователей, подробному описанию конструкций и принципа функционирования которых посвящен материал приведенных ниже подразделов.

Преобразователи АКПП оборудованные блокиратором поршневого типа с гидравлическим приводом

В данной простейшей схеме в качестве блокирующего элемента коробки-автомат обычно используется нажимной фрикционный диск с торсионными демпферными пружинами, аналогичный, применяемым в сцеплениях ручных коробок передач.

Посредством оборудованной шлицами ступицы диск жестко сочленяется с турбинным колесом преобразователя.

Фрикционной поверхностью диск развернут к приводному диску секции кожуха преобразователя. При включении сцепления диск прижимается к кожуху, обеспечивая восприятие турбиной крутящего момента непосредственно от коленчатого вала двигателя.

Активация блокиратора происходит за счет подачи гидравлического давления на всю заднюю поверхность нажимного диска коробки-автомат. Для вывода турбины из зацепления с кожухом преобразователя давление подается на противоположную сторону диска.

В подобной схеме нажимной диск работает как посаженный на шлицевой вал поршень, что собственно и определяет этимологию названия блокиратора.

В продуктах компании Chrysler, не смотря на некоторые конструктивные отличия, используется та же концепция.

Вместо оборудованной шлицами ступицы здесь используются торсионные демпферные пружины, равномерно распределенные по наружному периметру блокирующего поршня (диска сцепления) и обеспечивающие блокировку последнего с турбинным колесом преобразователя.

При подаче управляющего давления поршень (диск) прижимается к закрепленному на приводном диске кожуху преобразователя.

Преобразователи АКПП оборудованные блокиратором вязкостного типа

Данная схема широко используется в преобразователях вращения автоматических коробок передач разработки компании GM. Использование вязкостной муфты позволяет полностью устранить вероятность рывков при включении блокировки.

Несмотря на отсутствие возможности полного устранения проскальзывания преобразователя при движении автомобиля в крейсерском режиме, применение такого блокиратора позволяет все же заметно сократить расход топлива.

Основными конструктивными элементами муфты коробки-автомат являются корпус, ротор и заполняющая полость между ними специальная силиконовая жидкость. Ротор посредством шлицов соединен с турбинным колесом преобразователя.

При подъеме давления трансмиссионной жидкости наружная стенка корпуса муфты прогибается, в результате чего роторный диск под воздействием силиконового наполнителя плотно прижимается к крышке преобразователя.

В данной схеме силикон выполняет функцию демпферной пружины. Обеспечивая высокую инерционность зацепления, блокираторы вязкостного типа могут использоваться при движении транспортного средства практически на любой передаче, кроме первой.

Отсутствие возможности полного устранения проскальзывания, приводит к быстрому разогреву корпуса такого преобразователя при высоких нагрузках.

С целью устранения риска недопустимого перегрева компонентов в электронную систему управления оборудованных вязкостным блокиратором автоматической коробки передач обычно добавляется специальный контур, обеспечивающий автоматическое выключение сцепления по сигналу специального информационного датчика, считывающего температуру жидкости непосредственно с корпуса ротора.

Преобразователи, оборудованные механическим блокиратором прямого действия

Преобразователи с механической схемой включения блокировки используются в 4-ступенчатых АКПП AOD разработки компании Ford, а также в трансмиссиях ZF Chrysler.

Крышка преобразователя оборудована пружинным торсионным демпфером и встроенной шлицевой муфтой.

Внутрь полого первичного (входного) вала коробки-автомат помещен приводной вал прямого действия, один конец которого введен в зацепление со встроенной в корпус преобразователя шлицевой ступицей, а второй соединен с муфтой сцепления 3-й и 4-й передач внутри трансмиссионной сборки.

При движении на 3-й передаче 40% крутящего момента передается через преобразователь вращения и 60 - через приводной вал. На 4-й передаче весь крутящий момент передается непосредственно по валу, в обход преобразователя.

_____________________________________________________________________________

_____________________________________________________________________________

Общее устройство АКПП

_____________________________________________________________________________

_____________________________________________________________________________

CVT вариатор Ауди

Коробка автомат Toyota

_____________________________________________________________________________

_____________________________________________________________________________

АКПП Mazda/Mitsubishi

Коробка автомат ZF

Двигатели Mitsubishi

Двигатели Toyota

  • Блок цилиндров и головка 3S-FE/3S-GE
  • Техническое обслуживание ГРМ 3S-FE, 3S-GE
  • Коленвал двигателей 3S-FE, 3S-GE
  • Технические характеристики двигателя 3S-FE, 3S-GE
  • Распредвалы 3S-FE и 3S-GE
  • Система охлаждения двс 3S-FE и 3S-GE
  • Топливная систем 3S-FE, 3S-GE
  • Параметры двигателя 4A-FE, 5A-FE, 7A-FE и 4A-GE
  • Головка и блок цилиндров двигателя 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Дроссельная заслонка 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Вентилятор системы охлаждения 4A-FE, 5A-FE, 7A-FE, 4A-GE
  • Форсунки двигателей 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Замена водяного насоса 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Поршневая группа и коленвал двигателей 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Диагностика двигателей 4A-FE, 5A-FE, 7A-FE и 4A-GE
  • Замена компонентов блока цилиндра 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Система охлаждения 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Система смазки двигателей 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Топливная система двигателей 4A-FE, 4A-GE, 5A-FE и 7A-FE
  • Система зажигания 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Термостат и радиатор двс 4A-FE, 5A-FE, 7A-FE, 4A-GE
  • Бензонасос 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Ремень ГРМ двигателей 4A-FE, 5A-FE, 7A-FE
  • Снятие головки блока цилиндров двигателей 4A-FE, 5A-FE, 7A-FE
  • Регулировки клапанов 4A-FE, 5A-FE, 7A-FE
  • Монтаж головки блока цилиндров двигателя 4A-FE, 5A-FE, 7A-FE
  • Замена ремня ГРМ 4A-GE
  • Демонтаж головки блока цилиндров двигателей 4A-GE
  • Настройки клапанов 4A-GE
  • Монтаж головки блока цилиндров двигателя 4A-GE
  • Детали двигателей 1AZ-FE / 2AZ-FE
  • Блок управления и датчики 1AZ-FE и 2AZ-FE
  • Компоненты рабочих систем двигателя 1AZ-FE, 2AZ-FE
  • Система управления двигателем 1AZ-FE и 2AZ-FE

Двигатели ЗМЗ

avtosteh.ru

гидроблок АКПП | жиклеры, гидроаккумуляторы

     Прежде, чем перейти к непосредственному материалу, короткая реплика по поводу некомпетентности и профессионализма. Меня в очередной раз поразила разница между людьми, которые наплевательски относятся к клиентам, и профессионалами, которые дадут сто очков вперед.

 

     Ситуация случилась с другим моим сайтом (http://rabota4vsem.ru), который я вчера сломал. В процессе общения с сотрудниками двух хостингов я в очередной раз убедился в преимуществе профессионалов. Сайт мне помог восстановить профессионал своего дела, и я конкретно описал в сегодняшней статье на восстановленном сайте все перипетии этой ситуации. К чему это я? Старайтесь сами становиться профессионалами своего дела и обращайтесь к нашим мастерам – они реальные профессионалы.

Гидроблок АКПП. Жиклеры и гидроаккумуляторы

Автоматическая коробка передач

     Сегодня продвинемся в понимании роли и функций жиклеров и гидроаккумуляторов. Правда, конкретику по гидроаккумуляторам разберем в следующей статье. Здесь у нас достаточно о чем поговорить в общем и по жиклерам конкретно.

     Как мы уже определили, первой функцией гидравлической системы управления автоматической коробкой является определение временных точек переключения передач. Причем эта функция является явно выраженной, т.е. момент можно четко подобрать. А вот качество переключений явно подобрать вряд ли удастся, поскольку это весьма расплывчатая задача, которая зависит от многих факторов. Но пользователей автоматических коробок не сильно волнуют все эти факторы – им подавай мягкое переключение. Без рывков и дерганий.

     Поэтому на гидроблок АКПП ложится весьма ответственная задача выбора между исключением длительного скольжения фрикционов относительно друг друга в момент включения, но в то же время и не слишком быстро их включать, чтобы пассажиры автомобиля не ощущали толчки, а поездка была комфортной. Все моменты, от которых зависит качество переключения передач, полностью определяются скоростными параметрами в соответствии с которыми меняется давление в гидроприводах фрикционных узлов управления автоматической коробки передач. Слишком медленное нарастание давления приведет к долгому скольжению, а это – неоправданное увеличение оборотов двигателя и быстрое истирание фрикционных накладок.

     Решением проблем качественного переключения передач и занимаются жиклеры и гидроаккумуляторы. Причем эти элементы гидросистемы входят в состав любой АКПП и чисто гидравлической и электрогидравлической.  Включение в систему управлении автоматической коробкой электронного блока управления (ЭБУ) предполагает его непосредственное участие в обеспечении качества переключения путем влияния на изменение давления в основной магистрали.   

 

Жиклеры

 

     Для обычных драйверов поясню, что жиклер представляет собой резкое уменьшение площади поперечного сечения канала в определенном месте. Его функцией является создание дополнительного сопротивления трансмиссионной жидкости, чтобы влиять на скорость заполнения трансмиссионкой гидроцилиндра или бустера фрикционного элемента управления.

Гидроблок АКПП. Жиклеры и гидроаккумуляторы

жиклер гидроблока

 

     Резкое изменение поперечного сечения канала приводит к тому, что насос нагнетает давление перед входом в отверстие жиклера, а с другой стороны создается зона более низкого давления. Если канал после жиклера не упирается в тупик, то возникает перепад давления. Если же за жиклером следует гидроцилиндр или бустер, то давление постепенно выравнивается. Вот период этого “постепенно” и важен.

 

Гидроблок АКПП. Жиклеры и гидроаккумуляторы

Выравнивание давления

     Жиклеры в гидросистемах управления выполняют функцию буфера, обеспечивая плавное нарастание давления, а заодно и управление расходом трансмиссионки.  Основное место установки жиклеров, как правило, перед входом в гидроцилиндр или бустер. Формировать требуемый закон изменения давления в этих элементах помогают гидроаккумуляторы. Таким образом, жиклеры играют весомую роль в процессе включения фрикционного элемента.

Гидроблок АКПП. Жиклеры и гидроаккумуляторы

Применение шарикового клапана

 

     Чтобы обеспечить быстрый сброс давления в гидроприводе при наличии в канале жиклера используют двухканальную схему. Во втором канале в противовес жиклеру устанавливается шариковый клапан одностороннего действия. При включении шарик зажат в седле клапана, в результате чего трансмиссионка в гидропривод попадает через жиклер (давление меняется согласно установленного закона), а в момент выключения фрикционных элементов давление отжимает шарик и жидкость вытекает уже через оба канала, что значительно ускоряет процесс. В гидроблоке АКПП место для жиклеров определили в сепараторной пластине. Здесь жиклеры реализованы в виде калиброванных отверстий.

      В следующей статье рассмотрим гидроаккумуляторы.

Безремонтной вам езды и удачи на дорогах!

akpp61.ru

Гидроаккумуляторы АКПП

________________________________________________________________________________________

________________________________________________________________________________________

Гидроаккумуляторы АКПП

Использование гидравлических аккумуляторов позволяет обеспечить безударность переключений АКПП при относительно малой инерционности срабатывания клапанов переключения.

Аккумуляторы призваны выполнять роль своего рода амортизаторов и позволяют контролировать скорость срабатывания сервоприводов за счет ступенчатого перекачивания гидравлической жидкости из одной промежуточной камеры в другую.

В автомобильных автоматических коробках передач используются гидроаккумуляторы двух базовых типов: поршневого и клапанного.

Гидроаккумулятор АКПП поршневого типа

Как и во многих других компонентах клапанной сборки в число основных компонентов аккумулятора входят поршень и пружина.

Однако, в отличие от исполнительных устройств, в данном случае поршень не используется для привода каких-либо компонентов, выполняя исключительно роль поглощающего энергию демпфера.

При подаче напора поток гидравлической жидкости попадает в демпферную камеру аккумулятора и начинает, преодолевая сопротивление пружины, постепенно смещать поршень, благодаря чему удается избежать скачкообразного подъема давления в рабочем контуре.

Подача управляющего давления с противоположной (подпружиненной) стороны поршня аккумулятора позволяет контролировать интенсивность демпфирования, сообразуя его с текущими потребностями.

Так, в качестве управляющего может выступать давления дроссельной линии, давление главного системного тракта или давление аккумулируемого регулятора, отдельным узлом входящего в состав клапанной сборки.

В качестве поршневого аккумулятора могут выступать две отдельных камеры в теле клапанной сборки или корпусе сервопривода АКПП.

Организация аккумулятора в корпусе исполнительного устройства позволяет сократить на единицу количество управляющих контуров, однако ведет к увеличению размеров сервопривода.

Выполненный же отдельным блоком аккумулятор может быть размещен в любом месте клапанной сборки, что позволяет осуществлять «горячую» настройку его управляющей пружины, корректируя соответствующим образом интенсивность демпфирования.

Рассмотрим в качестве примера поршневой гидроаккумулятор сервопривода тормозной ленты заднего хода (реверса) и понижающих передач АКПП:

- давление центробежного регулятора удерживает поршни сервопривода и аккумулятора в отпущенном положении.

- управляющее давление сцепления включения второй передачи подается также в сборки аккумулятора и сервопривода, заставляя их поршни смещаться, преодолевая сопротивление пружины и противодавления аккумулируемого регулятора.

Тормозная лента включения первой передачи продолжает оставаться в отпущенном положении до тех пор, пока управляющее давление не будет подано на противоположную сторону поршня сервопривода, обеспечивая также вывод жидкости из поршневой камеры аккумулятора.

Управляя скоростью нарастания давления в обоих направлениях, данный аккумулятор позволяет осуществлять контроль плавности ввода в зацепление двух различных тормозных барабанов.

Гидроаккумулятор АКПП клапанного типа

Широко применяемые в коробках производства компании Ford клапанные аккумуляторы действуют не менее эффективно, чем поршневые, заметно отличаясь от последних принципом функционирования.

Давление в рабочей линии удерживает золотник в аккумуляторе клапанного типа в отжатом положении.

При срабатывании клапана переключения управляющий поток жидкости через демпфирующее дроссельное отверстие подается на сервопривод и (одновременно) на подпружиненную заднюю сторону золотника аккумулятора, который под суммарным воздействием, развиваемым пружиной и управляющим давлением, начинает опускаться, преодолевая противодавление со стороны системного тракта.

Использование двойного демпфирования управляющего потока (за счет дросселирования потока и применения аккумулятора) позволяет обеспечить требуемую инерционность срабатывания сервопривода.

_________________________________________________________________________________________

_________________________________________________________________________________________

_________________________________________________________________________________________

_________________________________________________________________________________________

autozapchastiremont.ru

принцип работы, устройство, схема, расчет, установка, подключение.

Гидроаккумулятор: принцип работы, устройство, схема, расчет, установка, подключение

Гидроаккумулятор является специальной металлической герметичной емкостью, содержащей внутри эластичную мембрану и определенный объем воды под определенным давлением.

Зачем нужен гидроаккумулятор?

Гидроаккумулятор (другими словами – мембранный бак, гидробак) используется для поддержки стабильного давления в водопроводе, предохраняет водяной насос от преждевременного износа из-за частого включения, предохраняет систему водоснабжения от возможных гидроударов. При отключении напряжения, благодаря гидроаккумулятору, вы всегда будете с небольшим запасом воды.

Зачем нужен гидроаккумулятор

Вот основные функции, которые выполняет гидроаккумулятор в системе водоснабжения:

  1. Предохранение насоса от преждевременного износа. Благодаря запасу воды в мембранном баке, при открытии водопроводного крана насос будет включаться только в том случае, если запас воды в баке иссякнет. Любой насос имеет определенную норму включений в час, поэтому, благодаря гидроаккумулятору, у насоса появиться запас неиспользованных включений, что повысит срок его эксплуатации.
  2. Поддержка постоянного давления в водопроводной системе, предохранение от перепадов напора воды. Из-за перепадов напора при одновременном включении нескольких кранов происходят резкие колебания температуры воды, например в душе и на кухне. Гидроаккумулятор успешно справляется с такими неприятными ситуациями.
  3. Предохранение от гидроударов, которые могут возникать при включении насоса, и способны порядком подпортить трубопровод.
  4. Поддержание запаса воды в системе, что позволяет пользоваться водой даже во время отключения электричества, что в наше время происходит довольно часто. Особенно ценна эта функция в загородных домах.

Устройство гидроаккумулятора

Устройство гидроаккумулятора разрез

Герметичный корпус этого устройства разделяется специальной мембраной на две камеры, одна из которых предназначена для воды, а другая – для воздуха.

Вода не соприкасается с металлическими поверхностями корпуса, так как она находится в водяной камере-мембране, изготовленной из крепкого резинового материала бутила, устойчивого к воздействию бактерий соответствующего всем гигиеническим и санитарным нормам, предъявляемым к питьевой воде.

В воздушной камере находится пневмоклапан, предназначением которого является регулирование давления. Вода попадает в гидроаккумулятор через специальный присоединительный патрубок на резьбе.

Устройство гидроаккумулятора должно быть смонтировано таким образом, чтобы его можно было беспрепятственно разобрать в случае ремонта или профилактики, не сливая при этом всю воду из системы.

Диаметры соединительного трубопровода и напорного патрубка должны по возможности совпадать между собой, тогда это позволит избежать нежелательных гидравлических потерь в трубопроводе системы.

В мембранах гидроаккумуляторов объемом более 100 л находится особый клапан для стравливания воздуха, выделяющегося из воды. Для малолитражных гидроаккумуляторов, в которых нет такого клапана, в системе водопровода должно быть предусмотрено устройство для стравливания воздуха, например, тройник или кран, который перекрывает основную магистраль системы водоснабжения.

В воздушном клапане гидроаккумулятора давление должно составлять 1.5-2 атм.

Принцип работы гидроаккумулятора

Гидроаккумулятор работает так. Насос подает воду под давлением в мембрану гидроаккумулятора. Когда достигается порог давления, реле отключает насос и вода прекращает подаваться. После того, как при заборе воды давление начинает падать, насос опять автоматически включается и подает воду в мембрану гидроаккумулятора. Чем больший объем гидробака, тем эффективнее результат его работы. Срабатывание реле давления можно регулировать.

Во время работы гидроаккумулятора, растворенный в воде воздух постепенно скапливается в мембране, что приводит к снижению эффективности работы устройства. Поэтому, необходимо производить профилактику гидроаккумулятора, стравливая накопившийся воздух. Частота проведения профилактик зависит от объема гидробака и частоты его эксплуатации, что составляет приблизительно один раз в 1-3 месяца.

Виды гидроаккумуляторов

Виды гидроаккумуляторов

Эти устройства могут быть вертикальной и горизонтальной конфигурации.

Принцип работы устройств не имеет различий, за исключением того, что вертикальные гидроаккумуляторы объемом больше 50 л в верхней части имеют специальный клапан для стравливания воздуха, который постепенно накапливается в системе водоснабжения во время эксплуатации. Воздух скапливается в верхней части устройства, потому расположение клапана для стравливания выбрано именно в верхней части.

В горизонтальных устройствах для стравливания воздуха монтируется специальный кран или слив, который устанавливается за гидроаккумулятором.

Из устройств маленьких размеров, не зависимо от того, вертикальные они или горизонтальные, воздух стравливается с помощью полного слива воды.

Выбирая форму гидробака, исходят из размеров технического помещения, где они будут установлены. Все зависит от габаритов устройства: какое лучше впишется в отведенное для него место, такое и будет установлено, независимо от того горизонтальное оно или вертикальное.

Схема подключения гидроаккумулятора

В зависимости от возложенных функций, схема подключения гидроаккумулятора к водопроводной системе может быть разной. Самые популярные схемы подключения гидроаккумуляторов приведены ниже.

Схема обвязки повысительной насосной станции

Схема обвязки повысительной насосной станции

Такие насосные станции устанавливаются там, где присутствует большое водопотребление. Как правило, один из насосов на таких станциях работает постоянно.На повысительной насосной станции гидроаккумулятор служит для уменьшения скачков давления во время включения дополнительных насосов и для возмещения небольших водоразборов.

Еще такая схема широко применяется, когда в системе водоснабжения происходит частое прерывание подачи электроэнергии на повысительные насосы, а присутствие воды жизненно необходимо. Тогда запас воды в гидроаккумуляторе спасает положение, играя роль резервного источника на этот период.

Чем больше и мощнее насосная станция, и чем большее давление она должна поддерживать, тем больше должен быть объем гидрроаккумулятора, исполняющего роль демпфера.Буферная емкость гидробака тоже зависит от объема необходимого запаса воды, и от разницы в давлении при включении и отключении насоса.

Схема для погружного насоса

Схема для погружного насоса

Для длительной и бесперебойной работы погружной насос должен совершать от 5 до 20 включений в час, что указывается в его технических характеристиках.

При падении давления в водопроводной системе до минимального значения автоматически включается реле давления, а при максимальном значении – отключается. Даже самый минимальный расход воды, особенно в малых системах водоснабжения, может понизить давление до минимума, что моментально даст команду для включения насоса, ведь утечка воды компенсируется насосом моментально, а через несколько секунд, при пополнении запаса воды, реле отключит насос. Таким образом, при минимальном водопотреблении, насос будет работать почти вхолостую. Такой режим работы неблагоприятно сказывается на работе насоса и может быстро вывести его из строя. Положение может исправить гидроаккумулятор, который всегда имеет нужный запас воды и успешно компенсирует незначительный ее расход, а также защитит насос от частого включения.

Кроме этого, гидроаккумулятор, подключенный к схеме, сглаживает резкое повышение давления в системе при включении погружного насоса.

Объем гидробака выбирается в зависимости от частоты включений и мощности насоса, расхода воды в час и высоты его установки.

Подключение гидроаккумулятора к водонагревателю

Подключение гидроаккумулятора к водонагревателю

Для накопительного водонагревателя в схеме подключения гидроаккумулятор играет роль расширительного бака. Нагреваясь, вода расширяется, увеличивая объем в системе водоснабжения, а так как она не имеет свойства сжиматься, то самый минимальный рост объема в замкнутом пространстве увеличивает давление и может привести к разрушению элементов водонагревателя. Здесь тоже придет на помощь гидробак. Его объем напрямую будет зависеть и увеличиваться от увеличения объема воды в водонагревателе, повышения температуры нагреваемой воды и роста максимально допустимого давления в системе водопровода.

Подключение гидроаккумулятора к насосной станции

Подключение гидроаккумулятора к насосной станции

Гидроаккумулятор подключается перед повысительным насосом по ходу воды. Он нужен для предохранения от резкого снижения давления в сети водоснабжения в момент включения насоса.

Вместимость гидроаккумулятора для насосной станции будет тем больше, чем больше используется воды в системе водоснабжения и чем меньше разница между верхней и нижней шкалой давления в водопроводе перед насосом.

Как установить гидроаккумулятор?

Из всего вышесказанного можно понять, что устройство гидроаккумулятора абсолютно не похоже на обыкновенный бак для воды. Это устройство постоянно в работе, мембрана все время в динамике. Поэтому монтаж гидроаккумулятора не так прост. Бак нужно укреплять при установке надежно, с запасом прочности, шума и вибрации. Поэтому бак закрепляется к полу через резиновые прокладки, а к трубопроводу через резиновые гибкие переходники. Нужно знать, что на входе гидросистемы сечение подводки не должно сужаться. И еще одна важная деталь: первый раз бак заполнять нужно очень осторожно и медленно, используя слабый напор воды, на тот случай если резиновая груша слиплась от долгого бездействия, и при резком напоре воды она может повредиться. Лучше всего перед вводом в эксплуатацию удалить из груши весь воздух.

Монтаж гидроаккумулятора должен осуществляться так, чтобы во время работы к нему можно было свободно подойти. Лучше поручить эту задачу опытным специалистам, так как очень часто бак выходит из строя из-за какой-нибудь неучтенной, но важной мелочи, например из-за несоответствия диаметра труб, неотрегулированного давления и т.д. Здесь нельзя проводить эксперименты, ведь на кону стоит нормальная работа водопроводной системы.

Настройка гидроаккумулятора

Настройка гидроаккумулятора

Вот вы принесли в дом купленный гидробак. Что с ним дальше делать? Сразу необходимо узнать уровень давления внутри бака. Обычно производитель накачивает его на 1.5 атм, но бывают такие случаи, когда из-за утечки, ко времени продажи показатели снижаются. Чтобы удостовериться в правильности показателя, необходимо открутить декоративный колпачок на обыкновенном автомобильном золотнике и проверит давление.

Крышка гидробака

Чем же его проверить? Обычно для этого используют манометр. Он может быть электронным, механическим автомобильным (с металлическим корпусом) и пластиковым, который поставляется в комплекте с некоторыми моделями насосов. Важно, чтобы манометр имел большую точность, так как даже 0.5 атм меняет качество работы гидробака, поэтому пластиковые манометры лучше не использовать, так как они дают очень большую погрешность в показателях. Это обычно китайские модели в слабеньком пластиковом корпусе. На показатели электронных манометров влияет заряд батареи и температура, к тому же, они очень дорогие. Поэтому оптимальным вариантом является обыкновенный автомобильный манометр, прошедший проверку. Шкала должна быть на небольшое количество делений, для возможности более точного измерения давления. Если шкала рассчитана на 20 атм, а нужно измерять всего 1-2 атм, то высокой точности ожидать не приходится.

Проверка давления в гидроаккумуляторе

Если в баке меньше воздуха, значит там больший запас воды, но разница в давлении между пустым и почти заполненном баком будет очень существенной. Все дело в предпочтениях. Если нужно, чтобы в водопроводе постоянно был высокий напор воды, то в баке должно быть давление не менее 1.5 атм. А для бытовых нужд вполне может быть достаточно и 1 атм.

При давлении 1.5 атм гидробак имеет меньший запас воды, из-за чего будет чаще включаться подкачивающийся насос, а при отсутствии света запаса воды в баке может просто не хватить. Во втором случае придется жертвовать давлением, ведь принять душ с массажем можно при заполненном баке, а по мере его опустошения – только ванну.

Когда вы решите, что для вас важнее, можно устанавливать нужный режим работы, то есть, либо подкачать воздух в бак, либо стравить лишний.

Нежелательно снижать давление меньше отметки 1 атм, так же, как и чрезмерно превышать. Наполненная водой груша при недостаточном давлении будет касаться стенок бака, и может быстро прийти в негодность. А избыточное давление не позволит закачать достаточный объем воды, так как большая часть бака будет занята воздухом.

Настройка реле давления

Также нужно выполнить настройку реле давления. Открыв крышку, вы увидите две гайки и две пружины: большую (Р) и малую (дельта Р). С их помощью можно настроить максимальный и минимальный уровни давления, при которых включается и выключается насос. За включение насоса и давление отвечает большая пружина. По конструкции можно увидеть, что она как бы способствует воде замкнуть контакты.

Настройка реле давления гидроаккумулятора

С помощью малой пружины выставляется разница давлений, о чем оговаривается во всех инструкциях. Но в инструкциях не указывается точка отсчета. Оказывается, что точкой отсчета является гайка пружины Р, то есть нижний предел. Нижняя пружина, отвечающая за разницу давлений, сопротивляясь давлению воды, отодвигает подвижную пластину от контактов.

Закачка воды в гидроаккумулятор

Закачка воды в гидроаккумулятор

Когда уже выставлено правильное давление воздуха, можно подключать гидроаккумулятор к системе. Подключив его, нужно внимательно наблюдать за манометром. На всех гидроаккумуляторах указаны значения нормального и предельного давлений, превышение которых недопустимо. Ручное отключение насоса от сети происходит при достижении нормального давления гидроаккумулятора, при достижении граничного значения напора насоса. Это происходит, когда повышение давления прекращается.

Мощности насоса обычно не хватает, чтобы накачать бак до предела, но, в этом даже нет особой необходимости, ведь при накачке снижается срок эксплуатации и насоса и груши. Чаще всего предел давления для отключения устанавливается на 1-2 атм выше, чем включения.

Например, при показании манометра 3 атм, что достаточно для нужд владельца насосной станции, нужно отключить насос и медленно вращать гайку малой пружины (дельта Р) на уменьшение, до срабатывания механизма. После этого нужно открыть кран и слить воду из системы. Наблюдая за манометром, нужно отметить то значение, при котором включится реле – это нижний предел давления, когда включается насос. Этот показатель должен быть чуть больше показателя давления в пустом гидроаккумуляторе (на 0.1-0.3 атм). Это даст возможность прослужить груше больший период времени.

При вращении гайки большой пружины Р, выставляется нижний предел. Для этого нужно включить насос в сеть и подождать, пока давление достигнет нужного уровня. После этого необходимо подстроить гайку малой пружины «дельта Р» и закончить настройку гидроаккумулятора.

Давление в гидроаккумуляторе

Давление в гидроаккумуляторе

В воздушной камере гидроаккумулятора давление должно быть на 10 % ниже, чем давление при включении насоса.

Точный показатель давления воздуха можно измерить, лишь при отключенном от системы водопровода баке, при отсутствии давления воды. Давление воздуха необходимо постоянно держать под контролем, по необходимости регулировать, что прибавит мембране срок жизни. Также для продолжения нормального функционирования мембраны нельзя допускать большой перепад давления, когда включается и выключается насос. Нормальным является перепад в 1.0-1.5 атм. Более сильные перепады давления уменьшают срок службы мембраны, сильно растягивая ее, к тому же, такие перепады давления не дают возможности комфортного пользования водой.

Гидроаккумуляторы можно устанавливать в местах с невысокой влажностью, неподверженных затоплению, чтобы фланец устройства успешно служил много лет.

Выбирая марку гидроаккумулятора, необходимо обратить особое внимание на качество материала, из которого выполнена мембрана, проверить сертификаты и санитарно-гигиенические заключения, удостоверившись, что гидробак предназначен для систем с питьевой водой. Также нужно убедиться в наличии запасных фланцев и мембран, которые должны быть в комплекте, чтобы в случае возникшей проблемы не пришлось покупать новый гидробак.

Предельное давление гидроаккумулятора, на которое он рассчитан, должно быть не меньшим, чем максимальное давление в системе водопровода. Поэтому большинство устройств выдерживают давление 10 атм.

Расчет гидроаккумулятора

Расчет гидроаккумулятора

Чтобы определить, какой запас воды можно использовать из гидроаккумулятора при выключении электричества, когда насос прекратит качать воду из системы водоснабжения, можно использовать таблицу заполняемости мембранного бака. Запас воды будет зависеть от настройки реле давления. Чем выше разница давлений при включении и выключении насоса, тем больший запас воды будет в гидроаккумуляторе. Но эта разница лимитируется по изложенным выше причинам. Рассмотрим таблицу.

Таблица расчета гидроаккумулятора

Здесь мы видим, что в мембранный бак объемом 200 л при настройках реле давления, когда показатель включение насоса составляет 1.5 бар, выключение насоса – 3.0 бар, давление воздуха составляет 1.3 бар, запас воды будет всего 69 л, что равно примерно трети общего объема бака.

Расчет необходимого объема гидроаккумулятора

Чтобы выполнить расчет гидроаккумулятора, используют следующую формулу:

Vt = K * A max * ((Pmax+1) * (Pmin +1)) / (Pmax- Pmin) * (Pвозд. + 1),

где

  • Amax – максимальный расход литров воды в минуту;
  • К – коэффициент, который зависит от мощности двигателя насоса;
  • Pmax – давление при выключении насоса, бар;
  • Pmin – давление при включении насоса, бар;
  • Pвозд. – давление воздуха в гидроаккумуляторе, бар.

Таблица

В качестве примера подберем необходимый минимальный объем гидроаккумулятора для водопроводной системы, взяв, например, насос Водолей БЦПЭ 0,5-40 У с такими параметрами:

Pmax (бар) Pmin (бар) Pвозд (бар) A max (куб.м/час) K (коэффициент)
3.0 1.8 1.6 2.1 0.25

Используя формулу, вычисляем минимальный объем ГА, который равен 31.41 литра.

Поэтому выбираем следующий ближайший размер ГА, который равен 35 л.

Объем бака в диапазоне 25-50 литров идеально согласуется со всеми методиками расчета объема ГА для бытовых водопроводных систем, а также с эмпирическими назначениями разных производителей насосного оборудования.

При частом выключении электроэнергии целесообразно выбирать бак большего объема, но в это же время следует помнить, что вода сможет заполнить бак лишь на 1/3 общего объема. Чем мощнее установлен насос в системе, тем больший должен быть объем гидроаккумулятора. Это соответствие размеров сократит количество коротких включений насоса и продлит срок эксплуатации его электродвигателя.

Если вы купили гидроаккумулятор большого объема, нужно знать, что если водой не пользоваться регулярно, она застаивается в баке ГА и ее качество ухудшается. Поэтому, выбирая в магазине гидробак, нужно учитывать, максимальный объем используемой воды в системе водопровода дома. Ведь при небольшом расходе воды использовать бак объемом 25-50 л намного целесообразнее, чем 100-200 л., вода в котором будет пропадать зря.

Ремонт и профилактика гидроаккумулятора

Даже самые простые гидробаки требуют к себе внимания и ухода, как любое работающее и приносящее пользу устройство.

Поводы для ремонта гидроаккумулятора бывают разные. Это коррозия, вмятины корпуса, нарушение целостности мембраны или нарушение герметичности бака. Также существует множество других причин, которые обязывают владельца ремонтировать гидробак. Чтобы не допустить серьезных поломок, необходимо регулярно осматривать поверхность гидроаккумулятора, следить за его работой, чтобы предотвратить возможные проблемы. Недостаточно осматривать ГА два раза в год, как оговаривается в инструкции. Ведь можно устранить одну неисправность сегодня, а завтра не обратить внимание на другую возникшую проблему, которая на протяжении полугода превратиться в непоправимую и может привести к выходу гидробака из строя. Поэтому гидроаккумулятор нужно осматривать при каждой возможности, чтобы не пропустить малейших неисправностей, и вовремя проводить их ремонт.

Причины поломок и их устранение

Замена мембраны в гидроаккумуляторе

Причиной поломки расширительного бака может быть слишком частое включение-выключение насоса, выход воды через клапан, слабый напор воды, слабое давление воздуха (ниже расчетного), слабый напор воды после насоса.

Как устранить неисправность гидроаккумулятора своими руками? Поводом для ремонта гидроаккумулятора может стать слабое давление воздуха или его отсутствие в мембранном баке, повреждение мембраны, повреждение корпуса, большая разница в давлении при включении и выключении насоса, неправильно выбранный объем гидробака.

Устранить неисправности можно следующим образом:

  • чтобы увеличить давление воздуха нужно произвести его нагнетание через ниппель бака гаражным насосом или компрессором;
  • поврежденную мембрану можно восстановить в сервисном центре;
  • поврежденный корпус и его герметичность устраняется тоже в сервисном центре;
  • исправить разницу в давлениях можно, выставив слишком большой дифференциал в соответствие с частотой включений насоса;
  • достаточность объема бака нужно определить до его установки в систему.

py-sm.com

Яковлев Дмитрий - Устройство АКПП - Гидроаккумулятор

Похожее видео

Картинка: развоздушивание ауди а6 c5 2.5tdi afb Картинка: ремонт соленоидов aisin aw55-50sn на transcatalog.ru Картинка: ауди сочи 2014 Картинка: устройство акпп - масляный насос Картинка: удаление сажевого фильтра на авто audi a6. удаление сажевого фильтра в спб .сажевый фильтр. Картинка: ауди 80 б4 пропала тяга и появился ужасный звук от мотора. Картинка: ремонт генератора шестерки Картинка: яковлев дмитрий - устройство акпп - гидроаккумулятор Картинка: разбирается ауди а4 б5 99г 1.8т Картинка: замена дтож audi a6 c5 2.8 alg (датчик температуры охлаждающей жидкости) Картинка: кнопка запуска двигателя в audi 100 c4 Картинка: #702. audi 80 b2 1979-1986 (авто блог 2014) 

videoremont-mashin.ru


Смотрите также

Станции

Районы

Округа

RoadPart | Все права защищены © 2018 | Карта сайта