Блог инженера теплоэнергетика | Циклы двигателей внутреннего сгорания
Здравствуйте! Двигатель внутреннего сгорания (ДВС) — это тепловая машина, в которой подвод теплоты к рабочему телу осуществляется за счет сжигания топлива внутри самого двигателя. Рабочим телом в таких двигателях является на первом этапе воздух или смесь воздуха с легковоспламеняемым топливом, а на втором этапе — продукты сгорания.В поршневых двигателях внутреннего сгорания подвод теплоты происходит непосредственно в цилиндре в процессе сгорания топлива. Эти двигатели имеют сравнительно высокую экономичность, малые габариты и вес, приходящийся на единицу мощности, и поэтому в основном применяются в качестве транспортных двигателей: в авиации, автомобильном, водном и железнодорожном транспорте. Кроме того, они используются в стационарных энергетических установках малой мощности.
Недостатком поршневых двигателей является необходимость применения кривошипного механизма, предназначенного для преобразования поступательного движения поршня во вращательное. Наличие несбалансированных масс в кривошипном механизме при увеличении числа оборотов приводит к возникновению больших механических нагрузок. Поэтому мощные двигатели внутреннего сгорания выполняются тихоходными, что увеличивает их габариты и вес.
Различные требования, предъявляемые к двигателям внутреннего сгорания в зависимости от их назначения, привели к созданию самых разнообразных типов этих двигателей. Однако с термодинамической точки зрения их можно классифицировать по характеру процессов. Циклы, которые применяются в двигателях, можно подразделить на следующие три вида:
1) цикл с подводом теплоты при постоянном объеме;
2) цикл с подводом теплоты при постоянном давлении;
3) смешанный цикл, в котором теплота подводится при постоянном объеме и при постоянном давлении.
Цикл с подводом теплоты в процессе при постоянном объеме.
Особенностью двигателей, работающих по этому циклу, является внешнее приготовление рабочей смеси, которая затем подается в цилиндр, где сжимается и воспламеняется от электрической искры, причем сгорание происходит очень быстро и процесс можно рассматривать как происходящий при постоянном объеме. Так как внешнее смесеобразование осуществляется при низкой температуре, двигатель может работать только на легких топливах, которые хорошо смешиваются с воздухом. Такой двигатель впервые был построен в 1876 г. немецким изобретателем Отто и работал на газовой смеси.
Теоретический цикл с подводом теплоты при υ = const состоит из двух адиабат и двух изохор (рис. 2). В процессе 1—2 происходит адиабатное сжатие рабочей смеси, которая в точке 2 воспламеняется с помощью электрической искры и сгорает в процессе 2—3 при постоянном объеме. В процессе 3—4 адиабатного расширения продуктов сгорания топлива происходит перемещение поршня и производится работа расширения. В точке 4 открывается выхлопной клапан, и давление в цилиндре падает до атмосферного pa.
При этом часть отработавших продуктов сгорания покидает полость цилиндра. В дальнейшем в результате возвратно-поступательного движения поршня выталкиваются остатки продуктов сгорания и всасывается следующая порция рабочей смеси. На теоретической диаграмме (рис. 2) эти процессы совпадают с изобарой ра, однако условно их совмещают с изохорным процессом 4—1, в котором отводится количество теплоты q2, фактически уносимой вместе с удаляемыми газами.
Реальные циклы двигателей внутреннего сгорания заметно отличаются от теоретических, поэтому при теоретическом анализе вводятся также и другие допущения. В качестве рабочего тела при исследовании циклов двигателей внутреннего сгорания принимается идеальный газ, количество и свойства которого неизменны (в действительности они изменяются в результате сгорания распыленного топлива).
Процессы сжатия и расширения не являются адиабатными, потому что в реальном двигателе существует трение и происходит теплообмен между стенками цилиндра и газом. Процесс 2—3 в действительности также отличается от изохорного из-за перемещения поршня за время горения топлива. Вследствие развития всех процессов во времени определенные точки перехода от одного процесса к другому (точки 1, 2, 3 и 4) в реальных циклах отсутствуют, и процессы сменяют друг друга постепенно (рис. 1).
Однако при термодинамическом анализе циклов двигателей внутреннего сгорания эти отклонения от идеальных условий не учитываются, что существенно упрощает теоретическое исследование циклов.
В соответствии с формулой
термический к. п. д. цикла с подводом теплоты при постоянном объеме возрастает с увеличением степени сжатия ε, которая равна отношению υ1/υ2 (рис.2) и показывает, во сколько раз уменьшается объем рабочей смеси при ее сжатии. Однако величина ε ограничивается температурой самовоспламенения рабочей смеси.
Если в процессе адиабатного сжатия 1—2 температура в цилиндре превысит температуру самовоспламенения, то рабочая смесь воспламенится преждевременно, что не только снизит экономичность двигателя, но и приведет к весьма опасным перегрузкам. Поэтому степень сжатия в двигателях со сгоранием при υ = const не превышает ε = 6—9 (выбирается в зависимости от свойств топлива).
Цикл с подводом теплоты при постоянном давлении.
В двигателях, работающих по этому циклу, сжатию подвергается не рабочая смесь, а воздух, температура которого в конце процесса сжатия (точка 2 на рис. 3) превышает температуру самовоспламенения топлива и составляет 600—800° С. Благодаря этому подаваемое в цилиндр распыленное жидкое топливо, смешиваясь с воздухом, самовоспламеняется и горит, причем подача топлива регулируется таким образом, чтобы горение шло при постоянном давлении (изобара 2—3). Распыливание подаваемого в цилиндр топлива производится сжатым воздухом (давление 5—9 МПа), поступающим из специального компрессора (такие двигатели часто называют компрессорными). В процессе 3—4 происходит адиабатное расширение продуктов сгорания, а процесс 4—1 аналогичен такому же в цикле со сгоранием при υ=const. Этот цикл был впервые предложен и осуществлен Дизелем.
Ввиду того что сжатию подвергается только воздух, преждевременное воспламенение (детонация) топлива исключается, двигатели работают с большими степенями сжатия (порядка 15—20) и имеют большой к. п. д. Так как образование горючей смеси происходит при высокой температуре, в этих двигателях сжигаются более тяжелые виды топлива.
Недостатком этих двигателей является наличие компрессора высокого давления, снижающего надежность, а также усложняющего конструкцию и потребляющего некоторую часть мощности двигателя. Поэтому они в настоящее время вытеснены бескомпрессорными двигателями, в которых распыливание топлива осуществляется топливным насосом.
Смешанный цикл.
Двигатели, работающие по смешанному циклу, являются более совершенными по сравнению с двигателями с изобарным сгоранием, так как у них отсутствует компрессор. Первый патент на бескомпрессорный двигатель высокого давления был выдан в 1901 г. русскому инженеру Г. В. Тринклеру. Однако эти двигатели получили широкое распространение значительно позже, когда удалось осуществить тонкое распыливание топлива с помощью топливного насоса и форсунок специальной конструкции. В настоящее время по смешанному циклу работают преимущественно транспортные двигатели, в которых используется тяжелое топливо.
В смешанном цикле, как и в цикле с изобарным сгоранием, сжатию подвергается воздух. Топливо подается в цилиндр с помощью насоса в конце сжатия (точка 2 на рис. 4) при давлении 30—150 МПа и вследствие высокой температуры воздуха самовоспламеняется. Подача топлива под большим давлением создает благоприятные условия для хорошего распиливания и перемешивания его с воздухом, что обеспечивает достаточно полное сгорание топлива и повышение экономичности двигателя. Процесс горения идет сначала при постоянном объеме (изохора 2—3), а затем при постоянном давлении (изобара 3—3′).
Сравнение циклов.
Как уже отмечалось раньше, сравнение экономичности двигателей целесообразно проводить с помощью Ts-диаграммы, так как эта диаграмма позволяет по соответствующим площадям определить количество теплоты. На рис. 5 выполнено сравнение рассмотренных выше циклов двигателей при одинаковом количестве отводимой теплоты q2, которой соответствует площадь 1—4—b—a—1, и одинаковых максимальных параметрах цикла в точке 3.
Степень сжатия для цикла со сгоранием топлива при p = const (определяется положением точки 2″ в конце адиабатного сжатия воздуха) больше, чем для цикла со сгоранием при υ = const (точка 2). Это соответствует действительным условиям работы двигателей, так как отличительной особенностью и преимуществом двигателей с подводом тепла при р = const является возможность использования больших степеней сжатия.
Поэтому целесообразно сопоставить двигатели при одинаковых максимальных давлениях и температурах (точка 3 на рис. 2—4), поскольку эти параметры определяют величину механических и термических напряжений, а следовательно, и конструктивные особенности двигателей.При одинаковых максимальных параметрах в цикле 1—2″— 3—4—1 (рис. 5) с подводом теплоты при p = const работа, равная площади цикла, больше работы в цикле 1—2—3—4—1 с подводом теплоты при υ=const. Так как количество отводимой теплоты q2, которой соответствует площадь 1—4—b—а—1, в обоих циклах одинаково, то термический к. п. д. в условиях одинаковых максимальных параметров для цикла с подводом теплоты при p = const выше.
Термический к. п. д. смешанного цикла 1—2’—3’—3 —4—1 имеет среднее значение между термическими коэффициентами полезного действия рассмотренных циклов. В действительности для смешанного цикла и цикла Дизеля оптимальная степень сжатия одинакова и составляет ε = 16—18, поэтому бескомпрессорные двигатели работают при более высоких максимальных параметрах (точка 3 на рис. 5 расположена выше) и, следовательно, являются наиболее экономичными. Исп. литература: 1) Теплоэнергетика и теплотехника, Общие вопросы, Справочник под ред. В.А. Григорьева и В.М. Зорина, Москва, «Энергия», 1980. 2)Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,»Вышейшая школа», 1976.
Принцип работы 2х тактного и 4х тактного двигателей
Каталог продукции
Лодочные моторы и лодки Принцип работы 2х тактного и 4х тактного двигателей
При выборе силового оборудования необходимо уделить особое внимание типу двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный.
Принцип действия двигателя внутреннего сгорания основан на использовании такого свойства газов, как расширение при нагревании, которое осуществляется за счет принудительного воспламенения горючей смеси, впрыскиваемой в воздушное пространство цилиндра.
Зачастую можно услышать, что 4-х тактный двигатель лучше, но чтобы понять, почему, необходимо более подробно разобрать принципы работы каждого.
Основными частями двигателя внутреннего сгорания, независимо от его типа, являются кривошипно-шатунный и газораспределительный механизмы, а также системы, отвечающие за охлаждение, питание, зажигание и смазку деталей.
Передача полезной работы расширяющегося газа осуществляется через кривошипно-шатунный механизм, а за своевременный впрыск топливной смеси в цилиндр отвечает механизм газораспре6деления.
Четырехтактные двигатели — выбор компании Honda
Четырехтактные двигатели экономичные, при этом их работа сопровождается более низким уровнем шума, а выхлоп не содержит горючей смеси и значительно экологичней чем у двухтактного двигателя. Именно поэтому компания Honda при изготовлении силовой техники использует только четырехтактные двигатели. Компания Honda уже многие годы представляет свои четырехтактные двигатели на рынке силовой техники и добилась высочайших результатов, при этом их качество и надежность ни разу не подвергались сомнению. Но всё же, давайте рассмотрим принцип работы 2х и 4х тактных двигателей.
Принцип работы двухтактного двигателя
Рабочий цикл 2-х тактного двигателя состоит из двух этапов: сжатие и рабочий ход.
Сжатие. Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное, а затем выпускное окно, после чего газ, находящийся в цилиндре, начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем сжатии.
Рабочий ход. После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Дальнейшее движение поршня приводит к сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания.
Основным недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает принести пользу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты, что приводит к частичному выбросу горючей смеси в атмосферу. Еще идёт постоянный расход масла, так как 2х тактные двигатели работают на смеси бензина и масла. Очередное неудобство — в необходимости постоянно готовить топливную смесь. Главными преимуществами двухтактного двигателя остаются его меньшие размеры и вес по сравнению с 4х тактным аналогом, но размеры силовой техники позволяют использовать на них 4х тактные двигатели и испытывать намного меньше хлопот в ходе эксплуатации. Так что уделом 2х тактных моторов осталось различное моделирование, в частности, авиамоделирование, где даже лишних 100г имеют значение.
Принцип работы четырехтактного двигателя
Работа четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов.
Во время впускного этапа поршень двигается вниз, открывается впускной клапан, и в полость цилиндра поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь.
При сжатии поршень движется от НМТ к ВМТ, оба клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.
Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня от ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан.
Во время выпускного этапа продукты сгорания, вытесняемые поршнем, движущимся от НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.
За счет применения системы клапанов четырехтактные двигатели внутреннего сгорания более экономичны и экологичны — ведь выброс неиспользованной топливной смеси исключен. В работе они значительно тише, чем 2х тактные аналоги, и в эксплуатации намного проще, ведь работают на обычном АИ-92, которым вы заправляете свою машину. Нет необходимости в постоянном приготовлении смеси масла и бензина, ведь масло в данных двигателях заливается отдельно в масляный картер, что значительно уменьшает его потребление. Вот именно поэтому компания Honda производит только 4х тактные двигатели и достигла в их производстве колоссальных успехов.
бензиновый двигатель
| Эксплуатация, топливо и факты
V-образный двигатель
См. все СМИ
- Ключевые сотрудники:
- Зигфрид Маркус
Готлиб Даймлер
Карл Бенц
- Похожие темы:
- двигатель Отто
Г-образный двигатель
двигатель Ленуара
двигатель с верхним расположением клапанов
V-образный двигатель
Просмотреть весь связанный контент →
Сводка
Прочтите краткий обзор этой темы
бензиновый двигатель , любой из классов двигателей внутреннего сгорания, которые вырабатывают энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением, инициируемым электрической искрой. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого мыслимого применения силовых установок, наиболее важными из которых являются легковые автомобили, небольшие грузовики и автобусы, самолеты авиации общего назначения, подвесные и небольшие внутренние морские установки, стационарные насосные станции среднего размера, осветительные установки, станки, электроинструменты. Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели менее распространены, но они используются для небольших подвесных судовых двигателей и во многих ручных садовых инструментах, таких как цепные пилы, кусторезы и воздуходувки.
Типы двигателей
Бензиновые двигатели можно разделить на несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, ходы за цикл, систему охлаждения и клапан тип и расположение. В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей. В поршне-цилиндровом двигателе давление, создаваемое сгоранием бензина, создает силу на головке поршня, которая совершает возвратно-поступательное или возвратно-поступательное движение по всей длине цилиндра. Эта сила отталкивает поршень от головки цилиндра и совершает работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров с возвратно-поступательными поршнями. Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.
Большинство бензиновых двигателей представляют собой поршневые двигатели с возвратно-поступательным движением. Основные узлы поршневого двигателя показаны на рисунке. Почти все двигатели этого типа работают либо по четырехтактному, либо по двухтактному циклу.
Четырехтактный цикл
Из различных методов извлечения энергии из процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция которого впервые была разработана в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха всасывается в цилиндр за счет создаваемого таким образом частичного вакуума. Смесь сжимается по мере того, как поршень поднимается в такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий такт, когда оба клапана все еще закрыты, а давление газа из-за расширения сгоревшего газа давит на головку или головку поршня. Во время такта выпуска восходящий поршень вытесняет отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, для каждого цикла требуется четыре хода поршня — впуск, сжатие, рабочий ход и выпуск — и два оборота коленчатого вала.
Недостаток четырехтактного цикла состоит в том, что выполняется только половина рабочих тактов по сравнению с двухтактным циклом ( см. ниже ), и только вдвое меньше мощности можно ожидать от двигателя данного размера при заданная рабочая скорость.