Фазы газораспределения двигателя. Что это такое? Фаза газораспределения это
Фазы газораспределения двигателя. Что это такое?
Работа двигателя зависит от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов. Объясним, что такое фазы газораспределения и их влияние на работу двигателя.
Что такое фазы газораспределения?
Фаза газораспределения — это период от момента открытия клапанов до момента их закрытия, выраженные в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.Задача механизма газораспределения — обеспечить наивысшую эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения,зависит экономичность мотора, мощность и развиваемый момент.
Влияние фаз газораспределения на работу двигателя
В большинстве двигателей фазы меняться не могут и работа таких двигателей не отличается высокой эффективностью. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.Для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.При работе на максимальной мощности ситуация меняется. С повышением оборотов время открытия клапанов сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать больший объём газов, нежели на холостом ходу. Как решить эту задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими.При разработке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на компромиссы. Посудите сами. С одними и теми же фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным.
Изменяемые фазы газораспределения
Если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя?Один из способов это применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.
Инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами.
Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000-6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.А если попробовать изменять высоту подъёма? Такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. Экономия от применения системы бездроссельного управления составляет от 8% до 15%, прирост мощности в пределах 5-15 %.Несмотря на то, что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать выше — за счёт скорости открытия клапанов. Правда, механический привод заменяется электромагнитным.В чём плюс электромагнитного привода? Подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Делается это в целях экономии, например, на холостом ходу или при торможении двигателем. Даже во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный.
Дальнейшее увеличение эффективности работы мотора за счёт ГРМ — невозможно. Выжать больше мощности и момента с того же объёма при меньшем расходе можно будет с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия.
Фазы на распредвалах, какое перекрытие выставить? Что такое
autoexpert.today
Фаза газораспределения что это?
Задача механизма газораспределения — обеспечить наивысшую эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения, зависит экономичность мотора, мощность и развиваемый момент.
Качество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов. В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.
В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.
Фазы газораспределения в поршневых двигателях внутреннего сгорания — это моменты открытия и закрытия впускных и выпускных клапанов (окон). Фазы газораспределения обычно выражаются в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.
Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.
Тюнеры часто мудрят со сдвигом фаз при помощи таких сборных звёздочек. Заменив штатный распредвал на «спортивный» с другими фазами, можно добиться существенной прибавки мощности.
При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.
Хондовская VTEC (Variable Valve Timing and Electronic Control) так же, как и тойотовская VVT-I (Variable Valve Timing with intelligence), позволяет плавно изменять фазы газораспределения фазовращателем с гидравлическим управлением. Это достигается путём поворота распределительного вала впускных клапанов относительно вала выпускных клапанов в диапазоне 40—60° (по углу поворота коленчатого вала).
Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!
Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.
Doppel-VANOS (Doppel Variable Nockenwellen Steuerung) от BMW умеет двигать фазы плавно от начального до конечного значения. При помощи гидравлики система заведует как процессами впуска, так и выпуска.
А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.
Механизм газораспределения 3,2-литровой «шестёрки» FSI от Audi приводится цепями со стороны маховика. У каждого распределительного вала свой фазовращатель.
Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.
Система Valvetronic позволила отказаться от дроссельной заслонки, система меняет и степень открытия клапанов и фазы. Применяется она на моторах BMW с 2001 года. Ход клапана меняется при помощи электродвигателя и сложной кинематической схемы и пределах 0,2–12 мм.
Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).
Аналогичная система от немецкой компании Mahle.
Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.
Система Variable Valve Event and Lift System (VEL), разработанная Ниссаном, напоминает баварский Valvetronic. Специальный эксцентрик, который приводится от электродвигателя, смещает точку опоры коромысла, и за счёт этого изменяет ход клапана. Высота подъёма варьируется в пределах 0,5–2 мм.
Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах 5—15 %. Но и это не последний рубеж.
Так работает «трёхступенчатый» i-VTEC (Intelligent Variable Valve Timing and Lift Electronic Control). На низкой частоте вращения топливо экономится благодаря тому, что половина впускных клапанов практически дезактивирована. При переходе на средние обороты ранее «дремавшие» клапаны включаются в работу, но их амплитуда не максимальна. На мощностных режимах впускные клапаны начинают работать от единственного центрального кулачка. Он обеспечивает максимальный подъём клапанов, кроме того, его профиль специально заточен под мощностные режимы. Управление режимами осуществляется гидравликой и электроникой.
Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.
Осенью 2007 года Toyota запустит в производство моторы с газораспределительным механизмом Valvematic, который будет изменять не только фазы газораспределения, но и высоту подъёма впускных клапанов. Не секрет, что многие производители достаточно давно применяют подобные системы. Но Toyota в серию такую систему запускает впервые. Мощность двухлитрового атмосферника 1AZ-FE, благодаря новому газораспределительному механизму, удалось поднять со 152 до 158 сил, а момент — с 194 до 196 Нм.
В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?
А это схема работы механизма VVTL-i, предложенная компанией Toyota. Здесь высота подъёма и продолжительность открытия обоих впускных клапанов изменяются скачкообразно. При работе двигателя на частотах вращения коленчатого вала до 6000 об/мин высота подъёма и продолжительность открытия обоих клапанов задаются кулачком (1), который через рокер (5) воздействует на оба клапана. На оборотах выше 6000 закон движения клапанов задаётся более высоким кулачком (2). Чтобы ввести его в строй, нужно переместить сухарь (3) вправо (сухарь перемещается под давлением масла, которое в нужный момент повышается в управляющей магистрали). После того как сухарь переместился вправо, кулачок (2) через шток (4), который до этого времени свободно качался, начинает воздействовать на клапаны через рокер.
Опытный образец четырёхцилиндрового мотора с электромагнитным приводом клапанов и непосредственным впрыском был создан компанией BMW. Здесь количество воздуха, поступающего в цилиндр, регулируется продолжительностью открытия клапана, ход при этом не регулируется. Якорь подпружиненного клапана помещён между двумя мощными электромагнитами, которые призваны удерживать его только в крайних положениях. Чтобы предотвратить ударные нагрузки, каждый раз при приближении к крайнему положению клапан тормозится. Положение и скорость перемещения клапана фиксируются специальным датчиком.
Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.
auto-ride.ucoz.ru
Переменные фазы газораспределения
Кроме использования дроссельной заслонки для регулирования расхода поступающего в двигатель воздуха имеются также несколько других возможностей влияния на величину заряда цилиндров. На количество свежего заряда и на долю остаточных газов можно также влиять путём применения переменных фаз газораспределения. Большое значение для установки фаз газораспределения имеет тот факт, что величина заряда, поступающего в цилиндры двигателя, и выходящих из них отработавших газов существенно зависят от частоты вращения двигателя и открытия дроссельной заслонки. Следовательно, при неизменных фазах газораспределения это означает, что цикл газообмена может быть оптимальным только для одного рабочего режима двигателя. Вто же время переменные фазы газораспределения позволяют адаптировать наполнение цилиндров к различным значениям частоты вращения двигателя. Это даёт следующие преимущества:
• Увеличение мощности двигателя;
• Оптимальная характеристика крутящего момента в широком диапазоне скоростных режимов двигателя;
• Снижение эмиссии вредных веществ;
• Уменьшение расхода топлива;
• Снижение уровня шума двигателя.
Рис.3
1-Запаздывание фазы впуска 2-Нормальное положение
3- Опережение фазы впуска 4-Перекрытие клапанов
Регулирование фаз газораспределения поворотом распределительного вала. В обычных ДВС распределительный и коленчатый валы механически связаны зубчатым ремнём или цепью. Это соединение является неизменным. В двигателях с переменными фазами газораспределения, по крайней мере, распределительный вал впускных клапанов, но все чаще и распределительный вал выпускных клапанов, могут поворачиваться относительно коленчатого вала, в результате чего изменяется фаза перекрытия клапанов Период открытия и величина подъёма клапана во время регулирования положения распределительного вала не изменяются то есть фазы открытия и закрытия впускных клапанов по отношению одна к другой остаются неизменными. Регулирование положения распределительного вала осуществляется посредством электрических или электрогидравлических приводов. Простые устройства обеспечивают только два регулировочных положения распределительного вала. В более сложных системах в пределах определённого диапазона осуществляется плавное регулирование положения распределительного вала относительно коленчатого вала двигателя.
На рис. 3 показано изменение фазы подъёма впускного клапана по отношению к ВМТ при регулировании положения распределительного вала.
Запаздывание фазы впуска при регулировании положения распределительного вала Запаздывание распределительного вала и, соответственно, более позднее открытие впускного клапана приводит к уменьшению фазы перекрытия клапанов или даже к полному её закрытию. При малых значениях частоты вращения (меньше 2000 мин1) результатом этого является только перетекание небольшого количества отработавших газов через впускной клапан во впускной коллектор. Таким образом, при малых значениях частоты вращения небольшое содержание остаточных газов в топливовоздушной смеси позволяет улучшить процесс сгорания и повысить плавность работы двигателя на режиме минимального холостого хода. Это позволяет снизить частоту вращения холостого хода и, соответственно, уменьшить расход топлива. При высоких значениях частоты вращения двигателя (больше 5000 мин1) распределительный вал также может устанавливаться в положение запаздывания. Значительно более позднее закрытие впускного клапана после НМТ приводит к лучшему наполнению цилиндров свежей смесью. Эффект дозаряда является результатом высокой скорости прохождения свежей смеси через впускной клапан, которое продолжается даже после того как поршень начинает двигаться вверх, сжимая топливовоздушную смесь. По этой причине впускной клапан закрывается значительно позднее времени прохождения НМТ.
Опережение фазы впуска при регулировании положения распределительного вала В диапазоне средних скоростных режимов скорость прохождения потока свежей топливовоздушной смеси через впускной канал значительно меньше, и поэтому эффект до заряда, имеющий место при больших скоростях, на этих режимах не происходит. Раннее закрытие впускного клапана на средних скоростных режимах, вскоре после НМТ, предотвращает выталкивание вошедшей свежей смеси поднимающимся поршнем обратно во впускной коллектор. На таких скоростных режимах поворот распределительного вала в сторону опережения обеспечивает лучшее наполнение цилиндров и, следовательно, оптимальную характеристику крутящего момента. Поворот распределительного вала на опережение фазы впуска приводит к увеличению периода перекрытия клапанов. Раннее открытие впускного клапана, непосредственно перед ВМТ, означает, что остаточные отработавшие газы, которые уже не вышли из цилиндра, выталкиваются поднимающимся поршнем через открытый впускной клапан во впускной коллектор. Эти отработавшие газы затем снова поступают в цилиндр и увеличивают долю содержания остаточных газов в свежем заряде. Повышенное содержание остаточных газов в свежем заряде топливовоздушной смеси, вызванное регулировкой распределительного вала на опережение впуска, влияет на протекание процесса сгорания, что приводит к снижению максимальной температуры сгорания и уменьшению образования оксидов азота. Более высокое содержание «инертного» газа в заряде цилиндра делает необходимым большее открытие дроссельной заслонки, которое в свою очередь, приводит к уменьшению потерь при дросселировании потока. Это означает, что при соответствующем перекрытии клапанов может быть снижен расход топлива.
Регулирование положения распределительного вала выпускных клапанов. В системах газораспределения с регулированием положения распределительных валов впускных и выпускных клапанов для изменения содержания остаточных газов используется соответствующий поворот обоих распределительных валов. В этом случае можно осуществлять независимое регулирование как общего наполнения цилиндров (определяется закрытием впускного клапана), так и доли содержания остаточных газов (определяется открытием впускного и закрытием выпускного клапанов).
Перенастройка распределительного вала
Похожие статьи:
poznayka.org
Фазы газораспределения двигателя. Что это такое?
Фазы газораспределения двигателя. Что это такое?
Kачество работы двигателя зависит от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов. В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. В данной статье мы объясним, что такое фазы газораспределения и их влияние на работу двигателя.Что такое фазы газораспределения?
Фаза газораспределения - это период от момента открытия клапанов до момента их закрытия, выраженные в градусах поворота коленчатого вала. Фазы газораспределения обычно выражаются в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.Задача механизма газораспределения — обеспечить наивысшую эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения,зависит экономичность мотора, мощность и развиваемый момент.
Влияние фаз газораспределения на работу двигателя
В большинстве современных двигателей фазы меняться не могут и работа таких двигателей не отличается высокой эффективностью. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.Для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.
При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.
Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным.
Изменяемые фазы газораспределения
А если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя?Один из способов это применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.
Инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами.
Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.
А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. Экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах 5—15 %.
Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше - за счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.
В чём плюс электромагнитного привода? В том, что закон подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Делается это в целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Даже во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный.
Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива.
Поделиться с друзьями:Статьи по теме:
sto39.ru
Фазы газораспределения | Газораспределительный механизм (ГРМ)
В современных двигателях скорость вращения коленчатого вала достигает 3000—4000 оборотов в минуту. Иначе говоря, в секунду каждый поршень делает 100—120 ходов. При таком режиме работы двигателя на совершение каждого такта приходится очень мало времени. Поэтому для лучшего наполнения цилиндров и их лучшей очистки клапаны открываются не тогда, когда поршень уже находится в мертвой точке, а несколько раньше и закрываются уже после того, как поршень пройдет мертвую точку.
Величины опережения открытия или запаздывания закрытая клапанов, выраженные в градусах поворота коленчатого вала от положения, соответствующего верхней или нижней мертвой точке, называются фазами газораспределения. У большинства двигателей впускной клапан открывается тогда, когда поршень не доходит до верхней мертвой точки на 5—30°, считая по углу поворота коленчатого вала, в результате чего обеспечивается лучшее наполнение цилиндра горючей смесью. Впускной клапан закрывается только после того, как поршень пройдет нижнюю мертвую точку и коленчатый вал повернется на 39—110°, т.е. тогда, когда полностью закончится такт впуска и начнется такт сжатия. Поступление горючей смеси вследствие инерции продолжается еще некоторое время, хотя уже начался другой такт. Этим улучшается наполнение цилиндров,
Выпускной клапан обычно.открывается с опережением на 44—71° до нижней мертвой точки, т.е. тогда, когда рабочий ход еще полностью не закончился. При этом газы, находясь в цилиндре под значительным давлением, начинают быстро выходить в выпускной трубопровод, хотя поршень и продолжает свое движение вниз.
Закрытие выпускного клапана происходит также с запаздыванием на 6—37°. Несмотря на то что поршень в это время начинает движение вниз, отработавшие газы по инерции все еще продолжают выходить в выпускной трубопровод. При этом происходит перекрытие клапанов, т. е. на некоторое время выпускной и впускной клапаны остаются открытыми. Тем самым осуществляется продувка цилиндра горючей смесью, способствующая лучшему очищению цилиндра от отработавших газов.
Фазы газораспределения для наглядности изображаются обычно в виде диаграммы.
Рис. Диаграмма фаз газораспределения двигателя ЗИЛ-157К
Наивыгоднейшие фазы газораспределения определяются при проектировании двигателя в зависимости от его конструкции и быстроходности. Углы опережения и запаздывания и, следовательно, продолжительность открытия клапанов делают тем больше, чем. больше число оборотов коленчатого вала двигателя, соответствующее его максимальной мощности.
ustroistvo-avtomobilya.ru
Фазы газораспределения
Фазы газораспределения в поршневых двигателях
взято тут
Задача механизма газораспределения — обеспечитьнаивысшую эффективность наполнения и очистки цилиндраво время работы двигателя. От того, насколько грамотноподобраны фазы газораспределения,зависит экономичностьмотора, мощность и развиваемый момент.
Kачество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов. В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.
В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.
Фазы газораспределения в поршневых двигателях внутреннего сгорания — это моменты открытия и закрытия впускных и выпускных клапанов (окон). Фазы газораспределения обычно выражаются в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.
Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.
Тюнеры часто мудрят со сдвигом фаз при помощи таких сборных звёздочек. Заменив штатный распредвал на «спортивный» с другими фазами, можно добиться существенной прибавки мощности.
При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.
Хондовская VTEC (Variable Valve Timing and Electronic Control) так же, как и тойотовская VVT-I (Variable Valve Timing with intelligence), позволяет плавно изменять фазы газораспределения фазовращателем с гидравлическим управлением. Это достигается путём поворота распределительного вала впускных клапанов относительно вала выпускных клапанов в диапазоне 40—60° (по углу поворота коленчатого вала).
Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!
Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.
Doppel-VANOS (Doppel Variable Nockenwellen Steuerung) от BMW умеет двигать фазы плавно от начального до конечного значения. При помощи гидравлики система заведует как процессами впуска, так и выпуска.
А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.
Механизм газораспределения 3,2-литровой «шестёрки» FSI от Audi приводится цепями со стороны маховика. У каждого распределительного вала свой фазовращатель.
Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.
Система Valvetronic позволила отказаться от дроссельной заслонки, система меняет и степень открытия клапанов и фазы. Применяется она на моторах BMW с 2001 года. Ход клапана меняется при помощи электродвигателя и сложной кинематической схемы и пределах 0,2–12 мм.
Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).
Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.
Система Variable Valve Event and Lift System (VEL), разработанная Ниссаном, напоминает баварский Valvetronic. Специальный эксцентрик, который приводится от электродвигателя, смещает точку опоры коромысла, и за счёт этого изменяет ход клапана. Высота подъёма варьируется в пределах 0,5–2 мм.
Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах 5—15 %. Но и это не последний рубеж.
Так работает «трёхступенчатый» i-VTEC (Intelligent Variable Valve Timing and Lift Electronic Control). На низкой частоте вращения топливо экономится благодаря тому, что половина впускных клапанов практически дезактивирована. При переходе на средние обороты ранее «дремавшие» клапаны включаются в работу, но их амплитуда не максимальна. На мощностных режимах впускные клапаны начинают работать от единственного центрального кулачка. Он обеспечивает максимальный подъём клапанов, кроме того, его профиль специально заточен под мощностные режимы. Управление режимами осуществляется гидравликой и электроникой.
Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.
Осенью 2007 года Toyota запустит в производство моторы с газораспределительным механизмом Valvematic, который будет изменять не только фазы газораспределения, но и высоту подъёма впускных клапанов. Не секрет, что многие производители достаточно давно применяют подобные системы. Но Toyota в серию такую систему запускает впервые. Мощность двухлитрового атмосферника 1AZ-FE, благодаря новому газораспределительному механизму, удалось поднять со 152 до 158 сил, а момент — с 194 до 196 Нм.
В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?
А это схема работы механизма VVTL-i, предложенная компанией Toyota. Здесь высота подъёма и продолжительность открытия обоих впускных клапанов изменяются скачкообразно. При работе двигателя на частотах вращения коленчатого вала до 6000 об/мин высота подъёма и продолжительность открытия обоих клапанов задаются кулачком (1), который через рокер (5) воздействует на оба клапана. На оборотах выше 6000 закон движения клапанов задаётся более высоким кулачком (2). Чтобы ввести его в строй, нужно переместить сухарь (3) вправо (сухарь перемещается под давлением масла, которое в нужный момент повышается в управляющей магистрали). После того как сухарь переместился вправо, кулачок (2) через шток (4), который до этого времени свободно качался, начинает воздействовать на клапаны через рокер.
Опытный образец четырёхцилиндрового мотора с электромагнитным приводом клапанов и непосредственным впрыском был создан компанией BMW. Здесь количество воздуха, поступающего в цилиндр, регулируется продолжительностью открытия клапана, ход при этом не регулируется. Якорь подпружиненного клапана помещён между двумя мощными электромагнитами, которые призваны удерживать его только в крайних положениях. Чтобы предотвратить ударные нагрузки, каждый раз при приближении к крайнему положению клапан тормозится. Положение и скорость перемещения клапана фиксируются специальным датчиком.
Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.
НА ВЕРХ
sammitmotors.ru
Фазы газораспределения двигателя. Что это такое? — Авто своими руками.
Работа двигателя зависит от фаз газораспределения, другими словами от закрытия и своевременности открытия впускных и выпускных клапанов. Объясним, что такое фазы газораспределения и их влияние на работу двигателя.
Что такое фазы газораспределения?
Фаза газораспределения — это период от момента открытия клапанов до момента их закрытия, выраженные в градусах поворота коленчатого вала и отмечаются по отношению к начальным либо конечным моментам соответствующих тактов.Задача механизма газораспределения — обеспечить очистки цилиндра и наивысшую эффективность наполнения на протяжении работы двигателя. От того, как грамотно подобраны фазы газораспределения,зависит экономичность мотора, мощность и развиваемый момент.
Влияние фаз газораспределения на работу двигателя
В большинстве двигателей фазы изменяться не смогут и работа таких двигателей не отличается высокой эффективностью. Вследствие этого эффективность и скорость наполнения цилиндров при разных режимах работы двигателя неодинаковы.Для работы на холостом ходу уместны узкие фазы газораспределения с ранним закрытием и поздним открытием клапанов без перекрытия фаз (время, в то время, когда впускной и выпускной клапаны открыты в один момент). Из-за чего? По причине того, что так удаётся исключить заброс выхлопных газов во выброс и впускной коллектор части горючей смеси в выхлопную трубу.При работе на большой мощности обстановка изменяется. С увеличением оборотов время открытия клапанов уменьшается, но для обеспечения высоких крутящего мощности и момента через цилиндры нужно прогнать больший количество газов, нежели на холостом ходу. Как решить эту задачу?
Открывать клапаны чуть раньше и увеличивать длительность их открытия, иными словами, сделать фазы максимально широкими.При разработке двигателей конструкторам приходится увязывать последовательность взаимоисключающих требований и идти на компромиссы. Посудите сами. С одними и теми же фазами двигатель обязан владеть хорошей тягой на низких и средних оборотах, приемлемой мощностью — на высоких.
И плюс ко всему устойчиво трудиться на холостом ходу, быть максимально экономичным и экологичным.
Изменяемые фазы газораспределения
В случае если научить газораспределительный механизм подстраиваться под разные режимы работы двигателя?Один из способов это использование фазовращателя — особой муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол довольно его начального положения. С увеличением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.Инженеры не остановились на этом и создали последовательность совокупностей, талантливых не только двигать фазы, но и расширять либо сужать их. В зависимости от конструкции это может достигаться несколькими методами. К примеру, в тойотовской совокупности VVTL-i по окончании достижении определённых оборотов (6000 об/мин) вместо простого кулачка в работу начинает вступать дополнительный — с поменянным профилем. Профиль этого кулачка задаёт другой закон перемещения клапана, более широкие фазы и, кстати, снабжает больший движение.
При раскрутке коленчатого вала до больших оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя как будто бы раскрывается второе дыхание, которое способно придать автомобилю резкий и замечательный подхват при ускорении.А вдруг попытаться изменять высоту подъёма? Таковой подход разрешает избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм. Ответ инженеров — механическая совокупность управления подъёмом впускных клапанов.
В таких совокупностях продолжительность фазы и высота подъёма впуска изменяются в зависимости от нажатия на педаль газа. Экономия от применения совокупности бездроссельного управления образовывает от 8% до 15%, прирост мощности в пределах 5—15 %.Не обращая внимания на то, что размеры и количество клапанов приблизились к максимальным, очищения и эффективность наполнения цилиндров возможно сделать выше — за счёт скорости открытия клапанов. Действительно, механический привод заменяется электромагнитным.В чём плюс электромагнитного привода? Подъёма клапана возможно довести до идеала, а длительность открытия клапанов позволяется поменять в весьма широких пределах. Электроника в соответствии с программе иногда ненужные клапаны может не открывать, а цилиндры отключать вовсе.
Делается это в целях экономии, к примеру, на холостом ходу либо при торможении двигателем. Кроме того на протяжении работы электромагнитный ГРМ способен перевоплотить простой четырёхтактный мотор в шеститактный.Предстоящее повышение эффективности работы мотора за счёт ГРМ — нереально. Выжать больше момента и мощности с того же количества при меньшем расходе возможно будет с применением иных средств. К примеру, комбинированного наддува либо конструкций, изменяющих степень сжатия.
Механизм газораспределения VVT-i TOYOTA LEXUS .avi
Подобранные для Вас, статьи:
Кроме этого весьма интересно:
dream-service.ru