Водородный двигатель для автомобиля, как избавиться от нефтяной зависимости. Двигатель на водородном топливе
Двигатель внутреннего сгорания на водороде: устройство и принцип работы
Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.
С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.
По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.
Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.
Читайте в этой статье
История создания водородного двигателя
Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.
Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.
Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.
Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.
Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).
Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.
Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.
Работа двигателя на водороде: особенности водородного ДВС
Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.
Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.
Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.
На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.
Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.
Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.
Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.
Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.
По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.
Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.
Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.
Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.
Правда, никаких отдельных установок для получения водорода из воды на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода на полном баке водорода составляет около 300 км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.
Двигатель на водородных топливных элементах
Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.
Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.
В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.
Такая реакция образует воду, при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.
Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.
Водородный двигатель: дальнейшие перспективы
Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.
Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.
Также не особенно большим является и сам выбор водородных легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.
Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.
Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.
Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях, принципах работы, а также преимуществах и недостатках моторов данного типа.Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.
Подведем итоги
Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.
Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.
Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.
Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.
Читайте также
-
GDI двигатель: что это такое?
Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI. -
TDI двигатель: что это такое?
Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации.
krutimotor.ru
Водородный двигатель для автомобиля, как избавиться от нефтяной зависимости
Если вы найдете ошибку в тексте, выделите её мышью и нажмите Ctrl+Enter. Спасибо.
Запасы нефти подходят к концу, что вынуждает человечество искать альтернативные источники энергии, способные заменить «черное золото». Одним из решений является применение водородного двигателя, отличающегося меньшей токсичностью и большим КПД. Главное то, что запас сырья для производства горючего почти неограничен.
Когда появился водородный двигатель для автомобиля? В чем особенности его устройства, и каков принцип действия? Где применяется такая технология? Реально ли сделать такой мотор своими руками? Эти и другие вопросы рассмотрим ниже.
Когда появился водородный двигатель, основные компании, ведущие его разработку
Интерес к применению водорода появился еще в 70-х годах в период острого дефицита топлива. Первым современным разработчиком, который представил двигатель для автомобиля работающий на водороде, стал концерн Toyota. Именно он в 1997 году выставил на всеобщее обозрение внедорожник FCHV, который так и не пошел в серийное производство.
Несмотря на первую неудачу, многие компании продолжают исследования и даже производство таких автомобилей. Наибольших успехов добились концерны Тойота, Хендай и Хонда. Разработки ведут и другие компании — Фольксваген, Дженерал Моторз, БМВ, Ниссан, Форд.
В 2016 году появился первый поезд на водородном топливе, являющийся детищем немецкой компании Alstom. Планируется, что новый состав Coranda iLint начнет движение в конце 2017 года по маршруту из Букстехуде в Куксхавен (Нижняя Саксония).
В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.
Интерес к покупке Coranda iLint уже проявила Норвегия, Дания и другие страны.
Особенности водорода как топлива для двигателя
В ДВС бензин смешивается с воздухом, после чего подается в цилиндры и сгорает, в результате чего происходит перемещение поршней и движение транспортного средства.
Применение водорода в виде топлива имеет ряд нюансов:
- После сжигания топливной смеси на выходе образуется только пар.
- Реакция воспламенения происходит быстрее, чем в случае с дизельным топливом или бензином.
- Благодаря детонационной устойчивости, удается поднять степень сжатия.
- Теплоотдача водорода на 250% выше, чем у топливно-воздушной смеси.
- Водород — летучий газ, поэтому он попадает в мельчайшие зазоры и полости. По этой причине немногие металлы способны перенести его разрушительное влияние.
- Хранение такого топлива происходит в жидкой или сжатой форме. В случае пробоя бака водород испаряется.
- Нижний уровень пропорции газа для вхождения в реакцию с кислородом составляет 4%. Благодаря этой особенности, удается настроить режимы работы мотора путем дозирования консистенции.
С учетом перечисленных нюансов применять h3 в чистом виде для двигателя внутреннего сгорания нельзя. Требуется внесение конструктивных изменений в ДВС и установка дополнительного оборудования.
Устройство водородного двигателя
Автомобили с двигателем работающем на водороде делятся на несколько групп:
- Машины с 2-мя энергоносителями. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. КПД двигателя такого типа достигает 90-95 процентов. Для сравнения дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС — 35%. Такие транспортные средства соответствуют стандарту Евро-4.
- Автомобиль со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства. Сегодня удалось создать моторы, имеющие КПД от 75% и более.
- Обычные транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД еще на 20%.
Как отмечалось выше, конструкция мотора, работающего на h3, почти не отличается от ДВС за исключением некоторых аспектов.
Главной особенностью является способ подачи горючего в камеру сгорания и его воспламенения. Что касается преобразования полученной энергии в движение КШМ, процесс аналогичен.
Принцип работы
Принцип работы водородных двигателей стоит рассмотреть применительно к двум видам таких установок:
- Моторы внутреннего сгорания;
- Двигатели на водородных элементах.
Водородные моторы внутреннего сгорания
В ДВС из-за того, что горение бензиновой смеси осуществляется медленнее, топливо попадает в камеру сгорания раньше достижения поршнем своей верхней точки.
В водородном двигателе, благодаря мгновенному воспламенению газа, удается сместить время впрыска до момента, пока поршень начнет возвратное движение. При этом для нормальной работы мотора достаточно небольшого давления в топливной системе (до 4-х атмосфер).
В оптимальных условиях водородный мотор способен работать с питающей системой закрытого вида. Это значит, что в процессе образования смеси атмосферный воздух не применяется.
После завершения такта сжатия в цилиндре остается пар, который направляется в радиатор, конденсируется и становится водой.
Реализация варианта возможна в случае, если на машине смонтирован электролизер — устройство, обеспечивающее отделение водорода от h3O для последующей реакции с O2.
Воплотить в реальность описанную систему пока не удается, ведь для нормальной работы двигателя и снижения силы трения применяется масло.
Последнее испаряется и является частью отработавших газов. Так что применение атмосферного воздуха при работе водородного двигателя пока необходимо.
Двигатели на водородных элементах
Принцип действия таких устройств построен на протекании химических реакций. Кожух элемента имеет мембрану (проводит только протоны) и электродную камеру (в ней находится катод и анод).
В анодную секцию подается h3, а в катодную камеру — O2. На электроды наносится специальное напыление, выполняющее функцию катализатора (как правило, платина).
Под действием каталитического вещества происходит потеря водородом электронов. Далее протоны подводятся через мембрану к катоду, и под влиянием катализатора формируется вода.
Из анодной камеры электроны выходят в электрическую цепь, подключенную к мотору. Так формируется ток для питания двигателя.
Где использовались водородные топливные элементы?
Особенность топливных элементов водородного типа —способность производить энергию для электрического мотора. Как результат, система заменяет ДВС или становится источником бортового питания на транспортном средстве.
Впервые топливные элементы были использованы в 1959 году компанией из США.
Если говорить в целом, топливные элементы применяются:
- НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ. В отличие от КПД стандартного двигателя, они показывают лучшие результаты. На испытании первого автобуса топливные элементы показали КПД в 57%. Сегодня такие устройства тестируются многими производителями автомобилей — Хонда, Форд, Ниссан, Фольксваген и другими.
- НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ. На современном этапе больше 60% транспорта на ж/д — тепловозы. Сегодня водородные поезда разрабатываются во многих странах — Японии, Дании, США и Германии.
- НА МОРСКОМ ТРАНСПОРТЕ. Водородные топливные элементы наиболее востребованы на подводных лодках. Активные работы в этом направлении ведутся в Германии и Испании, а в роли заказчиков выступают другие страны, среди которых Италия, Греция, Израиль.
- В АВИАЦИИ. Первые самолеты на водородном двигателе появились еще в 80-х годах прошлого века. На современном этапе новый вид топлива применяется для создания беспилотных летательных аппаратов (в том числе вертолетов).
Также водородные топливные элементы нашли применение на вилочных погрузчиках, велосипедах, скутерах, мотоциклах, тракторах, автомобилях для гольфа и другой технике.
Преимущества и недостатки
Чтобы понять особенности и перспективы водородного двигателя в автомобиле, стоит знать его плюсы и минусы. Рассмотрим их подробнее.
Плюсы:
- ЭКОЛОГИЧНОСТЬ. Внедрение водородного двигателя — возможность забыть о проблеме загрязнения окружающей среды. При глобальном переходе на этот вид топлива удастся снизить парниковый эффект и, возможно, спасти планету. Экологичность новых разработок подтверждена компанией Тойота. Работники концерна доказали, что выхлоп из машины безопасен для здоровья. Более того, выходящую воду можно пить, ведь она дистиллирована и очищена от примесей.
- ОПЫТ РАЗРАБОТОК. Известно, что водородный двигатель создан давно, поэтому с его применением на автомобилях проблем быть не должно. Если углубится в историю, первое подобие мотора на водороде в начале XIX века удалось создать Франсуа Исаак де Ривазу — конструктору из Франции. Кроме того, в период блокады Ленинграда на новый вид топлива было переведено почти 500 машин.
- ДОСТУПНОСТЬ. Не менее важный фактор в пользу h3 — отсутствие дефицита. При желании этот вид топлива можно получать даже из сточных вод.
- ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ В РАЗНЫХ СИЛОВЫХ УСТАНОВКАХ. Существует мнение, что водород используется только в ДВС. Это не так. Новая технология задействована при создании топливного элемента, с помощью которого удается получить электрический ток и запитать электромотор транспортного средства. Преимущества заключаются в безопасности и отсутствии ископаемых элементов, что исключает загрязнение окружающей среды. На современном этапе такая схема считается наиболее безопасной и пользуется наибольшим спросом у разработчиков.
Также к плюсам стоит отнести:
- Минимальный уровень шума;
- Улучшение мощности, приемистости и других параметров двигателя;
- Большой запас хода;
- Низкий расход горючего;
- Простота обслуживания;
- Высокий потенциал применения в виде альтернативного топлива.
Недостатки водородного двигателя:
- СЛОЖНОСТЬ ИЗВЛЕЧЕНИЯ h3 ИЗ ВОДЫ. Как отмечалось, данный газ считается наиболее распространенным элементом на планете, но в чистом виде его почти нет. Этот газ имеет минимальный вес, поэтому он поднимается и удерживается в верхних слоях атмосферы. Атомы h3 быстро связываются с другими элементами, в результате чего образуется вода, метан и другие вещества. Вот почему для применения водорода его необходимо извлечь, а для этого требуются большие объемы энергии. На текущий момент такое производство нерентабельно, что тормозит процесс внедрения водородных двигателей. По приблизительным расчетам цена литра, сжиженного h3 равна от 2 до 8 евро. Итоговые расходы во многом зависят от способа добычи топлива.
- ОТСУТСТВИЕ НЕОБХОДИМОГО ЧИСЛА ЗАПРАВОК. Не меньшая проблема — дефицит АЗС, готовых заправлять машины водородным топливом. Проблема заключается в высокой стоимости оборудования для таких автозаправочных станций (если сравнивать с обычной АЗС). Сегодня разработано множество проектов станций для заправок водородом — от крупных до небольших заправок, но из-за дороговизны и отсутствия массового применения водородных двигателей на автомобилях процесс внедрения идеи может растянуться на десятилетия.
- НЕОБХОДИМА ДОРОГОСТОЯЩАЯ МОДЕРНИЗАЦИЯ ДВС. Как отмечалось, водородное топливо теоретически может использоваться для заправки ДВС. Но для применения h3 в качестве основного топлива требуются конструктивные изменения. Если ничего не менять, мощность мотора падает на 20-35%, а ресурс силового узла значительно снижается. Но и это не главный недостаток. Опасность в том, что такой механизм проработает недолго и быстро выйдет из строя. Сгорая, водородная смесь выделяет большее тепло, что приводит к перегреву поршневой и клапанной системы, а мотор работает в режиме повышенных нагрузок. Кроме того, высокие температуры негативно влияют на материалы, из которых сделан силовой узел, и смазывающие вещества. В результате рабочие элементы двигателя быстро износятся. Это значит, что без модернизации ДВС применение h3 невозможно.
- ДОРОГОВИЗНА МАТЕРИАЛОВ. Главным «камнем преткновения» в вопросе развития водородных технологий является высокая стоимость материалов. В качестве катализатора используется платина, цена которой для рядового автовладельца очень высока. Проще потратить деньги и подарить дорогое кольцо жене, чем отдавать их для установки новой детали. Надежда остается на ученых, которые ищут альтернативы для дорогостоящего катализатора. Проводятся тестирования элементов, способных заменить драгоценный металл.
Кроме уже рассмотренных выше, стоит выделить еще ряд недостатков:
- Опасность пожара или взрыва.
- Риски для планеты, ведь увеличение объема водорода может привести к непоправимым последствиям для озонового слоя.
- Увеличение веса машины из-за применения мощных АКБ и преобразователей.
- Наличие проблем с хранением водородного топлива — под высоким давлением или в сжиженном виде. Исследователи еще не пришли к единому выводу, какой из вариантов лучше.
Опасность водородного топлива
В рассмотренных выше недостатках упоминалось об опасности применения водородного топлива для двигателя. Это главный минус новой технологии.
В сочетании с окислителем (кислородом) возрастает риск воспламенения водорода или даже взрыва. Проведенные исследования показали, что для воспламенения h3 достаточно 1/10 части энергии, необходимой для зажигания бензиновой смеси. Другими словами, для вспыхивания водорода хватит и статической искры.
Еще одна опасность заключается в невидимости водородного пламени. При горении вещества огонь почти незаметен, что усложняет процесс борьбы с ним. Кроме того, чрезмерное количество h3 приводит к появлению удушья.
Опасность в том, что распознать данный газ крайне сложно, ведь у него нет запаха и он полностью невидим для человеческого глаза.
Кроме того, сжиженный h3 имеет низкую температуру, поэтому в случае утечки с открытыми частями тела высок риск серьезного обморожения. Находится данный газ должен в специальных хранилищах.
Из рассмотренного выше напрашивается вывод, то водородный двигатель опасен, и использовать его крайне рискованно.
На самом деле, газообразный водород имеет небольшой вес и в случае утечки он рассеивается в воздухе. Это значит, что риск его воспламенения минимален.
В случае с удушьем такая ситуация возможна, но только при нахождении в замкнутом помещении. В ином случае утечка водородного топлива опасности для жизни не несет. В оправдание стоит отметить, что выхлопные газы ДВС (а именно угарный газ) также несут смертельный риск.
Современные автомобили с водородными двигателями
Возможность применения двигателей на водородном топливе заинтересовала многих производителей. В результате в автомобильной индустрии появляется все больше машин, работающих на данном газе.
К наиболее востребованным моделям стоит отнести:
- Компания Тойота выпустила автомобиль Fuel Cell Sedan. Для устранения проблем с дефицитом пространства в салоне и багажном отсеке емкости с водородным топливом размещены на полу транспортного средства. Fuel Cell Sedan предназначен для перевозки людей, а его стоимость составляет 67.5 тысяч долларов.
- Концерн БМВ представил свой вариант автомобиля Hydrogen Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 — до 229 км/час.
- Honda Clarity — автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.
- «Монстр» от Дженерал Моторс показан в октябре 2016 года. Особенность автомобиля заключается в невероятной надежности, что подтверждено проведенными исследованиями армией США. Во время испытаний транспортное средство прошло больше 3 миллионов километров.
- Концерн Тойота выпустил на рынок водородную модель Mirai. Продажи начались еще в 2014 году на территории Японии, а в США — с октября 2015 года. Время на заправку Mirai составляет пять минут, а запас хода на одной заправке 502 км. ФОТО 21 22 Недавно представители концерна заявили, что планируют внедрять данную технологию не только в легковой транспорт, но и в вилочные погрузчики и даже грузовики. 18 колесный грузовик уже тестируется в Лос-Анжелесе.
- Производитель Лексус планирует свой вариант автомобиля с водородным двигателем в 2020 году, поэтому о транспортном средстве известно мало подробностей.
- Компания Ауди представила концепт H-tron Quattro в Детройте. По заверению производителя машина может проехать на одном баке около 600 км, а набрать скорость до 100 км/час удается за 7,1 секунду. Машина имеет «виртуальную» кабину, заменяющую стандартную приборную панель.
- БМВ в сотрудничестве с Тойотой планирует выпуск своего водородного транспортного средства к 2020 году. Производитель заверяет, что запас хода новой модели составляет больше 480 км, а дозаправка будет занимать до 5 минут.
- В 2013 году в компании Форд заявили, что активное производство водородных двигателей начнется уже к концу 2017 года при сотрудничестве с Ниссан и Мерседес-Бенц. Но реализовать задуманное на практике пока не удается — работники концерна находятся на этапе разработки.
- Мерседес-Бенц на Франкфуртском автосалоне представил внедорожник GLC, который появится на рынке в конце 2019 года. Авто комплектуется аккумулятором на 9,3 кВт*ч, а запас хода составляет 436 км. Максимальная скорость ограничивается электроникой на уровне 159 км/час.
- Nikola Motor представила грузовой автомобиль с водородным двигателем, имеющий запас хода от 1287 до 1931 км. Стоимость нового автомобиля составит 5-7 тысяч долларов за аренду в месяц. Выпуск планируется начать с 2020 года.
- Производитель Хендай создал новую линейку Tucson. На сегодняшний день произведено и реализовано 140 машин. Бренд Hyundai Genesis представил свой автомобиль с водородным двигателем GV Впервые транспортное средство было представлено в Нью-Йорке, но его производство пока не планируется.
- Великобритания тоже не отстает в плане новых технологий. В стране уже можно арендовать водородный автомобиль Riversimple Rasa на три или шесть месяцев. Машина весит чуть больше 500 кг и способна проехать на одной заправке около 500 км.
- Дизайнерский дом Pininfarina создал машину на водородном топливе h3 Speed. Особенность авто заключается в способности ускорятся до сотни всего за 3,4 секунды, а максимальная скорость — 300 км/час. Время на заправку составляет всего три минуты. Стоимость новой модели достигает 2,5 млн. долларов.
Трудности в эксплуатации водородных ДВС
Главным препятствием для внедрения новой технологии является чрезмерные расходы на получение водородного топлива, а также на приобретение комплектующих материалов.
Возникают проблемы и с хранением h3. Так, для удерживания газа в требуемом состоянии требуется температура на уровне -253 градусов Цельсия.
Простейший способ получения водорода — электролиз воды. Если производство h3 требуется в промышленных масштабах, не обойтись без высоких энергетических затрат.
Чтобы повысить рентабельность производства, требуется применение возможностей ядерной энергетики. Чтобы избежать рисков, ученые пытаются найти альтернативы такому варианту.
Перемещение и хранение требует применения дорогих материалов и механизмов высокого качества.
Нельзя забывать и о других сложностях, с которыми приходится сталкиваться в процессе эксплуатации:
- Взрывоопасность. При утечке газа в закрытом помещении и наличии небольшой энергии для протекания реакции возможен взрыв. Если воздух чрезмерно нагрет, это только усугубляет ситуацию. Высокая проникаемость h3 приводит к тому, что газ попадает в выхлопной коллектор. Вот почему применение роторного мотора считается более предпочтительным.
- При хранении водорода применяются емкости, имеющей большой объем, а также системы, исключающие улетучивание газа. Кроме того, используются устройства, исключающие механическое повреждение емкостей. Если для грузовых машин, водного или пассажирского транспорта эта особенность не имеет большого значения, легковая машина теряет ценные кубометры.
- При больших нагрузках и высокой температуре h3 провоцирует разрушение элементов ЦПГ (цилиндропоршневой группы) и смазки в двигателе. Использование специальных сплавов и смазочных материалов приводит к повышению стоимости производства водородных двигателей.
Будущее водородных двигателей
Применение h3 открывает большие перспективы и не только в автомобильной сфере. Водородные двигатели активно применяются на ж/д транспорте, на самолетах и вертолетах. Также они устанавливаются на вспомогательной технике.
Интерес к разработке таких моторов проявляют многие концерны, о которых уже упоминалось выше — Тойота, БМВ, Фольксваген, Дженерал Моторс и другие.
Уже сегодня на дорогах встречаются реальные автомобили, которые работают на водороде. Многие из них рассмотрены выше — БМВ 750i Hydrogen, Хонда FSX, Тойота Mirai и другие.
К работе подключились почти все крупные концерны, которые пытаются найти свою нишу на рынке.
Главным недостатком остается высокая цена h3, нехватка АЗС, а также дефицит квалифицированных работников, способных обслуживать такую технику. Если имеющиеся проблемы удастся решить, машины с водородными двигателями обязательно появятся на наших дорогах.
Конкурирующие технологии
Внимание к моторам на водороде развеивается по той причине, что у технологии имеются конкуренты.
Вот только некоторые из них:
- ГИБРИДНЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА — автомобили, способные работать от нескольких источников энергии. Многие концерны объединяют обычный двигатель внутреннего сгорания и электрический мотор. Еще один вариант гибридной машины — совмещение ДВС, а также силового узла, использующего в качестве топлива сжатый воздух.
- ЭЛЕКТРИЧЕСКИЕ АВТОМОБИЛИ (ЭЛЕКТРОМОБИЛИ) — транспортные средства, которые приводятся в движение с помощью одного или группы электрических моторов, питающихся от АКБ или топливных элементов. В таких машинах ДВС не применяется. Электромобили не стоит путать с авто, имеющими электрическую подачу, а также с электрическим общественным транспортом (троллейбусами и трамваями).
- АВТОМОБИЛИ НА ЖИДКОМ АЗОТЕ. Источником энергии, как уже понятно по названию, является жидкий азот (находится в специальных емкостях). Мотор работает следующим образом. Топливо нагревается в специальном механизме, после чего испаряется и преобразуется в газ высокого давления. Далее оно направляется в мотор, где действует на ротор или поршень, передавая таким способом имеющуюся энергию. Машины на жидком азоте были представлены публике, но на современном этапе они не получили широкого применения. Один из таких автомобилей «сыграл» в фильме «Жидкий воздух» в 1902 году. Разработчики уверяют, что такое транспортное средство способно проехать больше 100 км на одном баке.
- АВТОМОБИЛЬ НА СЖАТОМ ВОЗДУХЕ. Особенность транспортного средства заключается в применении пневмодвигателя, благодаря которому и перемещается транспортное средство. Специальный привод называется пневматическим. Вместо топливовоздушной смеси источником энергии является сжатый воздух. Как отмечалось выше, такая технология входит в состав гибридных машин.
Можно ли сделать своими руками?
Технология работы двигателя на газ известна давно, и многие концерны достигли успехов в вопросе внедрения водородных двигателей. Над совершенствованием классического ДВС задумались и народные умельцы.
Суть заключается в подаче в камеру сгорания специального газа. Такое устройство носит название системы Брауна. При этом бензин также подается в двигатель, но смешивается с газом, что обеспечивает лучшее горение.
В результате появляется водяной пар, очищающий клапана и поршни двигателя от нагара, улучшающий характеристики мотора и повышающий его ресурс.
Чтобы своими руками разложить воду на газ, требуется катализатор, дистиллят, электроды и электричество.
Конструкция собирается из подручных материалов. Допускается применение одной банки, но лучше использовать шесть.
После вырезаются пластинки и объединяются по принципу крест-накрест. Далее они обматываются проволокой и крепятся на крышке. Важно, чтобы электроды не замыкались между собой.
На последнем этапе банки заполняются электролитом и катализатором. Такая схема может работать на любом автомобиле.
Если же говорить о полноценном водородном двигателе, то в гаражных условиях сделать его конечно же не получится из-за сложности технологии.
Если в статье есть видео и оно не проигрывается, выделите любое слово мышью, нажмите Ctrl+Enter, в появившееся окно введите любое слово и нажмите "ОТПРАВИТЬ". Спасибо.
ЭТО МОЖЕТ БЫТЬ ПОЛЕЗНЫМ:
ПОДЕЛИТЬСЯ НОВОСТЬЮ С ДРУЗЬЯМИ:
autotopik.ru
Водородный двигатель для автомобиля: описание, преимущества, принцип работы
Актуальность вопроса о замене нефтепродуктов более рентабельным и чистым экологически вариантом с каждым днём только прогрессирует. Сегодня лучшие умы планеты стараются его решить. И многое уже сделано. Лидирующей альтернативой потребителям нефти является водородный двигатель.
Технологии не стоят на месте и водородный двигатель вполне может заменить современные бензиновые агрегаты
Что такое водород, как использовать
При всестороннем рассмотрении водород наиболее соответствует сегодняшним пожеланиям к дающим энергию источникам. Не загрязняет окружающую среду и практически бесконечен, если получать его из обычной воды.
Есть уже и автомобили, работающие на таком летучем веществе, как водород. Понятно, что до массового перехода на этот газ вместо бензина ещё далеко. Но тем не менее всё к тому идёт.
В основе используется реакция распада молекул воды на кислородные и водородные атомы. На сегодня применение этой реакции развивается по двум направлениям:
Рассмотрим каждое из них отдельно.
Водородные двигатели внутреннего сгорания
Здесь несколько нюансов. Внушительный нагрев и сжатие заставляют газ реагировать с металлическими составляющими агрегата и смазочной жидкостью. А при утечке, контактируя с раскалённым выпускным коллектором, конечно, он воспламеняется. Учитывая это, нужно использовать моторы роторные, у которых выпускной коллектор на приличном расстоянии от впускного. Что снижает вероятность воспламенения.
Также система зажигания требует некоторых изменений. И агрегат на водороде с внутренним сгоранием уступает по КПД электродвигателю на водородных элементах. Но всё это уже разрабатывается достаточно долго, поэтому не далёк тот день.
Вот пример — BMW 750hL, автомобиль с водородным двигателем. Сошедший с ленты конвейерной маленьким тиражом. Под капотом двигатель на двенадцать цилиндров. Топливом ему служит замес из кислорода и водорода, по составу идентичный ракетному горючему. Машина может набрать максимум 140 км/ч. Газовое ассорти, сжиженно-охлаждённое, содержится в добавочном баке. Его объёма достаточно для покрытия трёхсот километров, а если по пути смесь закончилась, мотор начинает потреблять чистый бензин из основного бака автоматом. Стоимость авто не превышает цен на машины такой же категории, но с карбюраторным движком — порядка 90 тыс. $.
Агрегаты, работающие от водородных батарей
Здесь принцип работы водородного двигателя — электролиз. Тот же, что у свинцовых аккумуляторов. Только КПД составляет 45%.
Через мембрану такой «батарейки» пройти могут только протоны. Электроды разных полюсов разделены этой мембраной. К аноду подаётся водород, на катод — кислород. Катализатор, покрывающий их (это платина), заставляет терять электроны. Катод притягивает протоны, пропущенные мембраной, и они начинают реагировать на электроны, итог реакции — образование воды и электрического тока. От анода электричество посредством проводов поступает уже к электромотору, т. е. питает его.
Агрегаты, питающиеся от водородных батарей, с рабочими названиями «Антэл-1» и «Антэл-2», уже работают на отечественных авто «Нива» и «Лада» в качестве концепта. Первая силовая установка преодолевает двести тысяч метров за один «полный бак», вторая триста.
О выгодах применения
У водородного карбюраторного мотора горючее только обогащается газовой смесью на 10%, но это на 30–50% понижает расход самого горючего. Получается, что на том же объёме топлива вы будете проезжать, например, не сто пятьдесят, а двести вёрст.
Вот какие достоинства водородного двигателя уже сегодня. А в будущем применение этого чудесного газа, как движущей силы для автомобиля, открывает широчайший ряд выгодных аспектов.
Для получения энергии нужна будет только вода
Выгодные аспекты
- бесплатное сырьё — вода, из которой газ можно брать бесконечно;
- во время реакции получаемые вещества вреда экологии не доставляют;
- благодаря реактивному сгоранию КПД рассматриваемого агрегата на порядок выше карбюраторного;
- колоссальная горючесть газа позволяет силовой установке бесперебойно работать при любых атмосферных показателях как минусовых, так и плюсовых;
- детонация при сгорании водородной смеси в разы ниже, чем у бензина, что снижает шумы и вибрацию при работе агрегата;
- здесь не требуется сложных систем трансмиссии, охлаждения и смазки, значит, повышается простота обслуживания благодаря уменьшению числа деталей.
Доводка до совершенства
Чтобы двигатель на водородных элементах работал в постоянном режиме, помимо прочего, ему нужны объёмные аккумуляторы и преобразователи. А в том виде, в котором они доступны сейчас, используется слишком много места для них. Здесь при изготовлении нужен принципиально новый подход.
Топливные элементы ещё слишком дорогие. Пока только ведётся поиск альтернативных материалов для их производства.
Не доработана пожаробезопасность силовой установки. И вопрос ёмкостей для водорода остаётся открытым. Само устройство водородного двигателя, можно сказать, ещё только приобретает будущие черты.
Экскурс по истории
Примечательно, что водородный двигатель был изобретён гораздо раньше бензинового. Но развитие получил почему-то второй. Построенный во Франции ещё в 1806 году учёным Франсуа Исааком де Риваз агрегат уже тогда работал от гидролиза воды. А бензин для ДВС стали применять только в 1870.
Видео об использовании водорода в качестве топлива для авто:
Во времена, не столь далёкие, а именно в Великую Отечественную войну, есть свидетельство ещё одного удачного использования водорода, как источника получения энергии. В Ленинграде в блокаду бензина катастрофически не хватало. Поэтому было решено для работы аэростатов заграждения и приводящих лебёдок использовать водород, которого было достаточно. И это сыграло немаловажную роль по защите города.
Вот такая альтернатива нефтепродуктам есть у человечества на сегодня. И работа в этом направлении ведётся всё интенсивнее. Про то, как работает водородный двигатель сейчас и как он будет работать завтра, можно говорить только в общих чертах. Ясно одно — за водородом будущее нашей планеты.
Если имеется чем дополнить, комментарии ждут вас внизу.
365cars.ru
Водородный двигатель
Водородный двигатель - поршневой двигатель внутреннего сгорания, в котором в качестве топлива используется водород.
История водородных двигателей
Около 45% добываемых в мире нефтепродуктов используется в качестве топлива для автомобилей. Запасы нефти ограничены и не возобновляются, поэтому поиск универсального источника энергии, которую можно получать в условно неограниченных количествах, задача, безусловно, актуальная.
Водород как топливо для двигателей рассматривается в числе наиболее перспективных веществ. Запасы водорода на Земле практически неисчерпаемы, так как его легко выделить из обыкновенной воды. Хранение и транспортировка этого газа хоть и связаны с определенными сложностями, но осуществимы. И, что самое важное, при равных массах, при сжигании водорода выделяется в 3 раза больше энергии, чем при сжигании бензина.
Первый патент на водородную силовую установку был выдан в Англии еще в 1841 году. В 1852 году в Германии был построен двигатель внутреннего сгорания, работающий на смеси водорода и воздуха, а на печально известном дирижабле Гинденбург компании Zeppelin были установлены ходовые двигатели, работавшие на светильном газе – смеси газов с пятидесятипроцентной долей водорода.
Интерес к водородным двигателям возобновился в семидесятые годы, с приходом топливно-энергетического кризиса.
По окончании нефтяного кризиса, интерес к альтернативным источникам энергии не исчез. В настоящее время его интенсивно подогревают защитники экологии, борющиеся за снижение вредных выбросов в атмосферу. Кроме того, постоянно растущие цены на энергоносители и желание многих стран обрести топливную независимость способствуют продолжению теоретических и практических исследований способов применения водорода в транспортных средствах.
Наиболее активные исследования по разработке водородных двигателей ведут компании General Motors, Honda Motor, Ford Motor, BMW и другие.
Типы и принцип работы водородных двигателей
Современные силовые установки подразделяются по принципу работы на два типа: электромоторы с питанием от водородных топливных элементов и двигатели внутреннего сгорания на водороде.
Силовые установки на основе водородных топливных элементов
Принцип работы топливных элементов построен на физико-химической реакции. По сути, топливные элементы напоминают обычные свинцовые аккумуляторы. Разница в том, что КПД топливного элемента существенно выше КПД аккумулятора и составляет 45% и более.
В корпусе водородно-кислородного топливного элемента установлена мембрана, проводящая только протоны. Она разделяет две камеры с электродами - анодом и катодом. В камеру анода подведен водород, а в камеру катода кислород. Каждый электрод покрыт слоем катализатора, к примеру, платиной. Молекулярный водород под воздействием катализатора, нанесенного на анод, теряет электроны. Протоны проводятся через мембрану к катоду, и под воздействием катализатора соединяется с электронами (поток электронов подводится извне), в результате чего образуется вода. Электроны из камеры анода уходят в электрическую цепь, подсоединенную к двигателю, то есть, на бытовом языке, образуется электрический ток, питающий электромотор.
Действующими образцами автомобиля с силовой установкой на основе топливных элементов являются «Нива» с энергоустановкой «Антэл-1» и «Лада 111» с «Антел-2», разработанные уральскими инженерами. На одной подзарядке первая машина может преодолеть 200 км, вторая - 350 км.
Водородные двигатели внутреннего сгорания
При использовании водорода в обычном двигателе внутреннего сгорания возникает ряд проблем. Во-первых, при высокой температуре и сжатии водород вступает в реакцию с металлом, из которого сделан двигатель, и даже с моторным маслом. Кроме того, в случае даже небольшой утечки при контакте с раскаленным выпускным коллектором он неизбежно загорится. Поэтому, кстати, для работы на водороде используют роторные двигатели, конструкция которых подразумевает удаленность впускного коллектора от выпускного, что позволяет ументьшить риск возгорания. Однако все эти проблемы, включая необходимость изменения системы зажигания, так или иначе удается обойти, что позволяет инженерам считать водород перспективным топливом.
ДВС на водороде имеет КПД ниже, чем у двигателей на топливных элементах, однако тот факт, что для получения 1 кВт энергии водорода нужно меньше, чем бензина, позволяет смириться с пониженным коэффициентом полезного действия.
Отличным примером автомобиля с водородным двигателем может служить экспериментальный седан BMW 750hL, выпускающийся ограниченной серией и доступный покупателям. В нем установлен 12-ти цилиндровый двигатель, работающий на ракетном топливе (водород + кислород), позволяющий разогнаться до 140 км/ч.
Сжиженный водород хранится в специальном баке при низкой температуре. Запаса водорода хватает примерно на 300 километров. В случае если он израсходован, двигатель автоматически переключается на питание от дополнительного бака с бензином. Цена BMW Hydrogen 7 сопоставима со стоимостью обычной «семерки» и составляет около 93 тысяч долларов.
Проблемы и задачи развития водородных двигателей
Для массового перехода на водород в качестве топлива существует целый ряд технологических и экологических препятствий.
Производство водородного топлива на сегодняшний день обходится в 4 раза дороже, чем производство бензина.
Да и сам процесс получения водорода из воды пока еще обходится слишком дорого. Поэтому основной его объем в настоящее время производится из метана. С большими затратами связана его транспортировка и хранение.
В случае массового внедрения таких силовых установок, резко увеличится количество водорода в атмосфере, что может привести к разрушению озонового слоя Земли, так как водородные двигатели выделяют значительно больше оксидов азота, чем бензиновые.
Уровень коммерческой окупаемости таких силовых установок просматривается лишь в отдаленной перспективе.
Однако точно такие же проблемы в свое время возникали в период развития бензиновых, электрических и газовых двигателей. Остается надеяться, что через 15-20 лет ситуация измениться, и появление водородного автомобиля на дорогах станет обычным делом.
blamper.ru
Водородный двигатель. Как работает и основные недостатки
Авто компании разрабатывают новые виды двигателей для автомобилей будущего. Кто-то ставит ставку на электромоторы, а кто-то разрабатывает водородные двигатели. Рассмотрим водородный двигатель и его преимущества.
Как работает автомобиль на водородном топливе?
Автомобиль на водородном топливе имеет так называемый топливный элемент или по-научному - электрохимический генератор. Это своего рода “вечная” батарейка, внутри которой идет реакция окисления водорода и на выходе получается чистый водяной пар, азот и электричество. Т.е. выхлоп такого водородного автомобиля экологический чистый, в нем содержание углекислого газа CO2 равняется нулю.
Автомобиль с топливными элементами, по сути электромобиль. Только с более компактной батареей: ёмкость литий-ионного аккумулятора в 10 раз меньше, чем обычного электромобиля. Здесь батарея нужна только в качестве буфера для хранения энергии, получаемой при рекуперативном торможении и для быстрого холодного старта.
Все дело в том, что главный источник энергии - блок топливных элементов - выходит на рабочий режим не сразу. На первых прототипах водородных машин для этого требовалось около полутора часов. На современных - не более 2 минут, чтобы начать превращение водорода и воздуха в водяной пар, азот и электроэнергию. Но на прогрев до рабочей температуры, когда КПД установки достигает 90% уходит от 15 минут до часа в зависимости от окружающей температуры.
В баллонах хранится 5 кг водорода, обеспечивающие запас хода до 500 км. Полная заправка баллонов займет три минуты.
Главные недостатки водородного двигателя
Главный недостаток водородного автомобиля - высокая себестоимость. Помимо электрохимического генератора, который при массовом производстве может стоить дешевле батарей для электромобилей, нужны еще прочные и легкие баки. Для этого используют дорогой углепластик.
Следующий серьезный недостаток - энергетическая эффективность. Если использовать водород как только как промежуточное звено в цепочке доставки энергии от электростанции к колесам автомобиля, то КПД составит не более 30% с учетом потерь на перекачку и охлаждение водорода перед заправкой. В отличие от 70-80% у электромобилей.
Если получать водород из попутного нефтяного газа, то КПД становится несравнимо выше - до 70%. Правда, ценой выбросов углекислого газа.
Если сейчас производить автомобили с водородными двигатели, то где взять заправки? В Европе количество водородных заправок можно пересчитать по пальцам, у нас их вовсе нет. Инженеры для таких случаев изобрели бивалентный двигатель, который может одновременно работать как на водородном топливе, так и на бензине. Теперь владелец данного автомобиля не будет зависеть от наличия на заправке водородного топлива.
Вот глядишь, лет через пять-десять, когда количество водородных заправок в Европе возрастет, тогда водородомобили получат жизнь. Пока реалии сегодняшнего дня не радужны. Взять хотя бы стоимость машины на чисто водородных элементах - она превышает стоимость обычного автомобиля почти в два раза. И на 20 процентов дороге гибридных версий.
Статьи по теме
amastercar.ru
Водородный двигатель - принцип работы
Всем известно, что запасы нефти на нашей планете ограничены. И вполне возможно, в недалеком будущем нас ждет дефицит нефти. Уже сегодня цена на бензин достаточно высока. Данный факт стимулирует развитие альтернативных источников топлива, и желательно возобновляемых. На эту роль отлично подходит водородный двигатель, топливом для которого служит водород. Еще в пятидесятые годы прошлого века появилась идея использовать водород, как эффективное, экологичное и недорогое топливо. Стоимость водорода колеблется в диапазоне 2-5$ за кг.На сегодня разработки водородного двигателя достаточно перспективны, потому что позволяют не беспокоится о запасах нефти и других исчерпаемых ресурсов, применяемых в виде топлива. Еще существенный плюс водородного двигателя, это то, что он не наносит вреда окружающей среде, так как побочными продуктами его работы являются вода и тепло.
Принцип работы водородного двигателя
В зависимости от принципа работы, водородные двигатели можно подразделить на два типа:
- Двигатель на основе топливных элементов.Водородные двигатели этого типа имеют очень большую стоимость по причине содержания в их конструкции таких дорогих и редких металлов, как палладий и платина. Принцип работы этой технологии, что в процессе физико-химических реакций в топливном элементе происходит расщепление водорода и вырабатывается электроэнергия.
- Двигатель внутреннего сгорания на водороде.Двигатели этого типа сильно похожи на широко применяемые в данный момент двигатели на пропане. Так как у них очень похожие принципы работы, то для перехода с пропана на водород достаточно просто перенастроить двигатель. И уже существует достаточно большое количество научных образцов подобных двигателей на водороде. Но КПД этого метода ниже, чем у топливных элементов.
Еще не ясно, какой из этих двух вариантов водородных двигателей окажется наиболее экономически и технически перспективных, на основе топливных элементов или двигатель внутреннего сгорания на водороде, но время покажет, исследования в данной области не прекращаются.
Видео мотоцикла с водородным двигателем
greenvolt.ru
Водородный двигатель – характеристика, особенности, принцип действия
К сожалению, природные ресурсы нашей планеты не являются безграничными. И хотя запасов нефти, являющейся сырьём для производства автомобильного топлива, хватит не на одну сотню лет, неуклонно растущая цена чёрного золота принуждает производителей уже сегодня подыскивать альтернативные источники питания.
Кроме того, к этому приводит необходимость заботы о чистоте окружающей среды. Хотя в большинстве современных транспортных средствах изготовителями предусмотрена тщательная очистка выхлопных газов, полностью уберечь экологию от их негативного воздействия пока не удаётся
Одним из наиболее перспективных вариантов альтернативных источников энергии для автомобилей считается инновационная разработка конструкторского бюро концерна Тойота. Существует ли возможность самостоятельно изготовить водородный двигатель? Попробуем разобраться, предварительно ознакомившись с устройством и принципом действия силового агрегата, предназначенного для машин грядущего поколения.
Водородный двигатель — достойный преемник моторов на традиционном топливе. Рекомендации по самостоятельному изготовлению
Мастерство отечественных умельцев всегда поражало и вызывало неприкрытую зависть автолюбителей всего мира. Стремление избежать лишних расходов принуждает доморощенных механиков совершенствовать личные средства передвижения своими руками. Водородный двигатель не является исключением. Российские автолюбители научились изготавливать его самостоятельно.
Чтобы лучше разобраться во всех тонкостях этого процесса, предварительно следует ознакомиться с устройством силового агрегата, которому, несомненно, принадлежит будущее моторостроения. Также необходимо досконально изучить принцип работы подобного устройства.
Разновидности водородных двигателей
Современная наука не стоит на месте, постоянно находясь в поисках новых решений. Однако реального воплощения в жизнь удостаиваются только самые перспективные из них. Разработки, не обладающие достаточно высокой рентабельностью вкупе с приемлемыми показателями производительности, отметаются сразу. На сегодняшний день известно два вида силовых агрегатов, работающих на водороде:
- моторы, в качестве источника питания которых используются топливные элементы. Рядовому обывателю, к сожалению, установить подобный водородный двигатель на свой автомобиль не представляется возможным. Объяснением такой весьма печальной для водителей среднего достатка действительности является довольно ощутимая стоимость комплектующих деталей, составляющих его конструкцию. Некоторые из них изготавливаются из драгоценных материалов, в частности из платины;
- второй разновидностью считается водородный двигатель внутреннего сгорания. Его принцип действия аналогичен силовым установкам, работающим на пропане. Поэтому часто газовые агрегаты подвергают определённой перенастройке, приспосабливая к использованию водорода. Несмотря на то, что КПД таких моторов значительно ниже устройств, функционирующих на топливных элементах, многих автолюбителей привлекает их доступная стоимость и возможность самостоятельного изготовления.
Следует отметить, что учёные не остановились на изобретении этих двух типов водородных двигателей. В настоящее время проводятся изыскания по их усовершенствованию. Поэтому невозможно с уверенностью утверждать, какому из них принадлежит будущее.
Принцип действия водородных силовых установок
Чтобы любой мотор мог нормально работать, необходимо его обеспечить надёжным источником питания. Водородный двигатель функционирует за счёт электролиза. С присутствием особого катализатора в воде под воздействием электрического тока образуется не обладающий взрывоопасными свойствами газ с названием гидроген. Его можно представить химической формулой ННО.
В конструкции силового агрегата предусмотрены специальные ёмкости, Они предназначены для соединения гидрогена с топливно-воздушной смесью.
Устройство генератора представлено электролизёром и резервуаром. Процесс образования гидрогена осуществляется при помощи модулятора тока. Водородные двигатели инжекторного типа дополнительно комплектуются особым оптимизатором. Основным предназначением данного приспособления является обеспечение требуемого соотношения гидрогена и топливно-воздушной смеси. С его помощью происходит регулирование процесса для создания идеальных пропорций.
Разновидности катализаторов
В обычных условиях выделить гидроген из воды практически невозможно. Для успешного протекания процесса необходимо использование специальных катализаторов. На сегодняшний день применяются такие их разновидности:
- достаточно простая конструкция, управляемая весьма примитивным механизмом, выполняется в виде цилиндрических банок. К сожалению, элементарное устройство данного катализатора негативно отразилось на производительности водородного двигателя. Её максимальная величина характеризуется показателем 0,7 л газа, выделяемого за одну минуту. Такой вид катализатора подходит для ДВС на водороде с небольшой ёмкостью, а именно до 1,5 литров. Увеличение количества банок способствует возможности эксплуатации силового агрегата большего объёма;
- наилучшей эффективностью обладает катализатор, представленный обособленными ячейками. Такая система характеризуется максимальным коэффициентом полезного действия;
- на долгосрочную эксплуатацию рассчитаны открытые пластины или сухой катализатор. Благодаря свободному доступу воздуха из окружающей среды создаётся возможность наиболее эффективного охлаждения. Из перечисленных разновидностей система имеет средний показатель производительности, выражающийся величиной, колеблющейся в пределах 1-2 л газа, выделяемого из воды на протяжении одной минуты.
Конструкторские бюро и исследовательские институты не прекращают изыскания по разработке водородных двигателей, обладающих приемлемой производительностью при максимальном КПД. Уже сегодня практикуется применение гибридных устройств, в которых успешно сочетаются различные источники питания. Оптимальной считается комбинация водорода с бензином. Также учёные продолжают поиски идеального катализатора, способного обеспечить наибольшую производительность.
Рекомендации по созданию водородного двигателя своими руками
В обычных условиях выделить гидроген из воды практически невозможно. Для успешного протекания процесса необходимо использование специальных катализаторов. На сегодняшний день применяются такие их разновидности:
- достаточно простая конструкция, управляемая весьма примитивным механизмом, выполняется в виде цилиндрических банок. К сожалению, элементарное устройство данного катализатора негативно отразилось на производительности водородного двигателя. Её максимальная величина характеризуется показателем 0,7 л газа, выделяемого за одну минуту. Такой вид катализатора подходит для ДВС на водороде с небольшой ёмкостью, а именно до 1,5 литров. Увеличение количества банок способствует возможности эксплуатации силового агрегата большего объёма;
- наилучшей эффективностью обладает катализатор, представленный обособленными ячейками. Такая система характеризуется максимальным коэффициентом полезного действия;
- на долгосрочную эксплуатацию рассчитаны открытые пластины или сухой катализатор. Благодаря свободному доступу воздуха из окружающей среды создаётся возможность наиболее эффективного охлаждения. Из перечисленных разновидностей система имеет средний показатель производительности, выражающийся величиной, колеблющейся в пределах 1-2 л газа, выделяемого из воды на протяжении одной минуты.
Конструкторские бюро и исследовательские институты не прекращают изыскания по разработке водородных двигателей, обладающих приемлемой производительностью при максимальном КПД. Уже сегодня практикуется применение гибридных устройств, в которых успешно сочетаются различные источники питания. Оптимальной считается комбинация водорода с бензином. Также учёные продолжают поиски идеального катализатора, способного обеспечить наибольшую производительность.
Формирование водородного агрегата
Для начала надлежит обеспечить устройство трубопровода с добавочными ёмкостями Датчик уровня жидкости, закреплённый в центре крышки, препятствует ложному срабатыванию во время движения вверх-вниз. Этим прибором управляется система автоматической подпитки.
Датчик давления регулирует подкачку воды, включая т отключая её при показателях соответственно 40 и 45 psi. При достижении нагрузки в 50 psi приводится в действие предохранитель, в конструкции которого предусмотрены две функционально значимые части:
- вентиль аварийного сброса используется в экстремальных ситуациях;
- разрывной диск, принцип работы которого заключается в активации при показателе давления в 60 psi, обеспечивая сохранность системы.
Особое внимание следует уделить качественному отводу тепла. Для этой цели подбирается наиболее холодная свеча.
Категорически запрещается использовать платиновые наконечники для свечей. Этот материал является мощным катализатором, способствующим реакции кислорода с водородом.
Электрическая начинка
В качестве импульсного генератора, регулирующего продолжительность и частоту импульса, рекомендуется использовать таймер 555. В микросхеме двигателя на водороде должно быть два таких прибора. При этом конденсаторы первого из них обязаны обладать большей ёмкостью Включение второго генератора происходит с выхода третьей частоты первого таймера.
Резисторы на 220 и 820 Ом соединяются с третьим выходом второго прибора 555. Для получения силы тока требуемой величины используется транзистор. Его защита возложена на диод 1N4007, чем поддерживается нормальное функционирование всей системы.
Заключение
Вполне вероятно, в ближайшем будущем подавляющее большинство транспортных средств будет комплектоваться водородными двигателями. Поскольку кругооборот воды в природе сделал этот материал практически неистощимым, и процесс её добычи не вызывает никаких трудностей, экономия становится очевидной.
Помимо того, главными преимуществами таких агрегатов считаются сокращение потребления бензина и сохранность окружающей среды благодаря абсолютной экологической безопасности.
Несмотря на то, что характеристики самодельного мотора, использующего водородное топливо в качестве источника питания, несколько уступают заводским моделям, отечественные умельцы могут по праву гордиться собственноручным творением.
avtodvigateli.com