Работа лямбда зонда по регулировке состава смеси. Работа лямбда зонда
Работа лямбда зонда по регулировке состава смеси
По другому его еще называют датчик кислорода. Потому что датчик определяет содержание кислорода в отработавших газах. По количеству содержащегося в выхлопе кислорода лямбда зонд определяет состав топливной смеси, отправляя сигнал об этом в ЭБУ (Электронный блок управления) двигателя. Работа блока управления в этом цикле состоит в том, что он подает команды на увеличение или уменьшение длительности впрыска в зависимости от показаний кислородника.
По другому его еще называют датчик кислорода. Потому что датчик определяет содержание кислорода в отработавших газах. По количеству содержащегося в выхлопе кислорода лямбда зонд оределяет состав топливной смеси, отправляя сигнал об этом в ЭБУ (Электронный блок управления) двигателя. Работа блока управления в этом цикле состоит в том, что он подает команды на увеличение или уменьшение длительности впрыска в зависимости от показаний кислородника.
Смесь регулируется таким образом, чтобы ее состав был максимально приближен к стехиометрическому (теоретически идеальному). Стехиометрическим считается состав смеси 14,7 к 1. То есть на 14,7 частей воздуха должно подаваться 1 часть бензина. Именно бензина, потому что данное соотношение справедливо только для неэтилированного бензина.
Для газового топлива данное соотношение будет другим (вроде бы 15,6~15,7).
Считается что именно при таком соотношении топлива и воздуха смесь сгорает полностью. А чем полнее сгорает смесь, тем выше мощность двигателя и меньше расход топлива.
Передний датчик кислорода (лямда зонд)
Передний датчик устанавливается перед каталитическим нейтрализатором в выпускном коллекторе. Датчик определяет содержание кислорода в отработавших газах и отправляет данные о составе смеси в ЭБУ. Блок управления регулирует работу системы впыска, увеличивая или уменьшая длительность впрыска топлива путем изменения длительности импульсов открытия форсунок.
Датчик содержит чуствительный элемент с пористой керамической трубкой, которую снаружи окружают отработавшие газы, а изнутри атмосферный воздух.
Керамическая стенка датчика представляет собой твердый электролит на основе диоксида циркония. В датчик встроен электронагреватель. Трубка начинает работать толко когда ее температура достигнет 350 градусов.
Датчики кислорода преобразуют разницу в концентрации ионов кислорода внутри и снаружи трубки в выходной сигнал напряжения.
Уровень напряжения обусловлен движением ионов кислорода внутри керамической трубки.
Если смесь богатая (на 14,7 частей воздуха подается больше 1 части топлива), в выхлопных газах мало ионов кислорода. Болшое число ионов движется изнутри трубки наружу (из атмосферы в выхлопную трубу, так понятней). Цирконий при движении ионов индуцирует ЭДС.
Напряжение при богатой смеси будет высоким (около 800 мВ).
Если смесь бедная (Топлива меньше 1 части), разница в концентрации ионов небольшая, соответственно небольшое количествоионов движется изнутри наружу. Значит и напряжение на выходе будет невелико (меньше 200 мВ).
При стехиометрическом составе смеси напряжение сигнала меняется циклически от богатого к бедному. Так как лямбда зонд расположен в некотором отдалении от впускной системы, наблюдается такая инерционность его работы.
Это значит что при исправном датчике и нормальной смеси сигнал датчика будет изменяться от в пределах от 100 до 900 мВ.
Неисправности датчика кислорода.
Бывает что в своей работе лямда делает ошибки. Такое возможно, например, при подсосе воздуха в выпускной коллектор. Датчик будет видеть бедную смесь (мало топлива), хотя на самом деле она нормальная. Соответственно блок управления даст команду обогатить смесь и добавит длительность впрыска. В результате двигатель будет работать на переобогащенной смеси, причем постоянно.
Парадокс в такой ситуации в том, что через некоторое время ЭБУ выдаст ошибку «Датчик кислорода — слишком бедная смесь»! Уловили обманку? Датчик видит бедную смесь и обогащает ее. В реальности смесь получается наоборот богатая. В результате свечи при выкручивании будут черными от нагара, что свидетельствует о богатой смеси.
Не спешите при такой ошибке менять кислородный датчик . Нужно просто найти и устранить причину — подсос воздуха в выпускной тракт.
Обратная ошибка, когда ЭБУ выдает код неисправности говорящий о богатой смеси, тоже не всегда говорит о таком в действительности. Датчик может быть попросту отравлен. Происходит такое по разным причинам. Датчик «травится» парами несгоревшего топлива. При длительной плохой работе мотора и неполном сгорании топлива, кислородник может запросто отравиться. То же самое относится к очень плохому по качеству бензину.
В реальности при такой ситуации мотор работает на бедной смеси, что негативно сказывается на динамике. Автомобиль неустойчиво работает на холостом ходу.
Ресурс лямбда зонда 20 000 — 80 000 км. То есть датчик живет весьма недолго. Иногда при его работе неисправности могут и не проявляться так явно, постепенно и незаметно растет расход топлива, раскачиваются обороты холостого хода, из трубы начинает валить черный дым. Ремонту датчик не подлежит и при выявлении его неработоспособности он должен быть заменен новым.
Про датчик кислорода у меня все. Рекомендую прочитать интересные статьи ниже:
Похожие статьи
www.em-grand.ru
Контроль работы лямбда-зондов | Диагностирование автомобиля
Лямбда-зонды — важнейшие датчики, контролирующие точный состав смеси. Сигналы лямбда-зонда используются также для косвенного контроля других систем, уменьшающих выбросы. Таким образом, работоспособность зондов имеет большое значение для всей системы. Контроль лямбда-зондов и контура регулирования обеспечивается путем постоянных проверок правдоподобности сигналов напряжения зонда, измерения тока и напряжения на нагревательном резисторном элементе зонда, измерения регулирующей частоты (динамический анализ) и распознавания изменений характеристики зонда, обусловленных его старением. При изменении характеристики особо анализируются амплитуда регулирования, параметры реагирования и длительность регулирования.
Контроль управляющего зонда
Контроль управляющего зонда осуществляется путем анализа смещения характеристической кривой напряжения зонда. К смещению кривых приводит старение или «отравление» зонда. Смещение распознается блоком управления и согласуется в заданных пределах. При превышении предела согласования регистрируется неисправность и загорается индикатор MIL.
Проверка зондов выполняется при как можно более постоянных условиях эксплуатации (около 20 секунд движения с постоянной скоростью). В ЭБУ записаны предельные значения для времени включения лямбда-зонда и времени ожидания сигналов в диапазонах богатой и бедной смеси. При превышении предельных значений регистрируется неисправность в регистраторе событий и загорается индикатор MIL.
Контроль диагностического зонда
Для полного контроля контура регулирования и функции катализатора необходимо использовать и диагностический зонд. Работоспособность зонда можно проверить через диагностику пределов регулирования или диагностику движения.
Диагностика пределов регулирования
При этой диагностике управляющая электроника следит за параметрами регулирования диагностического зонда путем длительного, целенаправленного изменения состава смеси. При превышении заданных пределов регулирования регистрируется неисправность. Если состав смеси оптимальный, то напряжение диагностического зонда колеблется в диапазоне лямбда = 1. Если диагностический зонд выдает более высокое или более низкое напряжение (отличное от среднего значения), значит состав смеси неправильный или неисправен катализатор. ЭБУ изменяет регулирующее значение лямбда до тех пор, пока зонд снова не отправит значение лямбда = 1. Это регулирующее значение имеет определенные пределы. При превышении этих пределов система OBD исходит из неисправности контролирующего зонда или системы выпуска ОГ (например, вторичный воздух).
Контроль выполняется по следующему образцу: при падении напряжения зонд сообщает блоку управления двигателем об увеличении концентрации кислорода в ОГ. ЭБУ повышает регулирующее значение лямбда, и смесь обогащается. Напряжение зонда увеличивается, и ЭБУ снова понижает регулирующее значение. Это регулирование выполняется в течение длительного времени. По достижении предела регулирования зонд продолжает сообщать о падении напряжения из-за слишком высокой концентрации кислорода в ОГ. ЭБУ повышает регулирующее значение для обогащения смеси. Однако, несмотря на обогащение смеси, напряжение зонда остается низким, что обусловлено неисправностью, и ЭБУ повышает регулирующее значение до запрограммированного предела регулирования. ЭБУ распознает неправдоподобное состояние эксплуатации; регистрируется неисправность и загорается индикатор MIL.
Рис. Характеристика сигнала при диагностике пределов регулирования
Диагностика движения
Работоспособность диагностического зонда также можно контролировать — для этого ЭБУ проверяет и анализирует сигналы зонда в режимах ускорения и принудительного холостого хода. В фазе разгона смесь обогащается, и концентрация кислорода в ОГ уменьшается. Напряжение зонда должно увеличиться. В режиме принудительного холостого хода картина прямо противоположная. Подача топлива прерывается, и концентрация кислорода в ОГ увеличивается. Напряжение зонда должно уменьшиться. Если реакция системы при нескольких этих режимах отличается от предусмотренной, то блок управления двигателем распознает зонд как неисправный и регистрируется неисправность.
Диагностика обогрева лямбда-зонда
Наряду с описанными выше видами диагностики при проверке лямбда-зонда можно проводить расширенные проверки функционирования и правдоподобности. При этом электрические неисправности распознаются по КЗ или обрыву проводов. Функции контролируются спорадически. Важнейшая дополнительная диагностика — это проверка обогрева лямбда-зонда. Обогрев лямбда-зонда можно контролировать, к примеру, по времени. Так, регулирующая электроника не позднее чем через 10 секунд после запуска двигателя ожидает адекватный сигнал напряжения зонда. Если сигнал поступает позже либо вообще не поступает, то нужно исходить из неисправности обогрева лямбда-зонда.
Еще один метод проверки мощности обогрева зонда состоит в измерении сопротивления нагревательного элемента зонда и сравнении его с заданным. Кроме того, можно анализировать регулирование обогрева через сравнение температуры, измеренной внутренним датчиком температуры лямбда-зонда, и сохраненной температуры нормального режима (например, 720°С). Если отклонение температуры от нормы слишком велико, то ЭБУ регистрирует неисправность системы выпуска и загорается индикатор MIL.
Диагностика широкополосного лямбда-зонда
Контроль широкополосного лямбда-зонда несколько отличается от контроля зондов с релейной характеристикой. Выходной сигнал зонда представляет собой величину тока, которая должна в точности соответствовать запрограммированным номинальным значениям при колебаниях смеси. Этот ток пересчитывается блоком управления в напряжение и выдается для системы диагностики.
Рис. Контроль широкополосного лямбда-зонда
На рисунке показаны кривые пересчитанного напряжения у исправного и неисправного широкополосных зондов. Колебания смеси, необходимые для диагностики зонда, инициируются блоком управления через определенные промежутки времени и анализируется характеристика сигналов зонда. При недостижении или превышении номинальных значений в пределах заданного диапазона загорается индикатор MIL и регистрируется неисправность.
ustroistvo-avtomobilya.ru
Разбираем устройство и принцип работы датчика кислорода.
Датчик кислорода является одним из важнейших компонентов выхлопной системы транспортного средства, от которого в немалой степени зависит продуктивность двигателя. Рассмотрим составляющие датчика и принцип его функционирования, для проведения самостоятельной диагностики выхлопной системы.
Датчик кислорода, расположен в системе выпуска отработанных газов.В зависимости от особенностей двигательной системы и совокупности выпуска газов, количество датчиков кислорода может различаться. Как правило, в составе выхлопной системы современного транспортного средства устанавливаются от одного до пары анализаторов. Первый лямбда-зонд, как правило, монтируется сразу после коллектора выпуска газов. Таким образом, выходящие из выхлопной системы газы попадают на действующую поверхность устройства. В случае если транспортное средство оснащено вторым датчиком кислорода, как правило, он останавливается за катализатором.Каждый современный автомобиль в обязательном порядке оснащается датчиком кислорода – лямбда-зонд. Датчик получил широкое распространение в автомобилестроении, благодаря введенным нормам экологии. Как известно, выхлопные газы содержат определённое количество вредных веществ, попадающих в атмосферу. Сегодня, во всём мире предусмотрен предельно допустимый порог вредных веществ, содержащийся в выхлопных газах. В некоторых странах Европы, разрешается эксплуатация автомобиля, только при оснащении высоко экологичным двигателем. В нашей стране, нормы экологии менее суровы, но всё же основные меры по снижению примесей в отработанных газах предусмотрены на каждом авто.
Помимо анализатора — Лямбда зонд, выхлопная система современного транспортного средства имеет в своем составе катализатор, который также служит для уменьшения уровня токсичности выходящих газов. Как известно для продуктивной работы катализатора требуются определенные условия. Катализатор позволяет эффективно снизить показатели токсичности выхлопной смеси, при соответствующем контроле за совокупностью топлива и воздуха. В другом случае катализатор стремительно снижает свою продуктивность и в этот момент совокупность выпуска газов использует анализатор кислорода.L – лямбда, которая входит в состав названия кислородного датчика обозначает показатель превышения потока воздуха в рабочей смеси. Определение лишней части потока воздуха в рабочем составе происходит следующим образом. Лямбда зонд, анализирует остаток воздуха при выходе отработанных газов. При правильном составе рабочей смеси, полученный показатель составляет: четырнадцать и семь воздушного потока на одну часть топлива, соответственно лямбда при этом равна единице.
Промежуток продуктивной функции катализатора достаточно узкий. В данном случае лямбда равна единица. Для поддержания правильности работы, необходима правильная и продуктивная работы системы обеспечения с электронным впуском смеси. При этом обратный цикл предусматривает анализатор воздуха. Именно для того, чтобы обеспечить продуктивную работу выхлопной совокупности, Лямбда зонд монтируется перед началом катализатора.
Анализатор воздуха – лямбда-зонд, вырабатывает специальный сигнал, который в дальнейшем передается ЭБУ системы формирования смеси. После того как электронный блок управления совокупности формирования смеси принимают электронный сигнал от анализатора воздуха, он регулирует топливо-воздушную смесь путём изменения подаваемого в цилиндры состава. Как известно, некоторые модели машин оснащаются вторым анализатором кислорода, установленным на выходе катализатора. Такое устройство выхлопной системы позволяет эффективно увеличить правильность создания топливовоздушной смеси. Также дополнительный анализатор позволяет контролировать функцию катализатора, для того чтобы он смог эффективно выполнять свою роль и сокращать объем вредных примесей в отработанных газах.
Большинство современных производителей, изготавливают анализатор кислорода из сплава циркония. Также в составе элемента предусмотрена керамическая часть, которая является источником тока, изменяющим заряд в зависимости от показателей температуры и кислорода. Поверхность датчика кислорода, взаимодействует с воздухом и газами внутри системы. Исходя из показателей насыщенности выходящей смеси кислородом, анализатор формирует определенный сигнал. Контрольное устройство принимает сигнал анализатора и сопоставляет его с допустимым показателем, заложенным в прошивке. В случае если полученный параметр отличается от необходимого, электронный блок контроля за топливной смесью изменяет насыщенность состава в необходимую сторону. Благодаря данному принципу, возникает обратная связь между блоком управления и анализатором. Точная настройка топливовоздушной смеси, способствуют правильной функции двигателя, снижению токсинов в отработанных газах и правильному потреблению топлива.
В ходе эксплуатации транспортного средства, лямбда-зонд функционирует в сложных условиях. В связи с этим, как и любое устройство автомобиля он подвержен постоянному износу и нередко приходит в неисправность. Нарушение функции анализатора кислорода в значительной мере влияет на продуктивность двигательной системы и способствует увеличению расхода бензина. В связи с этим выхлопная система требует своевременной диагностики и регулярного обслуживания.
Рассмотрим возможные причины поломки анализатора кислорода.
Как правило, к нарушению функции датчика кислорода переводит ряд совокупностей, среди которых наиболее распространены:
- Использование топливной смеси низкого качества. Бензин плохого качества содержит в своем составе ряд примесей, которые способствуют преждевременному износу компонентов выходной системы. В частности, железо и свинец нарушают структуру платиновых электродов, уже при нескольких заправках мало-качественной смесью.
- Неправильная настройка системы зажигания. При нарушении угла опережения системы зажигания, может произойти перегрев корпуса анализатора.
- Избыточное обогащение смеси, также приводит к перегреву корпуса лямбда-датчика.
- Образование масла в выхлопной системе, полученное в результате изношенности масло-съемных элементов.
- Различные нарушения в работе системы зажигания, посторонние звуки в глушителе, все это приводит к разрушению уязвимой керамической структуры.
- Механические повреждения датчика полученные в ходе эксплуатации транспортного средства.
- Множественные попытки завести автомобиль через короткий промежуток времени способствует скоплению не отработанной смеси в проводниках выпуска. При образовании ударной волной состав воспламеняется, что неизбежно приводит к нарушению структуры датчика лямбда.
- Попадание на рабочую поверхность анализатора посторонних жидкостей (масло, ОЖ или обычное моющие средство), в таком случае лямбда-зонд также утрачивает свою продуктивность.
- Если при монтаже анализатора использовались герметичные составы, которые имеют в основе силикон, то такая смесь может нарушить свою структуру в ходе эксплуатации транспортного средства и поспособствовать преждевременному износу датчика.
- Обрыв проводников датчика, нарушение их герметичности или замыкание цепи, также способствуют нарушению функции лямбда-анализатора.
Как правило, для выявления неисправностей лямбда-анализатора не требуется проведение дорогостоящей диагностики и обращения в специализированной сервис. Дело в том, что несмотря на свои небольшие габариты, датчик кислорода выполняет довольно важную функцию и при нарушении его структуры в значительной мере нарушается работа двигательной системы. Поэтому, на неисправность лямбда-анализатора указывают вполне заметные признаки.
Обратить внимание на состояние лямбда-зонд, нужно при возникновении следующих неисправностей:
- Некорректная работа движка при небольших оборотах.
- Ухудшение динамики разгона транспортного средства.
- Значительно увеличенный расход бензина.
- Перегрев нейтрализатора или значительное повышение его рабочей температуры.
- Возникновение постороннего звукового сопровождения после остановки транспортного средства.
- Увеличение показателей токсичности выхлопных газов.
Диагностика лямбда-зонд.
Для проведения диагностики, нам потребуется: оригинальная инструкция завода изготовителя, цифровой вольтметр, осциллограф. Перед проведением диагностики анализатора кислорода, двигатель автомобиля необходимо прогреть. Рассмотрим основные этапы проверки устройства.
1. Первым шагом, необходимо ознакомиться с оригинальной инструкцией завода-изготовителя. Производитель укажет месторасположение контрольного устройства, а также его основные параметры.
2. Далее, необходимо проверить все показатели, которые могут повлиять на неправильную работу анализатора: напряжение в сети транспортного средства, угол опережения зажигания, функция системы топливной подачи. Помимо этого, необходимо обратить свое внимание на герметичность проводников и провести визуальную диагностику внешних механизмов.
3. Теперь находим анализатор кислорода, согласно инструкции производителя. После этого, необходимо провести визуальную диагностику измерительного прибора.В случае если керамическая часть анализатора имеет нагар, то датчик подлежит обязательной замене. К образованию налёта на керамической части анализатора, чаще всего приводит использование топливной смеси низкого качества. Если визуальная диагностика показала приемлемое состояние анализатора, необходимо продолжить проверку.
4. Следующим этапом, отключаем анализатор и подключаем его проводники к электроизмерительному прибору. Далее, запускаем автомобиль и нажимаем на педаль газа до достижения оборотов: две с половиной тысячи в минуту. Теперь, при помощи устройства для насыщения состава снижаем показатели оборотов до двухсот в минуту.
5. В случае если транспортное средство оснащено электронным контролем топливной системы, удаляем в окно трубку регулятора давления и обращаем внимание на показатели измерительного прибора. Если показатели вольтметра приближены к отметке 0, 9 Вт, то анализатор кислорода исправен. На неисправность лямбда-датчика, укажет отсутствие реакции измерительного прибора или показатель ниже 0,8 Вт.
6. Следующим этапом необходимо проверить насыщенность топливовоздушной смеси. Используя вакуумную трубку, необходимо обеспечить подсос воздуха. В случае если анализатор работает правильно, показания измерительного прибора не будут превышать отметки 0, 2 Вт.
7. Завершающим этапом, необходимо проверить работу анализатора на практике. Для этого подключаем устройство к разъему подачи топлива и параллельно устанавливаем электроизмерительные приборы. При этом необходимо увеличить оборот задержки до 1500 минуту. Об исправности контрольного устройства, сообщат показатели прибора — 0, 5 Вт. При иных показателях, лямбда-зонд подлежит обязательной смене.
Выхлопная система играет важную роль в работе транспортного средства. Для поддержания должной продуктивности двигателя, а также для увеличения срока эксплуатации ДВС, необходимо своевременно диагностировать и обслуживать совокупность выпуска отработанных газов. Лямбда анализатор, сравнительно простое и небольшое устройство, при этом выполняющее ответственную функцию в формировании рабочей смеси. Поддержание работоспособности датчика, позволит сохранить функцию ДВС и сохранить оптимальный расход бензина. Проверить и заменить анализатор достаточно просто своими руками, при этом данная процедура позволит сэкономить на ремонте важнейшей системы авто.
Удачной диагностики!
Похожие статьи
carmend.ru
Как работает лямбда зонд.
Датчик кислорода определяет концентрацию кислорода в выхлопных газах. Его количество зависит от нескольких параметров, главным из которых является зависимость отношения топлива к воздуху в смеси, которая подается в цилиндры двигателя.
Принцип действия
Всего существует и разработано две разновидности датчиков, определяющих количество кислорода в отработанных газах. Они различается основой, на которой они созданы. Первый использует двуокись циркония и носит название «циркониевый», второй – двуокись титана. Также они работают по разным принципам: первый измеряет выработку напряжения, второй – изменение напряжения.
Последний датчик практически не распространен, поэтому рассмотрим принцип действия циркониевого.
Датчик представляет по своей сути гальваническую батарею содержащий электрод цилиндрической формы, изготовленный из двуокиси циркония и покрытый внутри и снаружи платиной. Он находится на выпускном коллекторе, так что одна его сторона располагается в выхлопных газах, а вторая – в атмосфере. Принцип действия основывается на том, что две стороны, находящиеся в разных субстанциях действуют как два полюса батареи, а циркониевый электрод является электролитом. Так, прослеживается зависимость — чем выше концентрация кислорода, тем слабее разность потенциалов и напряжение на выходе.
Состав топливно-воздушной смеси не стабилен и находится в постоянно меняющемся состоянии, поэтому работает датчик по следующей схеме:
Датчик измеряет концентрацию кислорода и, если ее значение ниже предельного, передает большое напряжение на блок EFI, говорящее о том, что смесь богатая.
Блок дает сигнал в сторону уменьшения подачи топлива, тем самым увеличивая концентрацию кислорода.Это изменения моментально фиксирует датчик низким напряжением и блок EFI в свою очередь повышает подачу топлива.Одним из важнейших параметров датчиков кислорода является период срабатывания. Под ним понимают время, за которое изменяется значение напряжения, выдаваемое датчиком. Его большой отрезок подразумевает неисправность датчиков, что очень сложно определить, так как данные передаваемые блоку EFI находиться в рабочем диапазоне и сам определить неисправность он не может.
Контроль работоспособности и ресурс датчиков
Проверку датчиков рекомендуется проводить во время каждого технического обслуживания автомобиля, так как они имеют цельную конструкцию и не нуждаются в отдельном осмотре. Если соблюдать условия эксплуатации, то они прослужат около 70 ±10 километров пробега.
Какие основные причины поломки датчиков?
- Использование марки топлива, несоответствующей двигателю.
- Использование для крепления датчиков герметиков, имеющих в своем составе силикон или снижающих свою пластичность при комнатной температуре
- Повышение температуры датчика из-за поломок связанных с перебоями в зажигании, концентрации воздушно-топливной смеси и др.
- Неудачные многократные запуски двигателя в небольшой промежуток времени.
- Отключения свечей зажигания при проверке работы цилиндров двигателя.
- Обмывание наконечника датчика любой из эксплуатационных жидкостей.
- Система выпускания не герметична.
Каковы признаки неисправности датчиков?
- Расход топлива повышен.
- Характеристики автомобиля с точки зрения динамики ухудшились.
- Двигатель работает не устойчиво при малых оборотах.
- Раскаленное состояние каталитического нейтрализатора и потрескивание в его районе расположения после остановки.
- В некоторых случаях срабатывание сигнала «СНЕСК ЕNGINЕ» при движении.
drivedrom.ru
Диагностика и работа лямбда-зонда
Применяются двухуровневые зонды, чувствительный элемент которых выполнен из оксида циркония либо из оксида титана, но на их смену приходят широкополосные лямбда-зонды.
Лямбда-зонд на основе оксида циркония. Лямбда-зонд на основе оксида циркония генерирует выходной сигнал напряжением от 40-100mV до 0.7-1.0V. Размах напряжения выходного сигнала исправного лямбда-зонда достигает ~950mV.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует максимальному напряжению выходного сигнала лямбда-зонда и равно ~840mV; A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует размаху выходного напряжения сигнала зонда и составляет ~740mV. При пониженном содержании кислорода в отработавших газах, вызванном работой двигателя на обогащённой топливовоздушной смеси, датчик генерирует сигнал высокого уровня напряжением 0.65-1V. При повышенном содержании кислорода в отработавших газах (обеднённая топливная смесь) датчик генерирует сигнал низкого уровня напряжением 40-250mV. Исправный лямбда-зонд начинает работать только после прогрева чувствительного элемента до температуры выше ~350°С, когда его выходное электрическое сопротивление значительно снижается, и он приобретает способность отклонять опорное напряжение, поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением. В блоках управления двигателем большинства производителей опорное напряжение равно 450mV. Такой блок управления двигателем считает лямбда-зонд готовым к работе только после того как вследствие прогрева, датчик приобретает способность отклонять опорное напряжение в диапазоне более чем ±150~250mV.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). Пуск прогретого до рабочей температуры двигателя. dT: – значение интервала времени между двумя маркерами. В данном случае соответствует времени прогрева лямбда-зонда и равно ~30s; A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует опорному напряжению, поступающему от блока управления двигателем и равно ~450mV; A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует отклонению опорного напряжения, поступающего от блока управления двигателем на величину, по достижении которой лямбда-зонд считается прогретым и готовым к работе и равно ~250mV. Опорное напряжение на сигнальном проводе лямбда-зонда в блоках управления двигателем может иметь и другие значения. Например, для блоков управления производства Ford оно равно 0V, а для блоков управления двигателем производства Daimler Chrysler – 5V. Измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно сигнальной "массы" датчика. Сигнальная "масса" лямбда-зонда в зависимости от его конструкции может быть выведена через отдельный провод на разъём датчика, а может быть соединена с корпусом датчика и при установке датчика, в таком случае, автоматически соединяться с "массой" автомобиля через резьбовое соединение. Сигнальная "масса" лямбда-зонда выведенная через отдельный провод на разъём датчика в большинстве случаев соединена с "массой" автомобиля.
Схема включения лямбда-зонда BOSCH (на основе оксида циркония). 1 – точка подключения щупа осциллографа для получения осциллограммы выходного сигнала датчика. Но встречаются блоки управления двигателем, где провод сигнальной "массы" лямбда-зонда подключен не к массе автомобиля, а к источнику опорного напряжения. В таких системах, измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно источника опорного напряжения, к которому подключен провод сигнальной "массы" лямбда-зонда. Блок управления на прогретом двигателе оценивает по выходному напряжению прогретого до рабочей температуры лямбда-зонда отклонение состава топливовоздушной смеси от стехиометрического (идеальное соотношение воздух/топливо). В случае сгорания стехиометрической топливовоздушной смеси, напряжение выходного сигнала лямбда-зонда будет равно 445-450mV. Но расстояние от выпускных клапанов газораспределительного механизма до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливовоздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2~3% с частотой 1~2 раза в секунду. Этот процесс чётко прослеживается по осциллограмме выходного напряжения сигнала лямбда-зонда.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). F: – значение частоты полученное путём пересчёта интервала времени между двумя маркерами (1/dT). В данном случае соответствует частоте переключения выходного сигнала лямбда-зонда и составляет ~1,2Hz. Низкая частота переключения выходного сигнала лямбда-зонда указывает на увеличенный диапазон отклонения состава топливовоздушной смеси от стехиометрического.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). F: – значение частоты полученное путём пересчёта интервала времени между двумя маркерами (1/dT). В данном случае соответствует частоте переключения выходного сигнала лямбда-зонда и составляет ~0,6Hz. Такая неисправность может быть вызвана возросшим временем перехода выходного напряжения зонда от одного уровня к другому из-за старения или отравления датчика. Время перехода выходного напряжения зонда от одного уровня к другому не должно превышать 120ms.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). dT: – значение интервала времени между двумя маркерами. В данном случае соответствует времени перехода выходного напряжения зонда от низкого уровня к высокому и составляет ~78ms. Причиной значительного увеличения времени перехода выходного напряжения зонда от одного уровня к другому может стать отравление либо старение датчика. Отравление датчика может быть вызвано применением содержащих свинец и некоторые другие элементы присадок к топливу или маслу, либо применением при ремонте двигателя некоторых видов герметиков. Старение датчика происходит вследствие его работы в агрессивной среде под высокой температурой. Анализируя осциллограмму напряжения выходного сигнала лямбда-зонда на различных режимах работы двигателя, можно выявить неисправности как самого датчика, так и системы управления двигателем в целом. Ниже приведена осциллограмма напряжения выходного сигнала исправного лямбда-зонда неисправной системы управления двигателем. Двигатель прогрет до рабочей температуры и работает на холостых оборотах без нагрузки более двух минут. Закладка "Snap throttle" установлена в точке осциллограммы соответствующей моменту резкого открытия дроссельной заслонки.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует среднему напряжению выходного сигнала лямбда-зонда и составляет ~800mV; A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует размаху выходного напряжения сигнала зонда при резком изменении режима работы двигателя и составляет ~700mV; Snap throttle – закладка, отмечающая момент резкого открытия дроссельной заслонки. По приведенной осциллограмме видно, что во время работы двигателя на холостом ходу, зонд генерировал сигнал со средним напряжением равным ~700mV и размахом ~ ±150mV. После резкого открытия дроссельной заслонки (момент времени отмечен закладкой "Snap throttle") выходное напряжение резко снизилось на ~700mV. Размах напряжения выходного сигнала лямбда-зонда вследствие реакции на изменения уровня содержания кислорода в отработавших газах и малое время перехода выходного напряжения датчика от одного уровня к другому указывают на исправность датчика и его готовность к работе. Итак, двигатель прогрет до рабочей температуры и работает на холостых оборотах без нагрузки более двух минут, лямбда-зонд до рабочей температуры прогрет и генерирует сигнал, указывающий блоку управления на переобогащённую топливовоздушную смесь, но блок управления на это адекватно не реагирует вследствие чего, смесь по-прежнему остаётся переобогащённой. Кроме того, видно, что топливовоздушная смесь становится обеднённой сразу после резкого открытия дроссельной заслонки. Резкая перегазовка является одним из режимов, когда состав топливовоздушной смеси должен быть обогащённым. Всё выше сказанное указывает на неисправность системы управления двигателем, а не самого лямбда-зонда. Неисправность может быть вызвана обрывом цепи сигнального провода зонда, неисправностью одного или нескольких датчиков системы управления двигателем или их электропроводки, поломкой блока управления двигателем или его электропроводки. Ресурс датчика содержания кислорода в отработавших газах составляет 20 000 – 80 000 км. Из-за старения, выходное электрическое сопротивление лямбда-зонда снижается при значительно более высокой температуре чувствительного элемента до значения, при котором датчик приобретает способность отклонять опорное напряжение. Из-за возросшего выходного электрического сопротивления размах выходного напряжения сигнала лямбда-зонда уменьшается. Стареющий лямбда-зонд легко можно выявить по осциллограмме напряжения его выходного сигнала на таких режимах работы двигателя, когда поток и температура отработавших газов снижаются. Это режим холостого хода и малых нагрузок. Практически стареющий лямбда-зонд всё ещё работает на движущемся автомобиле, но как только нагрузка на двигатель снижается (холостой ход), размах сигнала быстро начинает уменьшаться вплоть до пропадания колебаний.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует среднему значению напряжения выходного сигнала лямбда-зонда, и равно ~550mV. Напряжение выходного сигнала становится почти стабильным, его значение становится близким опорному напряжению 300-600mV. В случае значительного повышения температуры чувствительного элемента, выходное электрическое сопротивление лямбда-зонда несколько снижается, и его способность отклонять опорное напряжение возрастает.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует максимальному напряжению выходного сигнала лямбда-зонда и равно ~720mV; A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует размаху выходного напряжения сигнала зонда и равно ~260mV. Этой особенностью датчика диагност может воспользоваться, повысив температуру и скорость потока отработавших газов путём увеличения нагрузки либо оборотов двигателя, разогревая таким образом чувствительный элемента зонда до более высокой температуры. Если в таком режиме работы двигателя осциллограмма выходного сигнала приобретает привычный вид, это указывает на то, что лямбда-зонд всё ещё способен обеспечить близкий к заданному состав рабочей смеси во время движения автомобиля. При этом владелец автомобиля зачастую не отмечает возросшего расхода топлива и снижения мощности и приёмистости двигателя, но работа двигателя на холостом ходу может быть неустойчивой, может появляться "качание" оборотов холостого хода. Иногда встречается неисправность лямбда-зонда, вызывающая появление выбросов напряжения отрицательной полярности.
Осциллограмма выходного напряжения лямбда-зонда BOSCH (на основе оксида циркония). A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению выходного сигнала лямбда-зонда во время работы двигателя на холостом ходу и составляет ~45mV; A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует размаху выходного напряжения сигнала зонда при резком изменении режима работы двигателя и составляет ~650mV. Snap throttle – закладка, отмечающая момент резкого открытия дроссельной заслонки. В случае появления такой неисправности, расход топлива очень сильно возрастает, приёмистость двигателя значительно снижается, при резких перегазовках наблюдаются выбросы сажи из выхлопной трубы, рабочая поверхность изоляторов свечей зажигания покрывается сажей. Неисправность возникает вследствие внутренней, а иногда и внешней разгерметизации лямбда-зонда. Чувствительный элемент зонда сравнивает уровень содержания кислорода в отработавших газах и в атмосферном воздухе. В случае возникновения значительной разности уровней содержания кислорода в камере с атмосферным воздухом и в отработавших газах, датчик генерирует напряжение ~1V. Полярность этого напряжения зависит от того, в какой из камер снизился уровень содержания кислорода. В исправной системе уровень содержания кислорода изменяется только со стороны отработавших газов и только в сторону уменьшения. Уровень содержания кислорода в камере с атмосферным воздухом при этом оказывается значительно выше уровня содержания кислорода в выхлопных газах, вследствие чего зонд генерирует напряжение 1V положительной полярности. В случае разгерметизации лямбда-зонда, в камеру с атмосферным воздухом проникают отработавшие газы с низким содержанием кислорода. На режиме торможения двигателем (закрытая дроссельная заслонка при вращении двигателя с высокой частотой, подача топлива при этом отключена), в выхлопную систему двигателем выбрасывается почти чистый атмосферный воздух. В таком случае, уровень содержания кислорода в выхлопной системе резко возрастает и уровень содержания кислорода в атмосферной камере зонда оказывается значительно ниже уровня содержания кислорода в отработавших газах, вследствие чего зонд генерирует напряжение 1V отрицательной полярности. Блок управления двигателем в таком случае считает лямбда-зонд исправным, так как вскоре после пуска двигателя и прогрева, датчик отклонил опорное напряжение и снизил его до ~0V. Выходное напряжение зонда напряжением ~0V свидетельствует о близком уровне содержания кислорода в отработавших газах и в разгерметизированой атмосферной камере зонда. На блок управления двигателем поступает сигнал зонда низкого уровня, что является для него свидетельством обеднённой топливовоздушной смеси. Вследствие этого, блок управления двигателем обогащает топливовоздушную смесь. Таким образом, разгерметизация лямбда-зонда приводит к значительному обогащению топливовоздушной смеси. При этом многие системы самодиагностики выявить данную неисправность зонда не способны.
Лямбда-зонд на основе оксида титана. Напряжение выходного сигнала лямбда-зонда на основе оксида титана колеблется в диапазоне от 10-100mV до 4-5V.
Осциллограмма выходного напряжения лямбда-зонда SIEMENS (на основе оксида титана). A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует максимальному напряжению выходного сигнала лямбда-зонда и равно ~4,5V; A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует размаху выходного напряжения сигнала зонда и равно ~4,4V. На изменение состава выхлопных газов такой зонд реагирует изменением своего электрического сопротивления. Сопротивление датчика высокое при высоком содержании кислорода в отработавших газах (бедная смесь) и резко снижается при обогащении топливовоздушной смеси. За счёт этого датчик шунтирует поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением опорное напряжение 5V. Таким образом, в отличие от датчиков на основе оксида циркония, выходное напряжение лямбда-зонда на основе оксида титана низкое при работе двигателя на обогащённой смеси и высокое при работе на обеднённой смеси. Выходной сигнал лямбда-зонда на основе оксида титана значительно быстрее реагирует на изменения уровня содержания кислорода в отработавших газах, по сравнению со скоростью реакции датчика на основе оксида циркония. Это позволяет более точно поддерживать оптимальным состав топливовоздушной смеси. Но хотя эти датчики более точны и быстры, они редко используются так как очень дороги.
Широкополосный лямбда-зонд. Выходной сигнал широкополосного лямбда-зонда в отличие от двухуровневых зондов несёт сведения не только о направлении отклонения состава рабочей смеси от стехиометрического, но и о его численном значении. Анализируя уровень выходного сигнала широкополосного лямбда-зонда, блок управления двигателем рассчитывает численное значение коэффициента отклонения состава рабочей смеси от стехиометрического состава, что, по сути, является коэффициентом лямбда. Для широкополосных зондов производства BOSCH Выходное напряжение чувствительного элемента зонда (чёрный провод относительно жёлтого провода) изменяется в зависимости от уровня содержания кислорода в отработавших газах и от величины и полярности электрического тока, протекающего по кислородному насосу зонда (красный провод относительно жёлтого). Блок управления двигателем генерирует и подаёт на кислородный насос зонда электрический ток, величина и полярность которого обеспечивает поддержание выходного напряжения чувствительного элемента зонда на заданном уровне (450 mV). Если бы двигатель работал на топливовоздушной смеси стехиометрического состава, то блок управления двигателем установил бы на красном проводе напряжение равное напряжению на жёлтом проводе, и ток протекающий через красный провод и кислородный насос зонда был бы равен нулю. При работе двигателя на обеднённой смеси, блок управления двигателем на красный провод подаёт положительное напряжение относительно жёлтого провода, и через кислородный насос начинает течь ток положительной полярности. При работе двигателя на обогащенной смеси, блок управления изменяет полярность напряжения на красном проводе относительно жёлтого провода, и направление тока кислородного насоса так же изменяется на отрицательное. Величина тока кислородного насоса устанавливаемая блоком управления двигателем зависит от величины отклонения состава топливовоздушной смеси от стехиометрического состава. В электрическую цепь кислородного насоса включен измерительный резистор, падение напряжения на котором и является мерой уровня содержания кислорода в отработавших газах.
Первоисточник статьи мне неизвестен. Скопировано отсюда
Статья о принципах работы и диагностике неисправностей (pdf)
Статья о Toyota A/F sensors из motormagazine.com (pdf)
Дополнительные ссылкифевараль 24, 2012На главную
mvg-v70.narod.ru