Рубрики
Разное

Турбина для двигателя: особенности, виды, конструкция, принцип работы, плюсы и минусы

Турбина двигателя с изменяемой геометрией (VNT)

Турбина с изменяемой геометрией

Содержание:

  • Принцип работы турбины
  • Преимущества турбины
  • Регулировка турбины
  • Чистка турбины
  • Как и где отремонтировать

 

Турбокомпрессор используется для увеличения мощности двигателя, которая напрямую зависит от объема воздуха и топлива, подаваемого в цилиндр. Ведущими частями любого турбокомпрессора являются турбина и насос, которые соединены между собой жесткой осью. Турбина двигателя с изменяемой геометрией необходима для образования оптимальной мощности двигателя, имеет свойство изменять сечение турбинных колес в зависимости от общей нагрузки. Если двигатель работает на низких оборотах, то турбина может увеличить скорость отвода выхлопных газов. Это позволяет турбине вращаться быстрее, при этом количество топлива остается небольшим.

   

Как устроена турбина и как она работает

Турбина с измененной геометрией отличается от классических турбокомпрессоров тем, что имеет в своей конструкции кольцо и специальные лопасти с аэродинамической формой, которая способствует увеличению эффективности наддува. В автомобилях с двигателями небольшой мощности сечение регулируется посредством изменения ориентации этих лопастей. В двигателях большой мощности лопасти не вращаются, а покрываются специальным кожухом или перемещаются вдоль оси камеры.

Особенностью VNT турбины являются поворотные лопасти, механизм управления и вакуумный привод. Принцип работы основывается на регулировке потока отработавших газов, которые направляются на колесо турбины. Точная регулировка позволяет настроить проходное сечение для потока газов под режим работы двигателя. Если автомобиль двигается на небольшой скорости, то и турбина крутится медленнее, но при этом лепестки устанавливаются в такое положение, чтобы расстояние между ними было минимальным. Газу в малом объеме сложно преодолеть небольшое отверстие, поэтому он будет передвигаться с большей скоростью, за счет чего обороты турбины увеличиваются, увеличивая при этом давление наддува.

При помощи данных лопастей можно существенно увеличить скорость вращения турбины, не меняя объемы поступающих газов. На большой скорости компрессор раздвигает лопасти – это обеспечивает поддержание безопасного давления внутри системы и исключает перегревы. Принцип изменяемой геометрии позволяет не использовать перепускной клапан, так как весь объём выхлопных газов выходит через горячую часть крыльчатки. Изменение положения поворотных предотвращает избыточный наддув.

Преимущества турбины с изменяемой геометрией

  • Автомобили с такими турбинами развивают большую скорость с самых низких оборотов.
  • Существенно снижается объем необходимого топлива, а также количество вредных выбросов в атмосферу.
  • Улучшается прохождение газов через турбину из-за отсутствия клапана Wastegate и уменьшения количества разнонаправленных потоков газа.
  • Улучшается эластичность двигателя.

Возможные неисправности

Турбокомпрессор с изменяемой геометрией представляет собой сложный механизм, поэтому он больше подвержен различным поломкам. Однако, такие турбины сталкиваются лишь с несколькими проблемами:

  • Подклинивание лопастей в движении. Такая ситуация может сложиться из-за сильного износа трущихся пар и образовании нагара. Масляные, а также углеродистые отложения мешают плавному движению регулировочного кольца.
  • Заклинивание лопаток в одном положении. Это может происходить по причине критического нагарообразования, когда силы вакуума не хватает для движения регулировочного кольца.
  • Поломки вакуумного привода поворотных лопастей или клапана управления давлением.

Симптомами поломок считаются подергивание при разгонах, потеря мощности двигателя, увеличение расхода топлива, а также срабатывание индикатора на приборной панели Check Engine.

Как настроить и отрегулировать турбину

Правильная регулировка турбины с изменяемой геометрией крайне важна для эффективной работы, и для того, чтобы предотвратить быстрый износ деталей и снизить потребление топлива. Если отрегулировать турбину неправильно, то в дальнейшем это повлияет на работу всего автомобиля и удобство его управления.

Любой современный автовладелец немного разбирается в устройстве своего автомобиля и даже может устранить определенные небольшие поломки. Однако, чтобы сделать серьезный ремонт автомобиля, необходим специальный инструмент и оборудование, которого у обычного потребителя может и не быть.

Поэтому, если вы хотите, чтобы работа турбины была эффективной и качественной – обращайтесь за помощью к специалистам, которые правильно настроят механизм и расскажут, как лучше всего за ним ухаживать. Также, не стоит забывать о своевременных диагностиках и профилактике.

Как почистить турбину своими руками

Устройство турбины постоянно сталкивается с непрерывной нагрузкой, подвергается воздействиям продуктов горения масла и топлива, поэтому нуждается в регулярной чистке для профилактики различных поломок, которые могут быть с этим связаны. Зачастую, достаточно обработать турбину специальным средством и прогнать его через механизм для качественной очистки. Однако, иногда придется приложить побольше усилий для того, чтобы удалить все загрязнения с устройства. Также стоит помнить о том, что турбина не требует частой чистки, поэтому если она сильно загрязняется за короткое время, значит есть неполадки в ее работе или настройке.

Причинами сильных загрязнений могут выступать:

  • Увеличение нормы давления газов.
  • Износ лопастей турбины.
  • Превышение необходимого срока эксплуатации поршневого отсека.
  • Засора сапуна.
  • Износ прокладок.

Именно поэтому каждый автовладелец должен понимать, что сделать качественную чистку самостоятельно возможно, но далеко не всегда результат таких действий положительно влияет на работу механизма, а в некоторых случаях может и вовсе ухудшать ситуацию.

Отсутствие надлежащего опыта, проверенных чистящих средств, специальных инструментов – все это может негативно сказаться на результате вашей чистки, поэтому лучше всего обращаться в специализированные центры, где такой работой занимаются профессионалы.

Как сделать ремонт турбины?

Ремонт турбин гораздо проще предупредить посредством регулярного обслуживания и диагностики, чем потом пытаться исправить ситуацию самостоятельно. Процесс осложняется еще и тем, что многие автовладельцы боятся высоких цен на профессиональные услуги, забывая о том, что самостоятельное проведение ремонта отнимает также немало денег и времени. К тому же, не все получается с первого раза, и затраты на самостоятельный ремонт могут быть достаточно внушительными.

Поэтому мы настоятельно рекомендуем автовладельцам без опыта, знаний, навыков, а, самое главное, необходимого оборудования, не пытаться ремонтировать сложное устройство турбины самостоятельно, поскольку это может привести к еще более серьезным поломкам, устранить которые не сможет даже опытный специалист. При первых признаках поломки обращайтесь в наш сервисный центр, где наши мастера помогут вам восстановить картридж турбокомпрессора, а также устранить другие неисправности быстро и качественно.

Как установить турбину на бензиновый двигатель?

Ремонт турбин легковых и грузовых автомобилей в Москве

27.02.2019

Для начала, потребуется обзавестись некоторыми деталями, без которых не установить турбокомпрессор на авто. В этот список входят: турбина, интеркулер, коллектор, патрубки, труба к ведущая к глушителю и система, предназначенная для контроля подачи топлива.

Установить турбину можно не на все виды машин. Бывают даже
ситуации, когда проще приобрести новое авто с изначально установленной
турбиной, чем поставить ее в бензиновый двигатель. Правильно поставить турбину
сможет не каждый и поэтому ставить ее рекомендуется мастеру с солидными
навыками и опытом. Если ставить турбину в стиле “как получится”, то ее
эксплуатационный срок будет крайне мал.

На первом этапе потребуется снять элементы, которые отвечают
за вход и выход потока воздуха в системе. Новый коллектор турбины соединяют с
входом турбокомпрессора. Турбину надо установить так, чтобы можно было
осуществить работы по установке патрубков. Далее, охлаждающий канал скрепляют с
смазочной системой мотора, при помощи масляной трубки. Для более простого
подключения, предназначается датчик, который отвечает за давление масла. Система
охлаждения присоединяется к водяной помпе.
Чтобы формировалось достаточное количество воздушно-топливной смеси, необходимо
установить форсунки с высоким уровнем производительности, которые будут
подавать нужный объем топлива для смеси. Чтобы эта система работала,
потребуется также заменить старый топливный насос, по причине того, что старый
наверняка не сможет предоставить тот объём топлива для новых форсунок, которые
требуется.

Все датчики, которые следят за температурой воздуха и охлаждающей жидкости, будут под контролем электронных систем. Чтобы системы работали как “часы”, следует произвести калибровку всех элементов контроля, чтобы ,например топливо впрыскивалось именно в тот момент, когда подается воздух в цилиндры. Такая переделка двигателя является достаточно сложной задачей, и чтобы ее качественно осуществить, необходимы немалые силы и средства, а также умелые руки.

Если со временем, ваша турбина вышла из строя, то сервис компании ТУРБО-ТЕХ Москва проведет диагностику турбины бензинового двигателя. В нашей компании вам восстановят турбину за 4 часа, с гарантией на 3 года! Сервис располагает собственный складом оригинальных запчастей, европейским оборудованием высокого класса и мастерами опыт работы которых, более 12 лет!

НУЖЕН РЕМОНТ ТУРБИНЫ В МОСКВЕ?

ЗВОНИТЕ В ТУРБО-ТЕХ!

8 (495) 488-70-32

Ремонт за 4 часа, гарантия 3 года, экономия до 70%!

Представьтесь

Телефон*

E-mail

Текст сообщения

Нажимая на кнопку «Отправить», вы даете согласие на обработку данных.

Представьтесь

Отзыв

Оцените нас!

rating fields

Нажимая на кнопку «Добавить отзыв», вы даете согласие на обработку данных.

Представьтесь

Ваш телефон*

Нажимая на кнопку «Заказать звонок»,
вы даете согласие на обработку данных.

газотурбинный двигатель | Британика

Заголовок

Просмотреть все СМИ

Связанные темы:
пожарная турбина
газотурбинный двигатель открытого цикла
удельная мощность
Цикл Брайтона
двигатель с регулируемым циклом

См. всю соответствующую информацию →

газотурбинный двигатель , любой двигатель внутреннего сгорания, использующий газ в качестве рабочего тела, используемого для вращения турбины. Этот термин также обычно используется для описания полного двигателя внутреннего сгорания, состоящего как минимум из компрессора, камеры сгорания и турбины.

Общие характеристики

Полезную работу или тягу можно получить от газотурбинного двигателя. Он может приводить в действие генератор, насос или воздушный винт или, в случае чисто реактивного авиационного двигателя, развивать тягу за счет ускорения потока выхлопных газов турбины через сопло. Большое количество энергии может быть произведено таким двигателем, который при той же мощности намного меньше и легче, чем поршневой двигатель внутреннего сгорания. Поршневые двигатели зависят от движения поршня вверх и вниз, которое затем должно быть преобразовано во вращательное движение с помощью коленчатого вала, тогда как газовая турбина напрямую передает мощность вращения вала. Хотя концептуально газотурбинный двигатель представляет собой простое устройство, компоненты эффективной установки должны быть тщательно спроектированы и изготовлены из дорогостоящих материалов из-за высоких температур и напряжений, возникающих в процессе эксплуатации. Таким образом, установки газотурбинных двигателей обычно ограничиваются крупными установками, где они становятся рентабельными.

Циклы газотурбинного двигателя

Большинство газовых турбин работают по открытому циклу, в котором воздух забирается из атмосферы, сжимается в центробежном или осевом компрессоре и затем подается в камеру сгорания. Здесь топливо добавляется и сжигается при практически постоянном давлении с частью воздуха. Дополнительный сжатый воздух, который проходит вокруг секции горения, а затем смешивается с очень горячими дымовыми газами, требуется для поддержания достаточно низкой температуры на выходе из камеры сгорания (фактически на входе в турбину), чтобы турбина могла работать непрерывно. Если блок должен производить мощность на валу, продукты сгорания (в основном воздух) расширяются в турбине до атмосферного давления. Большая часть мощности турбины требуется для работы компрессора; только остаток доступен для подачи работы вала к генератору, насосу или другому устройству. В реактивном двигателе турбина спроектирована так, чтобы обеспечить мощность, достаточную для привода компрессора и вспомогательных устройств. Затем поток газа выходит из турбины при промежуточном давлении (выше местного атмосферного давления) и подается через сопло для создания тяги.

Сначала рассматривается идеализированный газотурбинный двигатель, работающий без потерь по этому простому циклу Брайтона. Если, например, воздух поступает в компрессор при температуре 15 ° C и атмосферном давлении и сжимается до одного мегапаскаля, он затем поглощает тепло от топлива при постоянном давлении до тех пор, пока температура не достигнет 1100 ° C, прежде чем расширяться через турбину обратно в атмосферное. давление. Для этого идеализированного устройства потребуется мощность турбины 1,68 киловатта на каждый киловатт полезной мощности, при этом 0,68 киловатта поглощается для привода компрессора. Тепловой КПД агрегата (чистая произведенная работа, деленная на энергию, добавленную за счет топлива) составит 48 процентов.

Викторина «Британника»

Энергия и ископаемое топливо

От ископаемого топлива и солнечной энергии до электрических чудес Томаса Эдисона и Николы Теслы — мир живет за счет энергии. Используйте свои природные ресурсы и проверьте свои знания об энергии в этой викторине.

Фактическая производительность простого открытого цикла

Если для агрегата, работающего в пределах одного и того же давления и температуры, компрессор и турбина имеют КПД только 80% (, т. е. , работа идеального компрессора равна 0,8-кратной фактической работе, а фактическая мощность турбины — 0,8-кратной фактической идеальный выход), ситуация резко меняется, даже если все остальные компоненты остаются идеальными. На каждый произведенный киловатт полезной мощности турбина теперь должна производить 2,71 киловатта, а работа компрессора становится равной 1,71 киловатта. Тепловой КПД падает до 25,9.процент. Это иллюстрирует важность высокоэффективных компрессоров и турбин. Исторически сложилось так, что разработка эффективных компрессоров была труднее, чем эффективные турбины, что задержало разработку газотурбинного двигателя. Современные агрегаты могут иметь КПД компрессора 86–88 процентов и КПД турбины 88–90 процентов при проектных условиях.

КПД и выходная мощность могут быть увеличены за счет повышения температуры на входе в турбину. Однако все материалы теряют прочность при очень высоких температурах, а поскольку лопатки турбин движутся с высокими скоростями и подвергаются сильным центробежным нагрузкам, температура на входе в турбину выше 1100°C требует специального охлаждения лопаток. Можно показать, что для каждой максимальной температуры на входе в турбину существует оптимальная степень повышения давления. Современные авиационные ГТУ с охлаждением лопаток работают при температуре на входе в турбину выше 1370°С и степени повышения давления около 30:1.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Промежуточное охлаждение, подогрев и регенерация

В авиационных газотурбинных двигателях необходимо обращать внимание на массу и размер диаметра. Это не позволяет добавлять дополнительное оборудование для повышения производительности. Соответственно, двигатели коммерческих самолетов работают по идеализированному выше простому циклу Брайтона. Эти ограничения не распространяются на стационарные газовые турбины, в которые могут быть добавлены компоненты для повышения эффективности. Улучшения могут включать (1) снижение работы сжатия за счет промежуточного охлаждения, (2) увеличение мощности турбины за счет повторного нагрева после частичного расширения или (3) снижение расхода топлива за счет регенерации.

Первое усовершенствование будет включать сжатие воздуха при почти постоянной температуре. Хотя этого нельзя достичь на практике, это можно приблизить к промежуточному охлаждению (, т. е. , сжимая воздух в два или более этапа и охлаждая его водой между этапами до его исходной температуры). Охлаждение уменьшает объем обрабатываемого воздуха, а вместе с ним и необходимую работу сжатия.

Второе усовершенствование включает повторный нагрев воздуха после частичного расширения через турбину высокого давления во втором наборе камер сгорания перед подачей его в турбину низкого давления для окончательного расширения. Этот процесс аналогичен повторному нагреву, используемому в паровой турбине.

Оба подхода требуют значительного дополнительного оборудования и используются реже, чем третье усовершенствование. Здесь горячие выхлопные газы турбины проходят через теплообменник или регенератор для повышения температуры воздуха, выходящего из компрессора перед сгоранием. Это уменьшает количество топлива, необходимое для достижения желаемой температуры на входе в турбину. Однако повышение эффективности связано с большим увеличением первоначальных затрат и будет экономически выгодным только для агрегатов, которые работают почти непрерывно.

газотурбинный двигатель | Британика

Заголовок

Просмотреть все СМИ

Связанные темы:
пожарная турбина
газотурбинный двигатель открытого цикла
удельная мощность
Цикл Брайтона
двигатель с регулируемым циклом

См. всю соответствующую информацию →

газотурбинный двигатель , любой двигатель внутреннего сгорания, использующий газ в качестве рабочего тела, используемого для вращения турбины. Этот термин также обычно используется для описания полного двигателя внутреннего сгорания, состоящего как минимум из компрессора, камеры сгорания и турбины.

Общие характеристики

Полезную работу или тягу можно получить от газотурбинного двигателя. Он может приводить в действие генератор, насос или воздушный винт или, в случае чисто реактивного авиационного двигателя, развивать тягу за счет ускорения потока выхлопных газов турбины через сопло. Большое количество энергии может быть произведено таким двигателем, который при той же мощности намного меньше и легче, чем поршневой двигатель внутреннего сгорания. Поршневые двигатели зависят от движения поршня вверх и вниз, которое затем должно быть преобразовано во вращательное движение с помощью коленчатого вала, тогда как газовая турбина напрямую передает мощность вращения вала. Хотя концептуально газотурбинный двигатель представляет собой простое устройство, компоненты эффективной установки должны быть тщательно спроектированы и изготовлены из дорогостоящих материалов из-за высоких температур и напряжений, возникающих в процессе эксплуатации. Таким образом, установки газотурбинных двигателей обычно ограничиваются крупными установками, где они становятся рентабельными.

Циклы газотурбинного двигателя

Большинство газовых турбин работают по открытому циклу, в котором воздух забирается из атмосферы, сжимается в центробежном или осевом компрессоре и затем подается в камеру сгорания. Здесь топливо добавляется и сжигается при практически постоянном давлении с частью воздуха. Дополнительный сжатый воздух, который проходит вокруг секции горения, а затем смешивается с очень горячими дымовыми газами, требуется для поддержания достаточно низкой температуры на выходе из камеры сгорания (фактически на входе в турбину), чтобы турбина могла работать непрерывно. Если блок должен производить мощность на валу, продукты сгорания (в основном воздух) расширяются в турбине до атмосферного давления. Большая часть мощности турбины требуется для работы компрессора; только остаток доступен для подачи работы вала к генератору, насосу или другому устройству. В реактивном двигателе турбина спроектирована так, чтобы обеспечить мощность, достаточную для привода компрессора и вспомогательных устройств. Затем поток газа выходит из турбины при промежуточном давлении (выше местного атмосферного давления) и подается через сопло для создания тяги.

Сначала рассматривается идеализированный газотурбинный двигатель, работающий без потерь по этому простому циклу Брайтона. Если, например, воздух поступает в компрессор при температуре 15 ° C и атмосферном давлении и сжимается до одного мегапаскаля, он затем поглощает тепло от топлива при постоянном давлении до тех пор, пока температура не достигнет 1100 ° C, прежде чем расширяться через турбину обратно в атмосферное. давление. Для этого идеализированного устройства потребуется мощность турбины 1,68 киловатта на каждый киловатт полезной мощности, при этом 0,68 киловатта поглощается для привода компрессора. Тепловой КПД агрегата (чистая произведенная работа, деленная на энергию, добавленную за счет топлива) составит 48 процентов.

Викторина «Британника»

Энергия и ископаемое топливо

От ископаемого топлива и солнечной энергии до электрических чудес Томаса Эдисона и Николы Теслы — мир живет за счет энергии. Используйте свои природные ресурсы и проверьте свои знания об энергии в этой викторине.

Фактическая производительность простого открытого цикла

Если для агрегата, работающего в пределах одного и того же давления и температуры, компрессор и турбина имеют КПД только 80% (, т. е. , работа идеального компрессора равна 0,8-кратной фактической работе, а фактическая мощность турбины — 0,8-кратной фактической идеальный выход), ситуация резко меняется, даже если все остальные компоненты остаются идеальными. На каждый произведенный киловатт полезной мощности турбина теперь должна производить 2,71 киловатта, а работа компрессора становится равной 1,71 киловатта. Тепловой КПД падает до 25,9.процент. Это иллюстрирует важность высокоэффективных компрессоров и турбин. Исторически сложилось так, что разработка эффективных компрессоров была труднее, чем эффективные турбины, что задержало разработку газотурбинного двигателя. Современные агрегаты могут иметь КПД компрессора 86–88 процентов и КПД турбины 88–90 процентов при проектных условиях.

КПД и выходная мощность могут быть увеличены за счет повышения температуры на входе в турбину. Однако все материалы теряют прочность при очень высоких температурах, а поскольку лопатки турбин движутся с высокими скоростями и подвергаются сильным центробежным нагрузкам, температура на входе в турбину выше 1100°C требует специального охлаждения лопаток. Можно показать, что для каждой максимальной температуры на входе в турбину существует оптимальная степень повышения давления. Современные авиационные ГТУ с охлаждением лопаток работают при температуре на входе в турбину выше 1370°С и степени повышения давления около 30:1.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Промежуточное охлаждение, подогрев и регенерация

В авиационных газотурбинных двигателях необходимо обращать внимание на массу и размер диаметра. Это не позволяет добавлять дополнительное оборудование для повышения производительности. Соответственно, двигатели коммерческих самолетов работают по идеализированному выше простому циклу Брайтона. Эти ограничения не распространяются на стационарные газовые турбины, в которые могут быть добавлены компоненты для повышения эффективности. Улучшения могут включать (1) снижение работы сжатия за счет промежуточного охлаждения, (2) увеличение мощности турбины за счет повторного нагрева после частичного расширения или (3) снижение расхода топлива за счет регенерации.

Первое усовершенствование будет включать сжатие воздуха при почти постоянной температуре. Хотя этого нельзя достичь на практике, это можно приблизить к промежуточному охлаждению (, т. е. , сжимая воздух в два или более этапа и охлаждая его водой между этапами до его исходной температуры). Охлаждение уменьшает объем обрабатываемого воздуха, а вместе с ним и необходимую работу сжатия.

Второе усовершенствование включает повторный нагрев воздуха после частичного расширения через турбину высокого давления во втором наборе камер сгорания перед подачей его в турбину низкого давления для окончательного расширения. Этот процесс аналогичен повторному нагреву, используемому в паровой турбине.

Оба подхода требуют значительного дополнительного оборудования и используются реже, чем третье усовершенствование. Здесь горячие выхлопные газы турбины проходят через теплообменник или регенератор для повышения температуры воздуха, выходящего из компрессора перед сгоранием.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *