Содержание
Принцип работы 2-х и 4-х тактных двигателей
Чем четырехтактный мотор лучше двухтактного?
Для начала рассмотрим устройство двигателей внутреннего сгорания.
Тактом рабочего цикла ДВС является ход поршня от одной мёртвой точки до другой. Один такт соответствует 180-градусному повороту (полуобороту) коленчатого вала. При 4-тактном процессе рабочий цикл осуществляется за два оборота вала, при 2-тактном — за один.
Присутствуют те же 4 такта: впуск — сжатие — расширение — выпуск. Сначала открывается впускной клапан, поршень идёт вниз, под действием создающегося разрежения в цилиндр поступает свежая топливовоздушная смесь или воздух — это такт впуска. Затем клапан закрывается, поршень идёт вверх — происходит сжатие. Следующий такт: сжатая смесь воспламеняется искрой или в сжатый воздух форсунка впрыскивает топливо, которое самовоспламеняется, поршень под действием этого идёт вниз — это расширение, или рабочий ход поршня. Двигатель совершает полезную работу именно в течение такта расширения. Потом поршень идёт вверх, открывается выпускной клапан, через который продукты сгорания топлива выходят в атмосферу — это такт выпуска.
В случае с двухтактным процессом всё уже не так просто. Такты условно называются сжатие и расширение. Как видно, места отдельным тактам впуска и выпуска здесь не нашлось. Это не случайно. Хотя в двухтактном двигателе процессы впуска и выпуска присутствуют, для их осуществления необходимо, чтобы давление на входе в цилиндр было выше атмосферного. То есть нужен принудительный наддув. Те, кто знаком с двухтактными мотоциклетными бензиновыми двигателями, могут возразить: на мотоциклах нет никаких турбо- или механических компрессоров. Отдельного компрессора в мотоциклетном двухтактнике действительно нет. Функция компрессора возложена на картер двигателя.
В простых мотоциклетных моторах нет клапанов в головке цилиндра, вместо них существуют впускные и выпускные окна в стенках цилиндра, перекрываемые телом поршня. Впускные окна связаны с карбюратором не напрямую, а через перепускные каналы, выходящие в картер. В течение хода поршня вверх нижний край открывает окно, на котором находится карбюратор, рабочая смесь под действием разрежения, создаваемого идущим вверх поршнем, устремляется в картер. Когда поршень идёт вниз, он перекрывает это окно, рабочая смесь начинает сжиматься. Поршень идёт далее вниз, открывая перепускные окна, рабочая смесь под давлением подаётся в цилиндр, где вытесняет отработанные газы в выпускное окно. Поршень идёт снова вверх, и процессы под его днищем повторяются, а в это время в цилиндре происходит сжатие рабочей смеси. Затем сжатая смесь воспламеняется свечой, и поршень идёт вниз, совершая такт расширения, или рабочий ход.
По материалам сайта airbase.ru
Преимущества и недостатки двух и четырех тактных ЛОДОЧНЫХ моторов.
Двухтактные преимущества
1. Меньший вес. Пример: 15 л. с. 2х тактный 36 кг 4-х тактный 45 кг. Казалось — бы 45 кг. — легко. Все не так просто. Вес мотора распределен крайне неравномерно. Примерно 90% весит голова (сам двигатель) 10% нога. Не нужно также забывать и о большем у 4-х тактников размере головы. Все это + одна маленькая не всегда удобная ручка для переноски делает этот процесс крайне затруднительным.
2. Цена. 4-х тактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже 2-х тактников.
3. Удобство перевозки 2-х тактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал.
4. 2-х такт мотор живее реагирует на ручку газ. В 4-х тактниках для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в 2-х тактных только один. Частый вопрос: А правда ли что 4-х такная 15 л.с. бежит быстрее чем такая же 2-х тактная? Ответ: нет не правда. У обеих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один мотор должен ехать быстрее второго?
Двухтактные недостатки
1. Больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для 2х такта 300 грамм на одну лошадинную силу для 4х такта 200 грамм.
2. Шумноcть. На максимальных оборотах 2-х тактные моторы как правило работают немного громче 4х тактников.
3. Комфорт. 4-х тактные моторы не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и 2-х и 4-х тактники вибрируют примерно одинаково) и не так дымят как 2-х тактники. Дымность важный момент, особенно если вы любите тролить.
4. Долговечность. Довольно спорный пункт. Бытует мнение, что 2-хтактные моторы менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от 4-х тактных двигателей где трущиеся элементы буквально плавают в масле. Но с другой стороны 4-х тактный мотор по конструкции намного сложнее конкурента, состоит из значительно большего числа деталей, а золотой принцип механики «Чем проще тем надежнее» еще никто не отменял.
Какой же лодочный мотор выбрать?
Взвесьте все за и против изложенные выше и сделайте выбор самостоятельно. Однозначного ответа на вопрос: какой из моторов лучше Вы не найдете ни в одной из книг ни на одном из форумов. И у тех и у других типов двигателей есть свои поклонники. Личное мнение автора: мотор до 40 л.с. должен быть 2-х тактным, а свыше 40 л.с. — четырехтактником.
Выберите свой лодочный мотор Тохатсу!
Принцип работы и рабочие циклы двигателя автомобиля (ДВС)
На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя (схематично) и его рабочие циклы. Что такое цикл Отто — Аткинса и Миллера.
- Рабочий цикл четырехтактного бензинового двигателя
- Принцип работы ДВС
- Рабочий цикл четырехтактного дизеля
- Цикл Отто — Аткинса и Миллера
- Принцип работы многоцилиндровых двигателей
Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу Отто, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).
Принцип работы ДВС — схематично
1. Впуск
По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
2. Сжатие
После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
3. Расширение или рабочий ход
В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200°С.
4. Выпуск
При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
Рабочий цикл четырехтактного дизеля
В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600°С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Впуск
При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.
Сжатие
Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
Расширение или рабочий ход
Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900°С.
Выпуск
Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700°С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
Цикл Отто — Аткинса и Миллера
В основе многих современных двигателей лежит цикл Отто, который придумал немецкий конструктор Николаус Отто и запатентовавший четырехтактный двигатель в 1876 году. Его формула известна всем учащимся автошкол и студентам и звучит так: «впуск — сжатие — рабочий ход — выпуск». Хотя КПД его мотора не высокий, но именно данный цикл лежит в основе всех моторов.
Позже Джеймс Аткинсон усовершенствовал цикл Отто в 1882 году создав термодинамический цикл. А американец Ральф Миллер в 1947 году довёл до ума теоретические наработки Аткинсона, внедрив изменение фаз газораспределения. Например, по циклу Миллера работает двигатель TSI на автомобиле VW Golf 8 — впускной клапан закрывается раньше окончания такта впуска. Это позволяет снизить фактическую степень сжатия смеси относительно геометрической, благодаря чему удаётся эффективнее использовать энергию расширяющихся в цилиндре газов. Т.е. теряется максимальная мощность, но улучшается экономичность.
На многих машинах есть двигатели, использующие два или все три цикла в разных режимах работы.
Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
- Как устроен двигатель внутреннего сгорания
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Значит после рабочего хода в первом цилиндре следующий происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
Диаграмма работы двигателя по схеме 1-2-4-3
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.
Циклы двигателя: определение, типы и анализ
Двигатели внутреннего сгорания работают по четырехтактному циклу , также известному как цикл двигателя.
Эти четырехтактные циклы включают четыре такта, начиная с впуска, сжатия, расширения сгорания и выпуска. Эти четыре такта непрерывно повторяются для выработки энергии и преобразования химической энергии в механическую.
Анализ циклов двигателя
Анализ циклов двигателя состоит из четырех этапов. К ним относятся впуск, сжатие, сгорание и выпуск. Каждая ступень показана на рисунке 1 ниже, который описывает четырехтактный дизельный двигатель или бензиновый двигатель. Стоит упомянуть об основных отдельных компонентах в цилиндре двигателя. В цилиндре происходит сгорание. Поршень представляет собой цилиндр внутри двигателя, соединенный со штоком, который используется для перемещения поршня вертикально внутри цилиндра двигателя с газонепроницаемой посадкой. В верхней части цилиндра есть два клапана, впускной клапан и выпускной клапан, а также топливная форсунка или свеча зажигания между двумя клапанами.
Цикл четырехтактного двигателя
В бензиновых или дизельных двигателях каждое вертикальное движение поршня вверх или вниз называется тактом. Следовательно, в четырехтактных двигателях поршень совершает в общей сложности 4 движения вверх и вниз, которые обычно делятся на четыре разных этапа для завершения цикла двигателя.
Анализ циклов двигателя: такт впуска
Первый такт — такт впуска. При такте впуска поршень перемещается по цилиндру из верхнего максимального положения в нижнее минимальное положение. Предварительно смешанные воздух и топливо всасываются в цилиндр через открытые впускные клапаны, увеличивая объем внутри цилиндра. Давление в баллоне остается постоянным, примерно ниже атмосферного.
В бензиновом двигателе или двигателе с искровым зажиганием топливо должно быть предварительно смешано с воздухом, прежде чем оно достигнет впускного клапана. Это делается в устройстве, называемом карбюратор. В последнее время используется более сложный способ тщательной оценки количества топлива, впрыскиваемого во впускное отверстие для воздуха непосредственно над впускными клапанами. Количество впрыскиваемого топлива контролируется электронным блоком управления, также известным как ECU.
Анализ циклов двигателя: компрессия
В этот момент клапаны закрыты. Теперь поршень перемещается вверх из минимального вертикального положения в максимальное положение, уменьшая объем и увеличивая давление внутри цилиндра. Смесь сжимается по направлению к свече зажигания. Работа совершается над воздухом при сжатии. Это второй штрих.
Крайне важно, чтобы искра появлялась непосредственно перед концом такта, чтобы смеси было достаточно, чтобы достичь верхней точки своего хода, тем самым позволяя максимальному давлению воздействовать на опускающийся поршень. Нагретое топливо приводит в действие турбину, а затем впрыскивается в камеру сгорания, где оно сгорает.
Анализ циклов двигателя: сгорание
Из-за высокого давления вблизи верхнего максимального положения к концу второго такта температура смеси повышается, и смесь воспламеняется искрой от свечи зажигания. На этом этапе объем остается почти постоянным. Это последний шаг второго штриха.
Анализ циклов двигателя: расширение
Высокое давление расширенных газов заставляет поршень двигаться вниз. Работа совершается расширяющимися газами. Выпускной клапан открывается в минимальном положении, и давление снижается почти до атмосферного. Это третий штрих.
Анализ циклов двигателя: выхлоп
Поршень движется вверх, выталкивая сгоревшие газы через открытый выпускной клапан, в то время как давление в цилиндре остается чуть выше атмосферного. Это четвертый и последний такт цикла двигателя. Затем цикл повторяется.
Тепловые циклы или циклы двигателя в основном добавляют и отбрасывают энергию в виде тепла на стадиях сгорания и выпуска, в то время как работа выполняется на стадиях сжатия и расширения.
Два типа циклов для бензиновых и дизельных двигателей
Существует два типа двигателей. Дизельные и бензиновые двигатели работают в соответствии с различными теоретическими циклами двигателя, дизельным циклом и циклом Отто соответственно.
Идеальный или теоретический цикл Отто 9Описанный выше 0004 — это принцип работы бензинового двигателя. Он предполагает следующие условия:
Впуск изобарический (0-1).
Сжатие обратимое и адиабатическое (1-2).
Горение (подвод тепла) изохорное (2-3).
Расширение обратимое и адиабатическое (3-4).
Выхлоп (отвод тепла) изохорный (4-1).
Адиабатический — это термодинамический процесс, который происходит без передачи тепла или массы между системой и окружающей средой.
Изохорный — термодинамический процесс, происходящий при постоянном объеме .
Изобарический термодинамический процесс, происходящий при постоянном давлении .
Идеальный цикл Отто также может описывать четыре такта с использованием графика зависимости термодинамического давления от объема. Это показано на рисунке ниже, где четыре такта обозначены цифрами от 1 до 4, что означает четыре последовательных такта, завершающих один цикл двигателя. Показаны процессы постоянного объема и постоянного давления.
Идеальный цикл Отто
Идеальный или теоретический дизельный цикл — это принцип работы дизельного двигателя. Его можно описать при следующих условиях:
Впуск изобарический (0-1).
Сжатие адиабатическое (1–2).
Горение (подвод тепла) изобарное (2–3).
Расширение адиабатическое (3–4).
Выхлоп (отвод тепла) изохорный ( 4–1).
Идеальный дизельный цикл — StudySmarter Originals
Показательный цикл Отто реального бензинового и дизельного двигателей, полученный с помощью датчика давления в цилиндре и преобразователя, выходной сигнал которого зависит от углового положения коленчатого вала, показан на рисунке. ниже.
Слева: указан дизельный двигатель, справа: указан бензиновый двигатель — StudySmarter Originals
Из приведенных выше рисунков видно, что они не совпадают с теоретическими значениями циклов. Это связано с тем, что термодинамические процессы, происходящие при внутреннем сгорании, не соответствуют теоретическим циклам. Стадии сгорания и расширения не являются постоянными по объему и давлению, как предполагалось. Они также необратимы в реальной жизни, как это предполагается в теоретических условиях.
Помимо цикла Отто и Дизеля существуют и другие циклы двигателя, в том числе цикл Карно, цикл Брайтона и цикл Ренкина. Наиболее эффективным циклом является цикл Карно, а наименее эффективным циклом является цикл дизельного двигателя.
Уравнения для циклов двигателя
Приведенные выше цифры можно использовать для сравнения с идеальными циклами, а также для определения работы, совершаемой над газом во время сжатия, путем оценки площади под кривой сжатия и работы, выполняемой расширением газ, оценив площадь, измеренную в м 2 под кривой расширения.
Таким образом, чистая работа, совершаемая воздухом за один цикл, определяется площадью под замкнутым контуром на p-V диаграмме. Если проделанную работу разделить на время одного цикла, указанная мощность получается, как показано в уравнении ниже, где n с число циклов в секунду, n цилиндров i с количество цилиндры в двигателе. Р и – указанная мощность, развиваемая при сгорании топлива в камере сгорания.
Часть химической энергии будет потеряна из-за трения, поэтому выходная мощность двигателя будет меньше указанной мощности. Следовательно, выходная мощность P из равна указанной мощности P i за вычетом силы трения P f , как показано ниже.
Кроме того, выходная мощность P out также может быть рассчитана с использованием крутящего момента выходного вала T и угловой скорости ω . Следовательно, максимальная мощность — это входная мощность, полученная за счет химической энергии топлива.
Это можно рассчитать по приведенным формулам, где P в – потребляемая мощность, полученная из подводимой химической энергии, m f – расход топлива и c f – теплотворная способность топлива.
Теоретический КПД идеального цикла можно найти с помощью приведенного ниже уравнения, где η — общий КПД, r n — степень сжатия. Тепловой η th и механический КПД η m также можно найти с помощью приведенных ниже уравнений. Эффективность зависит от нагрузки на двигатель.
Найдите теоретический КПД двигателя, если степень сжатия равна 1,85.
Решение:
Используя уравнение теоретического КПД и подставляя коэффициент сжатия, получаем.
Найдите указанную мощность шестицилиндрового двигателя, площадь под кривой равна 200, двигатель совершает 5 циклов в секунду.
Решение :
Используя указанное уравнение мощности подставляем Площадь под кривую p-v, получаем количество цилиндров и циклов в секунду.
Циклы двигателя – основные выводы
- Четыре ступени завершают один рабочий цикл в двигателе внутреннего сгорания.
- Бензиновый и дизельный двигатели представляют собой два типа двигателей внутреннего сгорания.
- В то время как бензиновые двигатели совершают циклы отто, дизельные двигатели завершают дизельные циклы.
- Теоретические циклы строятся с использованием некоторых допущений, неприменимых в реальной жизни.
Как работает двигатель внутреннего сгорания – x-engineer.org
Подавляющее большинство автомобилей (легковых и коммерческих автомобилей), которые продаются сегодня, оснащены двигателями внутреннего сгорания . В этой статье мы собираемся описать, как четырехтактный двигатель внутреннего сгорания работает.
Двигатель внутреннего сгорания классифицируется как тепловой двигатель . Он называется внутренний , потому что сгорание воздушно-топливной смеси происходит внутри двигателя, в камере сгорания, и часть сгоревших газов является частью нового цикла сгорания.
По сути, двигатель внутреннего сгорания преобразует тепловую энергию горящей воздушно-топливной смеси в механическую энергию . Это называется 4 такта потому что поршень выполняет полный цикл сгорания за 4 такта. Полное название двигателя легкового автомобиля: 4-тактный поршневой двигатель внутреннего сгорания , сокращенно ДВС (двигатель внутреннего сгорания).
Теперь давайте посмотрим, что является основным компонентом ДВС.
Изображение: детали двигателя внутреннего сгорания (DOHC) | Условные обозначения:
ВМТ – верхняя мертвая точка НМТ – нижняя мертвая точка |
Головка блока цилиндров (8) обычно содержит распредвал(ы), клапаны, тарелки клапанов, возвратные пружины клапанов, свечи зажигания/накаливания и форсунки ( для двигателей с непосредственным впрыском). Через головку блока цилиндров протекает охлаждающая жидкость двигателя.
Внутри блока двигателя (12) мы можем найти поршень, шатун и коленчатый вал. Что касается головки блока цилиндров, через блок цилиндров течет охлаждающая жидкость, помогая контролировать температуру двигателя.
Поршень движется внутри цилиндра от НМТ до ВМТ. Камера сгорания представляет собой объем, создаваемый между поршнем, головкой блока цилиндров и блоком цилиндров, когда поршень находится вблизи ВМТ.
На рисунке 1 мы можем рассмотреть полный набор механических компонентов ДВС. Некоторые компоненты неподвижны (например, головка блока цилиндров, блок цилиндров), а некоторые из них подвижны. На рисунке ниже мы рассмотрим основные движущиеся части ДВС, которые преобразуют давление газа внутри цилиндра в механическую энергию.
Image: Internal combustion engine moving parts
Legend:
- camshaft sprocket
- piston
- crankshaft
- connecting rod
- valve
- valve bucket
- camshaft
The rotation of the camshaft is synchronised с вращением коленчатого вала через зубчатый ремень или цепь. Положение впускного и выпускного клапанов должно быть точно синхронизировано с положением поршня, чтобы циклы сгорания происходили соответствующим образом.
Полный цикл двигателя 4-тактного ДВС состоит из следующих фаз (тактов):
- впуск
- сжатие
- мощность (расширение)
- выпуск
Такт — это движение поршня между двумя мертвыми центры (нижний и верхний).
Теперь, когда мы знаем, из каких компонентов состоит ДВС, мы можем исследовать, что происходит в каждом такте цикла двигателя. В таблице ниже вы увидите положение поршня в начале каждого хода и подробности о событиях, происходящих в цилиндре.
Такт 1 — ВПУСК
Такт впуска двигателя внутреннего сгорания | В начале такта впуска поршень находится вблизи ВМТ. Впускной клапан открывается, поршень начинает двигаться в сторону НМТ. В цилиндр всасывается воздух (или воздушно-топливная смесь). Этот такт называется ВПУСК, потому что в двигатель подается свежий воздух/смесь. Такт впуска заканчивается, когда поршень находится в НМТ. Во время такта впуска двигатель потребляет энергию (коленчатый вал вращается за счет инерции компонентов). |
Такт 2 – СЖАТИЕ
Такт сжатия двигателя внутреннего сгорания | Такт сжатия завершается после того, как поршень впускает в НМТ. В такте сжатия оба клапана, впускной и выпускной, закрыты, и поршни перемещаются к ВМТ. Когда оба клапана закрыты, воздух/смесь сжимается, достигая максимального давления, когда поршень находится близко к ВМТ. До достижения поршнем ВМТ (но очень близко к ней), на такте сжатия:
На такте сжатия двигатель потребляет энергии (коленчатый вал вращается за счет инерции компонентов), больше, чем такт впуска. |
Ход 3 – МОЩНОСТЬ
Рабочий ход двигателя внутреннего сгорания | Рабочий ход начинается с положения поршня в ВМТ. Оба клапана, впускной и выпускной, все еще закрыты. Сгорание топливовоздушной смеси начинается в конце такта сжатия, что вызывает значительное повышение давления внутри цилиндра. Давление внутри цилиндра толкает поршень вниз, к НМТ. Только во время рабочего такта двигатель вырабатывает энергию. |
Ход 4 — ВЫПУСК
Такт выпуска двигателя внутреннего сгорания | Такт выпуска начинается с поршня в НМТ после завершения рабочего такта. Во время этого хода выпускной клапан открыт. Движение поршня от НМТ к ВМТ выталкивает большую часть выхлопных газов из цилиндра в выхлопные трубы. Во время такта выпуска двигатель потребляет энергию (коленчатый вал вращается за счет инерции компонентов). |
Как видите, для циклов полного сгорания (двигатель) поршень должен совершить 4 такта. Это означает, что один цикл двигателя занимает 90 003 два полных оборота коленчатого вала 90 004 (720°).
Единственный ход, создающий крутящий момент (энергию), это рабочий ход , все остальные потребляют энергию.
Прямолинейное движение поршня преобразуется во вращательное движение коленчатого вала через шатун.
Для лучшего понимания мы суммируем начальное положение поршня, положение клапана и энергетический баланс для каждого хода.
Stroke order | Stroke name | Piston initial position | Intake valve state | Exhaust valve state | Energy balance |
1 | Intake | ВМТ | Open | Closed | Consumes |
2 | Compression | BDC | Closed | Closed | Consumes |
3 | Power | TDC | Closed | Closed | Produces |
4 | Выхлоп | BDC | Закрыто | Открыто | Потребление |
На анимации ниже хорошо видно, как работает двигатель внутреннего сгорания.