Содержание
как отремонтировать турбину дизельного или бензинового двигателя?
Мотор с турбонаддувом, некогда считавшийся атрибутом исключительно дорогих машин , сегодня уже никого не удивляет. Турбокомпрессоры все чаще устанавливают не только на дизельные, но и на бензиновые двигатели. Это и понятно: турбированный мотор мощнее и эффективнее обычного атмосферного. Однако ничего вечного нет, и в один не слишком прекрасный день турбокомпрессор может сломаться. По каким признакам понять, что это произошло, где отремонтировать турбину и как убедиться в том, что работу выполнили качественно, читайте в нашей статье.
На первый взгляд турбина может показаться простым устройством. Поток отработанных газов вращает крыльчатку, которая, в свою очередь, приводит в движение колесо компрессора, закрепленное на том же валу. Компрессор подает воздух под давлением в цилиндры двигателя. Увеличивается содержание кислорода в топливовоздушной смеси, соответственно сжигается больше горючего. При прежнем объеме камеры сгорания и том же количестве цилиндров мотор работает эффективнее. Его мощность возрастает на 20–30% по сравнению с атмосферным двигателем. Преимущество очевидно, и принцип работы понятен любому.
Но при этой кажущейся простоте двигатель с турбонаддувом устроен сложнее атмосферного, а значит, вероятность его поломки выше. И деталь, которая раньше всего выходит из строя, — это сама турбина. Хотя номинально ее ресурс соответствует сроку службы мотора, на практике это далеко не всегда так. Причем в бензиновых двигателях турбокомпрессор больше подвержен износу. Это связано с более высокой температурой отработанных газов.
На заметку
Кроме повышенной мощности, у турбированных двигателей есть еще одно немаловажное преимущество — экологичность. За счет принудительной подачи воздуха топливо в них сжигается эффективнее, образуется меньше вредных продуктов сгорания. В то же время есть и минусы: мотор с турбонаддувом более требователен к качеству масла и топлива, а также требует частой замены воздушного фильтра.
На продолжительность жизни турбины влияют уход за автомобилем и манера вождения. При преимущественно спокойной езде, использовании качественного масла определенных марок и хорошего топлива, регулярной замене воздушного фильтра средний ресурс турбокомпрессора в бензиновом моторе составит 150 000 км, в дизельном — в два раза больше [1] .
Но, как бы бережно вы ни обращались с автомобилем, рано или поздно придется отремонтировать турбину двигателя. Не всегда удается сразу понять, что этот момент наступил. Турбокомпрессор выходит из строя постепенно, и нужно внимательно следить за работой машины, чтобы заметить признаки неисправности.
Снижение мощности двигателя чаще всего указывает на то, что в камеру сгорания стало поступать меньше воздуха. Причины этой проблемы разнообразны: от засорения воздушного фильтра или канала подачи воздуха до утечки во впускной или выпускной системе. Утечка может возникнуть из-за трещин и других механических повреждений, из-за отсутствия герметичности соединений.
Синий дым при разгоне появляется вследствие того, что в цилиндры попадает масло. Значит, где-то происходит его утечка. Внимательный автовладелец при этом заметит, что расход масла увеличился. Причиной утечки может стать неисправность турбины.
Шум при работе турбокомпрессора свидетельствует о нарушении герметичности. Необходимо проверить целостность всех трубопроводов, прочность креплений, качество уплотнителей.
Один и тот же признак может быть проявлением различных неисправностей. Самая частая поломка — повреждение подшипников ротора из-за износа или, что более вероятно, из-за неправильной эксплуатации. Другие распространенные проблемы — коксование вала (ведет к перегреву и быстрому выходу из строя), разрушение лопастей турбины, механические дефекты, вызванные попаданием песка и других загрязнений, неисправность актуатора (вакуумного регулятора).
Нередко все эти причины оказываются не самостоятельными, а лишь сопутствующими. Чтобы найти настоящий источник поломки, необходимо провести тщательную диагностику.
Как проходит процесс
Ремонт турбин двигателей — задача не из простых. В большинстве обычных мастерских за эту работу просто не возьмутся, а в качестве решения проблемы посоветуют заменить турбокомпрессор. Причина — в отсутствии специализированного оборудования, которое необходимо для осуществления тонкой настройки турбины. Квалификация мастеров тоже зачастую оставляет желать лучшего.
Впрочем, еще хуже, если вам пообещают восстановить турбину в автосервисе, где нет ни современного оборудования для балансировки, ни оригинальных комплектующих. В этом случае желание сэкономить наверняка обернется еще бóльшими расходами. Весь ремонт, скорее всего, будет заключаться в замене картриджа — центральной части турбины. Обычно в «гаражных» мастерских применяют изделия китайского производства, которые выпускаются с многочисленными дефектами. Не говоря уже о том, что установка нового картриджа — даже идеально отбалансированного — отнюдь не гарантирует устранения проблемы, ведь причина неисправности, как мы выяснили, может скрываться в других частях турбины или даже находиться за пределами турбокомпрессора.
Некачественно отремонтированная турбина прослужит недолго и вскоре потребует замены. Но главная опасность в том, что эксплуатация неисправного турбокомпрессора может привести к поломке самого двигателя.
Так что выход один: искать должным образом оснащенный технический центр, где можно отремонтировать турбину, включая проведение комплексной диагностики, в соответствии со всеми правилами. К слову, такие сервисы есть пока только в столице и некоторых крупных городах. Иногда они оказывают услуги и для жителей регионов, организуя доставку транспортными компаниями.
Ремонт турбины дизельного двигателя в профессиональном техцентре проводят в несколько этапов.
- Турбокомпрессор демонтируют с автомобиля.
- Снимают «улитки» турбины и компрессора, разбирают картридж на составные элементы.
- Производят глубокую трехступенчатую очистку всех деталей турбокомпрессора. Сначала их помещают в моечную машину и промывают активным раствором. На этой стадии удаляются основные загрязнения. Затем проводят пескоструйную обработку крыльчатки турбины, компрессорного колеса, «холодной» и «горячей» «улиток» — при условии, что первичный осмотр этих деталей не выявил механических повреждений (в противном случае они подлежат замене). Наконец, в ультразвуковой ванне промывают патрубки, чтобы окончательно удалить остатки масла.
- Выполняют диагностику. Это самый сложный и ответственный этап ремонта. Специалист производит визуальный осмотр деталей: некоторые повреждения можно увидеть невооруженным глазом. Проверяют целостность вала, подшипников, оценивают степень их износа. С помощью специального оборудования определяют герметичность впускной и выпускной систем, интеркулера (охладителя воздуха), состояние электромагнитных клапанов.
- По результатам диагностики проводят дефектовку: составляют перечень деталей, которые подлежат замене. Заказывают необходимые комплектующие — подшипники, втулки, уплотнительные кольца и так далее.
- После замены деталей производят балансировку. Это многоступенчатый процесс. Сначала балансируют вал. Затем на него устанавливают колесо компрессора и снова выполняют балансировку. После этого на отдельном стенде балансируют картридж — центральную часть турбины.
- Собирают воедино все узлы турбокомпрессора.
- С помощью программатора настраивают актуатор, регулируют геометрию турбины.
- Устанавливают отремонтированный турбокомпрессор на автомобиль.
Ремонт бензиновых турбин проводится по той же технологии.
Если все перечисленные мероприятия были выполнены, можно уже почти не сомневаться, что ремонт сделали качественно. Для сравнения: в «гаражной» мастерской список этапов будет намного короче, ведь весь процесс ограничится разборкой, заменой картриджа и сборкой турбины. Так что перед ремонтом имеет смысл заранее поинтересоваться у мастеров, какие работы они планируют провести.
Помимо этого, серьезные технические центры обязательно предоставляют гарантию на свои услуги. Ее срок зависит от особенностей ремонта и составляет в среднем 6–12 месяцев.
Что учесть при ремонте турбины дизельного и бензинового двигателя
Поломки турбины не всегда возникают изолированно: им порой сопутствуют и другие неисправности. Это значит, что одного лишь ремонта турбокомпрессора может оказаться недостаточно. Чтобы гарантированно выявить и устранить все имеющиеся проблемы, требуется комплексная диагностика автомобиля и, возможно, смежные услуги. В связи с этим специалисты рекомендуют обращаться в техцентры, где проводятся все виды работ.
Смежные услуги при восстановлении турбин могут включать:
Удаление сажевого фильтра в дизельных двигателях. Эта деталь, как следует из названия, предназначена для того, чтобы уменьшить выбросы сажи, которая образуется из-за неполного сгорания топлива. Когда фильтр чист, проблем нет. Но по мере эксплуатации автомобиля он засоряется, и тогда возникают неприятности: увеличивается расход топлива, повышается температура, вследствие чего турбина перегревается и может выйти из строя. Прочистка и замена сажевого фильтра не помогают: результата хватает ненадолго. Единственно разумным решением остается удаление. Но просто вырезать «сажевик» — это не выход: необходимо именно программное отключение.
Удаление катализатора . Эта операция часто сопутствует ремонту турбины бензинового двигателя. У катализатора та же функция, что и у сажевого фильтра, — уменьшать вредные выбросы в атмосферу. Он тоже имеет ограниченный ресурс работы, со временем засоряется и становится источником проблем, в том числе с турбиной. Поэтому многие автовладельцы принимают решение удалить эту деталь. Одновременно требуется перепрограммирование датчиков кислорода (иначе они будут реагировать на отсутствие катализатора и выдавать ошибки). Такие манипуляции производятся в специализированной мастерской.
Глушение клапана ЕГР . Система рециркуляции выхлопных газов (EGR) тоже решает экологическую задачу — снижает выбросы оксидов азота. Но по мере исчерпания ресурса она начинает отрицательно влиять на работу двигателя. Менять ЕГР сложно и дорого, и иногда самым разумным решением становится отключение системы, точнее, главной ее детали — клапана. А поскольку в современных автомобилях они имеют электронное управление, механического изъятия недостаточно — нужно перепрограммирование контроллера. Своими руками такую операцию не выполнить.
Отремонтировать турбину намного дешевле, чем установить новую. Но это сложная работа, и на обычных СТО ее не выполняют. Замена картриджа чаще всего не решает проблемы: необходим капитальный ремонт с диагностикой, который проводится только в специально оснащенных техцентрах.
Принцип работы турбины и устройство турбокомпрессора * ООО Декорт-турбосервис
20.11.2018
О достоинствах и возможностях турбонаддува наслышан каждый автолюбитель. При этом многие из тех, кто не ощутил эффекта турбины на практике, все же стремятся установить турбированный двигатель на любимое авто. Чтобы в полной мере понять, стоит ли усиливать мотор, нужно предварительно разобраться, что собой представляет турбина, как устроена и что делает.
Что такое турбина в автомобиле?
Автомобильная турбина – это механический агрегат, предназначенный для повышения производительности мотора. Усиление мощности происходит за счет нагнетания кислорода в цилиндры под давлением. Накачка воздуха улучшает горючесть топлива, что, в свою очередь, позволяет двигателю выдерживать большие нагрузки. Его объем остается неизменным. То есть турбонаддув нужен, чтобы увеличить показатели производительности на 50% и более.
Подсоединенная к двигателю турбина находится в передней части кузова, под капотом. В случае расположения мотора в задней части кузова – турбонаддув также под задним капотом.
Устройство турбокомпрессора
Конструкция турбины для двигателя разработана с целью максимального использования вырабатываемой мотором энергии для увеличения его же мощности. Устройства для бензиновых и дизельных агрегатов состоят из таких элементов:
- Компрессор. Он включает ротор и его защитный корпус. Ротор представляет собой вал, на котором находятся турбинная и компрессорная шины. Каждая их них имеет особые лопасти. Турбинная приходит в движение под воздействием выхлопных газов и отвечает за подачу энергии на компрессорную. Компрессорная, она же воздушный насос, втягивает потоки воздуха внутрь и перенаправляет в цилиндры, повышая его давление на выходе. Работа турбокомпрессора, таким образом, играет ключевую роль.
- Подшипник скольжения. Эта деталь отвечает за исправное функционирование ротора, его беспрепятственное вращение. Именно от нее зависит, будет ли захвачен необходимый объем воздуха.
- Каналы для масла. Они обеспечивают своевременное поступление смазки в зазоры между осью и подшипниками, а также подшипниками и корпусом.
- Корпус конструкции спроектирован таким образом, что внешне турбина выглядит, как улитка. Он выполняет защитную функцию, оберегая внутренние детали от внешних загрязнений и повреждений.
Как работает турбина на бензиновом двигателе?
Принцип действия турбины, которую ставят на бензиновый двигатель, заключается в бесперебойной подаче сжатого воздуха в цилиндры.
Когда мотор заводится, в цилиндрах образуются выхлопные газы. Из выпускного коллектора они проходят в специальный патрубок турбокомпрессора. Двигаясь через корпус турбины, газы набирают скорость. А когда достигают ротора турбины, то своей энергией заставляют его вращаться. Выполнив свою функцию, выхлоп попадает в глушитель через приемную трубу. И уже из него выходят наружу.
Вращение вала ротора заставляет работать турбонагнетатель (компрессор). Движение его лопастей обеспечивает втягивание воздуха, который попадает извне сквозь воздушный фильтр двигателя. Вращение лопастей на подобие центрифуги сжимает воздух. Именно в таком состоянии он попадает в двигатель посредством впускного коллектора.
Как работает турбина на дизельном двигателе
Дизельный двигатель отличается от бензинового тем, что горючее смешивается с воздухом прямо в цилиндре, а не снаружи. Кроме того, конструкция дизеля не предусматривает свечей зажигания – возгорание смеси происходит самопроизвольно, без постороннего воздействия.
Один цикл работы турбины дизельного движка состоит из таких этапов:
- турбонагнетатель втягивает воздушные потоки извне;
- вращение компрессорного кольца системы турбонаддува повышает давление поступающего воздуха;
- интеркулер – приспособление для снижения температуры воздушных масс, который турбина дает двигателю – охлаждает сжатый воздух;
- очищенный фильтром воздух нагнетается в движок при помощи впускного коллектор;
- отработанные за рабочий ход газы выходят посредством выпускного коллектора;
- по мере продвижения к ротору скорость движения выхлопных газов растет;
- выхлоп достигает ротора и ускоряет темп вращения турбинного кольца;
- движение турбины посредством вала влияет на компрессор, заставляет его вращаться, открывая следующий цикл.
Стоит заметить, что ТКР получили больше признания именно в комбинации с дизельными агрегатами. Это объясняется более высоким давлением воздуха и менее горячими отработанными газами, нежели у бензиновых движков. Такие особенности дизелей обусловили высокую эффективность турбоусилителей, а также возможность использования в конструкции материалов без высокой устойчивости к высоким температурам. Тем не менее, для бензинового мотора турбина нужна, если требуется увеличить его выносливость в условиях значительных нагрузок.
Принцип работы газотурбинной электростанции
Газовые турбины наиболее широко применяются для различных целей. Газ обычно используется в качестве рабочего тела этих турбин, производя недорогую энергию. В этой статье мы в основном рассмотрим принципы работы газотурбинной электростанции.
Электростанция, вырабатывающая энергию с помощью газовой турбины, известна как газотурбинная электростанция. Газотурбинная силовая установка используется в высокоскоростных массивных компрессорных транспортных средствах. Кроме того, они обеспечивают электричеством самолеты и корабли. Вопрос в том, как газовая турбина вырабатывает это электричество. Поэтому, прежде чем узнать, как Работает газотурбинная электростанция . Нам нужно хорошо понимать каждый из его компонентов. Итак, давайте сначала изучим его основные компоненты, прежде чем переходить к тому, как он работает.
Как правило, все газотурбинные двигатели содержат следующие компоненты:
Компрессор:
Этот механический инструмент сжимает воздух до высокой плотности. Сжатый воздух ускоряет сгорание топлива. Общий вал соединяет компрессор с турбиной. Он втягивает воздух в двигатель, создает в нем давление и подает его в камеру сгорания со скоростью сотни миль в час.
Камера сгорания:
Здесь топливо сжигается в присутствии воздуха. Обычно он состоит из кольца топливных форсунок, которые непрерывно подают бензин в камеры сгорания, где он соединяется с воздухом. Для сжигания смеси используется более 2000 градусов по Фаренгейту. Газовый поток, который входит и расширяется через турбинную часть, создается за счет сгорания и имеет высокую температуру и давление.
Турбина: Состоит из лопастей ротора. Когда горячие газы от горящего в камере сгорания топлива попадают на эти лопатки, они начинают вращаться.
Регенератор четвертого компонента часто используется для повышения эффективности, преобразования мощности в механическую или электрическую форму (на турбовальных двигателях и электрогенераторах) или увеличения удельной тяги (на двигателях с форсажной камерой).
При использовании воздуха в качестве рабочего тела газовая турбина работает по циклу Брайтона: окружающий воздух проходит через компрессор, повышая его давление. После этого энергия обеспечивается за счет воспламенения топлива, распыляемого в воздухе, которое воспламеняется, вызывая возгорание и создавая высокотемпературный поток.
Этот сжатый газ высокой температуры поступает в турбину, создавая работу вала, которая приводит в действие компрессор. Самолеты, поезда, корабли, генераторы электроэнергии, насосы, газовые компрессоры и резервуары для хранения — все они приводятся в действие газовыми турбинами.
Конструкция газовой турбины определяется ее назначением для получения идеального распределения энергии между тягой и работой вала. Поскольку газовые турбины представляют собой открытые системы, в которых один и тот же воздух не используется дважды, четвертый этап цикла Брайтона, предполагающий охлаждение рабочего тела, пропускается.
Газотурбинная электростанция Принципы работы:
На основе цикла Брайтона работает газотурбинная электростанция . Топливно-воздушная смесь в ходе этого цикла сжимается, сгорает, а затем выбрасывается после прохождения через газовую турбину. Газовая турбина использует воздух в качестве рабочего тела на протяжении всей своей работы. Ниже приведены этапы работы газовой турбины:
Процедура всасывания:
Вначале турбина всасывает воздух из атмосферы в камеру сжатия и подает его в компрессор.
Процедура сжатия:
Компрессор сжимает воздух на входе, преобразуя кинетическую энергию воздуха в энергию давления. Затем он преобразует воздух в воздух высокого давления.
Процесс сгорания:
Сжатый воздух поступает в камеру сгорания после процесса сжатия. Форсунка помещает топливо в камеру сгорания, которое смешивается с воздухом. В камере сгорания воспламеняется топливовоздушная смесь после смешения. Процесс воспламенения превращает воздушно-топливную смесь в газы высокого давления и высокой температуры.
Секция турбины:
Часть энергии газа преобразуется в механическую энергию, когда он достигает турбинной части, а часть энергии расходуется. Лопасти турбины вращаются по мере того, как дымовые газы расширяются через них. Вращающиеся лопасти служат двум целям. Они приводят в действие газогенератор, прикрепленный к турбине, и управляют компрессором, который подает больше воздуха для работы.
Процесс производства электроэнергии:
К валу газотурбинной электростанции прикреплен генератор. Турбина передает механическую энергию генератору, преобразуя ее в электрическую энергию. Выхлопные газы включают ненужную энергию, которая улетучивается. Выхлопной газ можно было использовать для внешних целей, таких как немедленное создание тяги в турбореактивном двигателе или вращение второй силовой турбины, которая могла быть присоединена к электрогенератору, пропеллеру или вентилятору.
Преимущества газотурбинной электростанции:
- Газотурбинная электростанция имеет простую конструкцию. Однако паротурбинная силовая установка имеет более сложную конструктивную схему.
- По сравнению с другими электростанциями газотурбинные электростанции меньше по всем параметрам. В результате он может быть установлен в небольшом пространстве.
- Газотурбинная электростанция требует относительно небольшого обслуживания, чтобы оставаться в рабочем состоянии.
- Требуется топливо по разумной цене. Мы можем эксплуатировать электростанцию на менее дорогих видах топлива, таких как керосин и бензол.
- Для работы газотурбинной электростанции требуется меньше воды, и она производит меньше загрязняющих веществ. Такие электростанции часто используются в районах с дефицитом воды и высоким спросом на электроэнергию, поскольку они потребляют меньше воды.
- При работе газотурбинной электростанции нет необходимости в конденсаторе или котле.
Как газовые турбины вырабатывают электроэнергию?
Газовая турбина представляет собой двигатель внутреннего сгорания в центре электростанции, который может преобразовывать механическую энергию из природного газа или другого жидкого топлива. Затем эта энергия питает генератор, вырабатывая электричество, которое по линиям электропередачи передается в дома и коммерческие здания.
Газотурбинная электростанция вращает лопасти турбины, нагревая смесь топлива и воздуха до чрезвычайно высоких температур для производства энергии. Вращающаяся турбина приводит в действие генератор, вырабатывающий электричество. Электростанция с комбинированным циклом может очень эффективно производить электроэнергию, сочетая газовую турбину и паровую турбину.
- Газотурбинная электростанция сжимает воздух и смешивает его с топливом, которое затем сжигается при невероятно высоких температурах для получения воспламеняющегося горячего газа.
- Горячий воздух и топливо проходят через лопасти турбины, заставляя их быстро вращаться.
- Быстро вращающиеся лопасти турбины вращают приводной вал, который вращает турбину.
- Вал генератора, который вращает большой магнит, окруженный катушками из медной проволоки, соединен с вращающейся турбиной.
- Быстро вращающийся магнит генератора создает сильное магнитное поле, которое выстраивает электроны вокруг медных катушек и позволяет им двигаться. Именно электричество заставляет эти электроны течь по проводу.
Заключение
Prismecs обеспечивает устойчивую газотурбинную электростанцию для цементной, металлургической, горнодобывающей, нефтегазовой промышленности и производства электроэнергии. Наши инженеры создают надежные решения «под ключ» для балансировочной установки (BoP) и планового обслуживания. Наши союзы с General Electric, Solar, Mitsubishi, Siemens и другими OEM-производителями укрепляют нашу цепочку поставок и расширяют наши знания о самых известных моделях турбин на рынке. Prismecs — надежный партнер, если вы ищете комплексное решение, обновление или настройку. Вы можете напрямую связаться по этому номеру; 18887747632
Принципы работы авиационного газотурбинного двигателя
Преобразование энергии
Газотурбинный двигатель представляет собой разновидность теплового двигателя, преобразующего химическую энергию топлива в тепловую энергию. Тепловая энергия вызывает увеличение давления газа, которое преобразуется в кинетическую энергию в виде высокоскоростного потока воздуха. Кинетическая энергия преобразуется в механическую энергию, когда газы вращают ряд турбинных колес, приводя в действие компрессор и аксессуары. В случае турбовинтовых или турбовальных двигателей расширяющиеся газы могут также приводить в действие вторую силовую турбину, приводящую в движение воздушный винт или редуктор.
Цикл преобразования энергии
Цикл преобразования энергии в газотурбинном двигателе известен как цикл Брайтона (или цикл постоянного давления) . Подобно четырехтактному циклу Отто, цикл Брайтона имеет процессы впуска, сжатия, сгорания и выпуска. Однако, в отличие от поршневого двигателя, в газотурбинном двигателе все четыре события происходят одновременно и непрерывно. Газотурбинный двигатель способен непрерывно производить энергию. Чтобы поддерживать непрерывное производство энергии, газотурбинный двигатель должен сжигать большое количество топлива. [Рисунок 1]
Рис. 1. В газотурбинном двигателе воздух всасывается через воздухозаборник, сжимается в компрессоре, смешивается с топливом и воспламеняется в камерах сгорания, выбрасывается через турбины и выхлопное сопло . ГТД выполняет те же функции, что и цилиндр и поршень в поршневом двигателе. В газотурбинном двигателе эти четыре события происходят постоянно |
Непрерывное всасывание в газотурбинном двигателе всасывает окружающий воздух в двигатель через впускной канал к первой ступени компрессора. Каждая ступень компрессора увеличивает статическое давление воздуха. В камере сгорания топливо впрыскивается в поток входящего воздуха и воспламеняется, что приводит к непрерывному горению. В результате высвобождения тепловой энергии увеличивается объем воздуха при сохранении относительно постоянного давления.
Когда выхлопной воздух выходит из камеры сгорания, он проходит через турбину, где статическое давление воздуха падает, а объем воздуха продолжает увеличиваться. Поскольку поток расширяющихся газов относительно беспрепятственный, скорость резко возрастает. [Рис. 2]
Рисунок 2 . На этой диаграмме показаны изменения давления и объема во время работы двигателя. Точка А представляет состояние воздуха непосредственно перед входом в компрессор. После того, как он попадает в компрессор, его давление увеличивается, а объем уменьшается. Точка B представляет собой давление и объем воздуха на выходе из компрессора. В точке C тепловая энергия расширяет объем воздушной массы практически без изменения давления. После нагрева воздух расширяется и теряет давление по мере прохождения через секцию турбины к точке D |
Принципы работы
Принцип действия газотурбинного двигателя, обеспечивающего движение самолета, основан на законе импульса Ньютона. Этот закон гласит, что на каждое действие есть равное и противоположное противодействие; поэтому, если двигатель ускоряет массу воздуха (действие), он прикладывает силу к самолету (реакция). ТРДД создает тягу, придавая относительно медленное ускорение большому количеству воздуха. Старый чисто турбореактивный двигатель достигает тяги, сообщая большее ускорение меньшему количеству воздуха. Это была его основная проблема с расходом топлива и шумом.
Масса воздуха ускоряется в двигателе за счет использования непрерывного цикла. Окружающий воздух поступает во впускной диффузор, где он подвергается изменениям температуры, давления и скорости из-за эффекта набегания. Затем компрессор механически увеличивает давление и температуру воздуха. Воздух под постоянным давлением поступает в секцию горелки, где его температура повышается за счет сжигания топлива. Энергия берется из горячего газа за счет расширения через турбину, которая приводит в действие компрессор, и за счет расширения через выхлопное сопло, предназначенное для выпуска выхлопных газов с высокой скоростью для создания тяги.
Высокоскоростные газы из двигателя можно считать непрерывными, поскольку они передают эту силу воздушному судну, в котором он установлен, тем самым создавая тягу. Формулу тяги можно вывести из второго закона Ньютона, который гласит, что сила пропорциональна произведению массы на ускорение. Этот закон выражается формулой:
F = M × A
где;
F = сила в фунтах
M = масса в фунтах в секунду
A = ускорение в футах в секунду
В приведенной выше формуле масса аналогична весу, но фактически является другой величиной. Масса относится к количеству материи, а вес относится к силе тяжести на это количество материи. На уровне моря при стандартных условиях 1 фунт массы имеет вес 1 фунт. Для расчета ускорения данной массы в качестве единицы сравнения используется гравитационная постоянная. Сила тяжести составляет 32,2 фута в секунду в квадрате (фут/сек2). Это означает, что свободно падающий объект массой 1 фунт ускоряется со скоростью 32,2 фута в секунду каждую секунду, когда на него действует сила тяжести. Поскольку масса объекта составляет 1 фунт, что также является фактической силой, действующей на него под действием силы тяжести, можно предположить, что сила в 1 фунт ускоряет объект 1-1 со скоростью 32,2 фута/сек2.
Кроме того, сила в 10 фунтов ускоряет массу в 10 фунтов со скоростью 32,2 фута в секунду2.