Рубрики
Разное

Принцип работы турбины на авто: Принцип работы турбины на бензиновом двигателе

зачем нужна, принцип работы и советы по эксплуатации. Турбояма.


 


Турбина двигателя является частью системы турбонадува, которая предназначена для дополнительной подачи воздуха в цилиндры двигателя.  Для работы двигателя необходимо определенное количество топливно-воздушной смеси. Чем больше смеси сгорает в двигателе, тем выше его мощность.


В обычном двигателе без системы турбонадува воздух в цилиндры всасывает поршень. Проблема состоит в том, что объем воздуха, который поступает в цилиндр, ограничен размерами самого цилиндра. И чтобы протолкнуть туда больше воздуха, нужно подавать его под высоким давлением.


Вывод: система турбонадува создана для того, чтобы подавать воздух в цилиндр двигателя под давлением.


Интересный факт: если на двигатель установить систему турбонадува, то его мощность увеличится на 30%.


 


 


Основной деталью системы турбонадува является компрессор. Это устройство сжимает воздух и подает его под давлением в цилиндры двигателя. Визуально компрессор представляет собой что-то наподобие вентилятора, который вращается и засасывает на себя воздух. Если снять крышку компрессора, то можно увидеть его крыльчатку. Крыльчатка работает как винт. Она как бы вкручивается в воздух и притягивает его на себя.


Как же заставить крыльчатку компрессора вращаться? Существует два типа привода, которые раскручивают крыльчатку:


  • • Механический.  В таком случае компрессор вращается от двигателя через систему ремней.

  • • Энергия выхлопных газов. Такое устройство по-научному называется турбокомпрессор (турбина).


Принцип работы турбокомпрессора основан на том, что выхлопные газы, которые выходят из цилиндра двигателя вращают, другую крыльчатку, которая называется турбина. Это крыльчатка находится на одном валу вместе с компрессором. Поэтому когда выхлопные газы закручивают нашу турбину, то вращается соответственно и компрессор, который нагнетает свежий воздух в цилиндры двигателя.


 


Турбояма: почему возникает и решение.


 


В конструкции турбокомпрессора есть один существенный недостаток. На низких оборотах двигателя энергия выхлопных газов слишком маленькая и не позволяет разогнать компрессорное колесо до необходимой частоты вращения.


К сведению: частота вращения колес достигает 150 тыс. оборотов в минуту и выше!


Есть такое понятие как турбояма. Она возникает, когда двигатель работает на низких оборотах и турбокомпрессор еще не работает. На практике это происходит следующим образом: вы стартуете с перекрестка и какое-то время машина, так скажем, тупит, а затем, когда обороты достигают нужного момента, включается турбокомпрессор и машина начинает резко ускоряться.


Первым решением для исключения турбоямы является использование двух турбокомпрессоров. Это решение называется Битурбо. Один турбокомпрессор работает на низких оборотах, второй – на высоких оборотах. Таким образом, когда вы разгоняетесь, работает одна из двух турбин.


Вторым способом борьбы с турбоямой является использование турбины и механического нагнетателя на низких оборотах. В таком случаем компрессор работает от механического привода, т. е. от двигателя. А на повышенных оборотах работает классический турбокомпрессор. Такое решение называется система двойного турбонадува и широко используется в двигателях TSI концерна Фольксваген.


Третьим способом, чтобы исключить турбояму является использование турбокомпрессоров, в которых можно изменять геометрию направляющего аппарата.


Советы по эксплуатации турбины


В конструкции турбокомпрессора есть подшипники, на которых вращается сам вал. Т.к. частота вращения этого вала достигает 200 тыс. оборотов в минуту, то здесь не используются классические шариковые подшипники, а используются гидромеханические (скольжения). Такие подшипники требуют подачи масла под определенным давлением. Поэтому к подшипникам турбокомпрессора подводится масло под давлением. Использование масла в подшипниках турбокомпрессора накладывает определенные обязательства:


  • • Необходимо вовремя менять моторное масло и масляный фильтр.

  • • Прогревать двигатель перед поездкой, для того чтобы масло разогрелось и поступало на подшипники уже разогретым, т.е. с определенной вязкостью.

  • • В конце поездки необходимо дать остыть турбине, т.е не выключать двигатель 2-3 минуты. Особенно в зимнее время. После остановки автомобиля турбина еще некоторое время вращается, и если вы сразу выключите двигатель, то прекратиться подача масла в эти подшипники и будет происходить их повышенный износ.


 


Основной причинной неисправностей турбокомпрессоров является износ подшипников скольжения, а также уплотнений, которые препятствуют выбросу масла.


 


Быстрый подбор турбины у нас в каталоге.


 


 

Вернуться назад

 Что такое турбины и для чего они нужны?

google-site-verification: google2845f21385686c0d.html

 Что такое турбины и для чего они нужны?

 

 

           Что такое турбины и для чего они нужны?

 

   Основная задача турбин – это повышение мощности двигателя автомобиля. При помощи турбины можно значительно повысить мощность авто.

 

    Принцип работы турбокомпрессора прост: через выпускной коллектор отработанные газы попадают в корпус турбины в которой установлено турбинное колесо, которое приводится в движение. На одной оси с турбинным колесом установлено компрессорное колесо, которое в свою очередь сжимает воздух и падет его в впускной коллектор двигателя. Из всего этого следует, что обороты турбины очень высоки и напрямую зависят от мощности двигателя, скорость вращение турбины достигает 150.000 об/мин и более.

 

    При использовании турбины, в двигатель поступает воздух под высоким давлением, что позволяет увеличиться мощности автомобиля по отношению к объему двигателя и количеству топлива. Наиболее эффективными являются турбокомпрессоры высокого давления. Отличие в конструкции от обычных турбин в том, что турбины повышенного давления имеют клапан, который устраняет избыточное давление на высоких оборотах.Так же большинство турбокомпрессоров оснащены интеркулером.

 

   Основная задача интеркулера – охлаждение воздуха. Так как турбинаработает на больших оборотах, воздух в ней нагревается, тем самым понижается содержание кислорода и плотность воздуха. Интеркулер справляется с этой проблемой.Одной из проблем турбин всегда была небольшая задержка реакции(инерция), но сейчас эти недостатки уже практически устранены. С появлением двух параллельно расположенных турбин, одна из которых предназначена для работы на высоких оборотах, другая на низких, инерция турбины была значительно уменьшена.

   

    Так же, появились турбины, в которых стало возможно изменять угол наклона ротора, что в свою очередь так же позволяет бороться с проблемами связанными с задержкой в реакции. Хорошо уменьшена инерция в турбокомпрессорах с керамическими лопастями ротора, за счет того, что вес их меньше чем у стандартных аналогов.

Принцип работы турбокомпрессора (турбины) его конструкция и типы.

  Принцип работы любого турбокомпрессора основан на использовании энергии отработавших выхлопных газов двигателя внутреннего сгорания. Поток выхлопных газов попадает на колесо турбины (закреплённую на валу), тем самым раскручивая её и одновременно с этим раскручивая колесо компрессора, нагнетающего воздух в цилиндры двигателя.

 

   Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большая смесь воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает большая сила, давящая на поршень.

 

   Двигатели внутреннего сгорания снабженные турбокомпрессором более производительные, т.е. меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт•ч)), и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации.

 

   Поэтому, конструкцией двигателей с турбокомпрессором предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер)- радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт.

 

   Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например на дизеле Д 49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с.Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает 7000 л.с. .Современные турбокомпрессоры можно разделить на два основных типа: 1- с изменяемой геометрией соплового аппарата ( VNT турбокомпрессоры) и 2- без геометрии. Все они в свою очередь могут быть моно, твинскролы (двойные турбины) и т.д.

Профилактика и рекомендации.

     При запуске двигателя необходимо дать ему поработать на холостом ходу не менее шестидесяти секунд и прибавлять газ постепенно. Это обеспечивает достаточную смазку движущихся элементов турбины и предохраняет их от преждевременного износа. Чтобы не создавалось низкое давление в двигателе и пропускание паров масла, не эксплуатируйте турбину на холостом ходу более тридцати минут.

​    Обязательно давайте остыть турбокомпрессору перед выключением зажигания, поскольку быстрое выключение создаст резкий перепад температур в системе. Такие переходы быстро изнашивают любой механизм.

    Что касается эксплуатации авто зимой, когда двигатель быстро остывает или после долгого перерыва в работе необходимо сначала провернуть двигатель, и только потом запускать его на холостых оборотах. Это позволит наладить быструю циркуляцию масла и быстро заполнить систему компрессора рабочей жидкостью.

    Рекомендуется регулярная диагностика двигателя, особенно если Вы не уверены в качестве дизельного топлива.

По каким признакам можно определить неисправность турбины?

 Профессионально это сделать может только опытный мастер, но есть поломки, сразу бросающиеся в глаза. Это повышенный расход масла, синий дым из выхлопной трубы, посторонние шумы в работе мотора. 

 

Газотурбинные автомобили: дурной ветер?

Подавляющее большинство автомобилей на наших дорогах оснащены поршневыми двигателями внутреннего сгорания. Однако газовая турбина не имеет поршней.

Вместо этого воздух сжимается и подается в камеру сгорания, в которую распыляется топливо. Затем топливно-воздушная смесь воспламеняется, а образующиеся газы используются для питания турбины. Вообще говоря, мощность, производимая этой турбиной, используется для работы компрессора, который повышает давление воздуха, подаваемого в камеру сгорания, а не для движения. Затем выхлопные газы проходят через вторую турбину (известную как «свободная турбина»), прикрепленную к валу, тем самым создавая механическую энергию, используемую для движения.

Газотурбинные двигатели, как правило, легче и имеют лучшее отношение мощности к весу, чем поршневые двигатели, а также могут использовать различные виды топлива. Поэтому неудивительно, что идея использовать газовую турбину для питания автомобиля существует уже давно. На самом деле очень давно: патент на то, что было по сути первым газотурбинным двигателем, предназначенным для привода безлошадной повозки, был выдан англичанину Джону Барберу в 1791 году.

К сожалению, двигатель Барбера не смог обеспечить достаточную мощность, чтобы быть жизнеспособным, и прошло более века, прежде чем норвежский инженер Эгидус Эллинг построил первую газовую турбину, которая производила больше энергии, чем требовалось для питания ее собственных компонентов. И пройдет еще почти 50 лет, прежде чем автомобиль с газотурбинным двигателем увидит свет.

В мае 1946 года в журнале Popular Science появилась статья о том, что Роберт Кафка и Роберт Энгерштейн, инженеры нью-йоркской компании Carney Associates, разработали компактный газотурбинный двигатель для использования в автомобилях. Хотя предложенный двигатель был заявлен как мощный (100 л.с.) и экономичный (40 миль на галлон), он так и не увидел свет.

Однако Кафка и Энгерштейн были не единственными инженерами, рассматривавшими возможность использования газовых турбин в качестве автомобильного двигателя.

Поскольку Великобритания, благодаря новаторской работе Фрэнка Уиттла, установила первенство в разработке и использовании газовых турбин для двигателей самолетов, возможно, было естественным, что британская компания должна была первой производить автомобиль с газотурбинным двигателем.

Этой компанией была Ровер.

Rover JET1 (кредит Эндрю Боун)

Работая в партнерстве с Power Jets, компанией Фрэнка Уиттла, над реактивными двигателями в конце 1930-х и начале 1940-х годов, Rover был в состоянии адаптировать технологию газовых турбин для использования на дорогах. В 1950 году компания представила JET 1, двухместный автомобиль с открытым верхом, основанный на сильно модифицированной платформе Rover P4. Мощность обеспечивалась установленной сзади турбиной, которая приводила в движение задние колеса. В своем первоначальном виде турбина JET 1 выдавала 100 л.0 миль в час. Но если его производительность была респектабельной, его расход топлива в 6 миль на галлон был совсем не таким.

Ровер JET1 – кредит Oxyman

В ходе разработки JET 1 он получил как увеличение мощности (до 230 л.с.), так и более скользкий нос. Эти усовершенствования были испытаны в 1952 году, когда он разогнался до 152 миль в час на километре полета в Яббеке в Бельгии.

Создание прототипа — это одно, а разработка газотурбинного автомобиля для производства — куда более сложный вопрос. Тем не менее, Rover продолжал разрабатывать дорожные автомобили с газотурбинными двигателями в 19 веке.60-х годов, но работа над автомобилями с газотурбинным двигателем закончилась после поглощения Rover Leyland Motor Corporation в 1967 году, оставив привлекательный переднеприводный T4 на базе P6 1961 года как ближайшую вещь, к которой компания подошла для производства жизнеспособного производства. автомобиль.

Credit Matthias v.d.Elbe

По другую сторону Атлантики компания General Motors стала первым производителем автомобиля с газотурбинным двигателем XP-21 (позже переименованного в Firebird 1). Впервые показанный в 1953 году, одноместный XP-21, выглядевший как реактивный истребитель на колесах, был первым из трех концепт-каров с газотурбинным двигателем, кульминацией которых стал Firebird III 1919 года.59 (более поздняя Firebird IV не участвовала). Однако серия Firebird была скорее демонстрацией как дизайна космической эры, так и новых технологий, таких как антиблокировочная система тормозов, круиз-контроль, универсальные дисковые тормоза и титановая конструкция, а не серьезным исследованием производственного использования. газотурбинные двигатели.

Credit Karrmann

Chrysler, с другой стороны, очень серьезно относился к газотурбинным двигателям, начав проводить исследования использования таких двигателей в автомобилях еще до Второй мировой войны. Работа над проектом возобновилась после окончания войны, но это не было до 1954 состоялась презентация первого газотурбинного автомобиля компании. Основанный на седане Plymouth Belvedere, автомобиль (известный внутри компании как CR1) был оснащен двигателем мощностью 100 л.

Credit Greg Gjerdingen

Два года спустя седан Plymouth с газовой турбиной отправился в путешествие из Нью-Йорка в Лос-Анджелес на расстояние чуть более 3000 миль. Было несколько технических неполадок, но «Плимут» добрался до Лос-Анджелеса через четыре дня после отбытия. Несмотря на то, что поездка во многих отношениях удалась, она высветила одну из главных проблем газотурбинных двигателей — их тягу. Работая как на неэтилированном бензине, так и на дизельном топливе (Chrysler утверждал, что может работать на чем угодно, от арахисового масла до Chanel № 5), Plymouth в среднем расходовал 13 миль на галлон за поездку.

Но экономия топлива была не единственной проблемой газотурбинных двигателей: выхлоп выделял много тепла, двигателю не хватало гибкости, приемистость была плохой, а торможение двигателем отсутствовало. Более того, хотя выбросы газотурбинных двигателей в целом были низкими, они выделяли много оксида азота.

Компания Chrysler, как и Rover, усердно работала над решением этих проблем, и в 1962 году они объявили, что небольшое количество автомобилей с газотурбинными двигателями будет предоставлено в распоряжение представителей общественности для испытаний и оценки в реальных условиях. И они сдержали свое слово: между 1964 и 1966, пятьдесят автомобилей Chrysler Turbine в стиле Ghia были сданы в аренду представителям общественности на три месяца за раз. В общей сложности более 200 человек проехали на газотурбинных двигателях более 1 миллиона миль, прежде чем проект завершился в 1966 году. Большинство газотурбинных двигателей было затем раздавлено.

Credit F.D.Richards

Хотя Chrysler продолжал работать над дорожными газотурбинными двигателями до конца 1970-х годов, проект Turbine Car остается самым близким из всех, что любой производитель подошел к серийному автомобилю с газотурбинным двигателем.

Хотя автомобили с газотурбинными двигателями не идеально подходили для автоспорта, особенно для дорожных гонок с частыми остановками, они соревновались в Ле-Мане, Индианаполисе и даже (на короткое время) в Формуле-1.

Credit David Merrett

Rover снова лидировал. В партнерстве с BRM они выпустили спортивный гоночный автомобиль, который дважды участвовал в гонках Ле-Мана.

Основанный на шасси BRM Формулы-1 (которое управлял Ричи Гинтером и разбился на Гран-при Монако 1962 года), Rover-BRM отличался установленной посередине газовой турбиной мощностью 150 л.с.

Роверу было разрешено участвовать в гонке «24 часа Ле-Мана» 1963 года в качестве экспериментального автомобиля, и пилоты Ричи Гинтер и Грэм Хилл (действующий чемпион мира Формулы-1) довели его до восьмого места, если бы правила разрешил его засекретить.

Обрадованный Rover сел в машину для участия в гонке 1964 года, но из-за аварии вне трассы он не смог принять участие. Тем не менее, Rover вернулся к Sarthe в 1965 году, когда автомобиль больше не классифицировался как экспериментальный и теперь имел новый кузов купе (сочиненный Уильямом Таунсом) и керамические роторные регенераторы тепла (которые значительно повысили эффективность двигателя за счет мало мощности) – финишировал на десятом месте, несмотря на повреждение турбины на ранних этапах гонки.

Ле-Ман 1965 года был последней гонкой Rover-BRM, но это был не последний газотурбинный автомобиль, участвовавший в гонках Sarthe, поскольку в 1968 году в борьбу вступил новый претендент: Howmet TX. Разработанный и построенный в США, TX использовал газотурбинный двигатель Continental, который изначально был разработан для использования в военном вертолете. И имея в своем распоряжении 350 л.с., TX был лучше подготовлен для борьбы за прямые гоночные награды, чем Rover-BRM с меньшим двигателем.

Credit The 359

TX дебютировал на гонках Daytona 24 hours, где занял впечатляющее седьмое место. Он занял третье место в гонке, но застрявший вестгейт привел к аварии, завершившей гонку. В Себринге все пошло еще лучше, он квалифицировался третьим, но снова не смог финишировать.

Credit The 359

Затем TX совершил свою первую поездку в Европу, где участвовал как в BOAC 500 в Brands Hatch, так и в часовой гонке в Oulton Park. Сойдя с обоих соревнований, TX вернулся в Штаты и принял участие в чемпионате SCCA, где он не только впервые финишировал в гонке, но и одержал полную победу в двух соревнованиях. Он также хорошо показал себя в гонке Watkins Glen 6 Hours, заняв третье место и выиграв в своем классе. Однако набег на Ле-Ман оказался менее успешным, поскольку относительная нехватка мощности автомобиля поставила его в невыгодное положение на трехмильной прямой Mulsanne. Ни один из двух участников TX не финишировал в гонке, но даже в этом случае он показал хорошие результаты в течение сезона.

Credit Supermac 1961

К сожалению, 1968 год должен был стать единственным сезоном для TX, и он больше никогда не участвовал в гонках, хотя и установил ряд мировых рекордов скорости для автомобилей с газотурбинным двигателем.

За год до того, как Howmet TX вышел на трассу, Парнелли Джонс стал первым человеком, участвовавшим в гонке на автомобиле с газотурбинным двигателем в Индианаполисе 500. Автомобиль, которым управлял Джонс, был STP Paxton, любопытно выглядящая машина (в которой двигатель располагался рядом с водителем), разработанный Кеном Уоллисом и Энди Гранателли, генеральным директором моторных масел STP. Paxton, возможно, выглядел немного странно, но он был быстрым: квалифицировавшись шестым, Джонс лидировал в гонке на протяжении 171 круга и был в пределах трех кругов от комфортной победы, когда вышел из строя подшипник трансмиссии.

Для участия в гонке 1968 года компания Granatelli STP объединила усилия с Lotus, чтобы провести кампанию по созданию нового Lotus 56, разработанного Морисом Филиппом. , привлекательный автомобиль. И что еще более важно, это было быстро.

Хотя новые правила гонок снизили мощность автомобилей с газотурбинными двигателями, 56-е годы Джо Леонарда и Грэма Хилла заняли две верхние позиции в квалификации. Они также хорошо выступили в гонке, и Леонард, похоже, одержал победу, пока, как и Джонс в прошлом году, механическая проблема не вынудила его сойти с дистанции, когда до финиша оставалось менее десяти кругов.

После того, как дальнейшие изменения правил фактически положили конец карьере газовой турбины в гонках Indycar, Lotus переработал Type 56 в автомобиль Формулы-1, 56B.

По правде говоря, 56B не подходил для Формулы-1. В дополнение к дополнительному весу его полноприводной системы, его жажда означала, что ему приходилось перевозить больше топлива, чем его конкурентам с поршневыми двигателями. И это, в сочетании с плохой гибкостью газовой турбины и плохой приемистостью, означало, что она была неконкурентоспособной. Несмотря на это, Lotus вошел в 56B в трех Гран-при чемпионата мира в 1971. Он никогда не квалифицировался выше 18 -го -го и финишировал всего один раз, когда Эмерсон Фиттипальди поднял его на 8 -е место в Монце.

По крайней мере, 56B закончил свою карьеру на относительно высокой ноте, когда Фиттипальди вывел его на второе место в гонке Формулы 5000 в Хоккенхайме в Германии.

Что касается газотурбинных гонщиков высшего уровня, то так оно и было.

Но если использование газотурбинных двигателей в автомобилестроении не оправдало чаяний его сторонников, его не следует считать неудачей, ибо его еще может ожидать второе пришествие, хотя и в уменьшенном виде.

По мере того, как автомобильная промышленность ищет способы сделать автомобили более экономичными, электромобили будут все чаще встречаться на наших дорогах. Но поскольку срок службы батареи все еще остается проблемой, сочетание электродвигателя с компактным двигателем внутреннего сгорания с увеличенным запасом хода имеет смысл.

И именно в качестве удлинителя запаса хода газотурбинный двигатель, плавный и легкий, а теперь и со значительно улучшенной топливной экономичностью, может наконец занять свое место под солнцем.

Кредит Каррманн

 

Как Chrysler преподал урок ленивым водителям автомобилей с турбинами

Предоставлено Стивом Лехто

В 1963 году компания Chrysler провела один из величайших рекламных трюков всех времен, предоставив широкой публике парк автомобилей с турбинами. Наряду с широкой рекламой, которую они получили, они сделали это, чтобы доказать, что технология достаточно удобна для обычных потребителей. Но были ли обычные люди действительно готовы к турбинным технологиям? Да, хотя в автомобилях был один маленький механизм безопасности, чтобы защитить их от обычного потребителя, который не мог следовать инструкциям.

Компания Chrysler начала выпускать автомобили с газотурбинным двигателем в 1953 году и почувствовала, что к 1963 году у них достаточно усовершенствованная технология для использования потребителями. водители поймут. Рулевое колесо, педали газа и тормоза, а также приборы, которые выглядели знакомыми, хотя их номера были немного другими. Одним из преимуществ программы было то, насколько легко потребители могли адаптироваться к новой технологии.

Предоставлено Стивом Лехто

Однако был один момент, который беспокоил инженеров по турбинам Chrysler. В то время водители в более холодном климате нередко заводили свои машины, а затем давили на газ, чтобы помочь машине «разогреться». И многие автомобили также требовали от водителя один раз нажать педаль газа перед запуском. Турбинные двигатели в автопарке Chrysler были спроектированы таким образом, чтобы оператор вообще не касался педали газа. Водитель поворачивал ключ и позволял стартеру творить свое волшебство. Турбина срабатывала, раскручивалась до нужной скорости, и тогда машина могла двигаться.

Техники, доставлявшие автомобили Turbine потребителям, в мельчайших подробностях объясняли пользователям все это, объясняя, что любое использование педали газа до того, как двигатель разгонится, будет вредно для турбины. Но поскольку Chrysler знал, что потребители могут рассчитывать на то, что они будут делать то, что им не положено, они установили устройство для наказания потребителей, нарушивших эти инструкции.

Если двигатель не запускался должным образом после того, как переключатель зажигания был переведен в правильное положение, переключатель щелкал, отключая двигатель. Возможные причины щелчка переключателя? Водитель нажимал на газ во время запуска автомобиля или до того, как двигатель работал на холостом ходу. Также возможно, что двигатель мог не запуститься из-за какой-то проблемы, не связанной с водителем. Но давайте посмотрим правде в глаза: скорее всего, это была ошибка оператора.

Все это было объяснено в инструкции к перчаточному ящику, прилагаемой к машине:

Перед тем, как «повернуть ключ» в этом новом автомобиле, ознакомьтесь с его новым автоматическим запуском по таймеру. Вы просто поворачиваете ключ и отпускаете его, после чего все функции выполняются автоматически. Если двигатель не запускается в заданное время, он выключается, очищая себя от несгоревшего топлива. Затем необходимо вручную сбросить таймер пускового цикла, расположенный в крышке реле над левым крылом, прежде чем снова повернуть ключ.

Инженеры и проектировщики турбин Chrysler могли бы поместить переключатель реле таймера пускового цикла в удобное место, например, на приборную панель. Но послужит ли это сдерживающим фактором для тех, кто ездит на дорогой машине, которую они бесплатно получили от крупной корпорации? Нет, инженеры разместили переключатель «Сброс таймера» под капотом автомобиля. Чтобы попасть туда, водителю нужно было открыть капот, выйти из машины, поднять капот и затем щелкнуть выключателем. Затем закройте капот и снова войдите в машину. Мы надеемся, что все добавленные шаги помогут научить нетерпеливого водителя следовать инструкциям.

Courtesy Steve Lehto

Я брал интервью у нескольких человек, которые работали над программой на протяжении многих лет, и все они смеялись, когда я спрашивал их, почему переключатель находится именно там, где он был.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *