Рубрики
Разное

Принцип работы бензинового двигателя: Бензиновый двигатель: устройство, принцип действия, достоинства и недостатки — Autodromo

Принцип работы бензинового двигателя

Бензиновые двигатели и их устройство

Принцип работы бензинового силового агрегата состоит в следующем: небольшой объем топливной смеси поступает в камеру сгорания, там происходит ее воспламенение и взрыв, в результате которого высвобождается определенная энергия.

  • Бензиновые двигатели и их устройство
  • Рабочий цикл четырехтактного бензинового двигателя
  • Принцип работы ДВС 
  • Рабочий цикл четырехтактного дизеля
  • Принцип работы многоцилиндровых двигателей

В двигателе внутреннего сгорания таких взрывов происходит несколько сотен за минуту.

Расширяющийся в камере сгорания газ давит на поршень (М), который при помощи шатуна (N) вращает коленвал (P).

Цикл работы бензинового двигателя состоит из следующих этапов:

• Впускной такт. В этот момент начинается движение поршня вниз, происходит открытие впускного клапана. В цилиндр поступает топливовоздушная смесь.

• Сжатие. Поршень начинает двигаться вверх, тем самым сжимает смесь в цилиндрах, что необходимо для выделения большей энергии при последующем взрыве.

• Рабочий такт. Когда поршень поднимается до верхней мертвой точки в цилиндре, в работу включается свеча зажигания и поджигает топливную смесь. После взрыва поршень движется уже вниз.

• Выпускной такт. После достижения поршнем крайней нижней точки, происходит открытие выпускного клапана, через который продукты сгорания и уходят из камеры.

После выхода продуктов сгорания начинается новый цикл работы ДВС.

Результат работы силового агрегата – получение вращательного движения, которое оптимально подходит для проворота колес машины. Достигается это за счет использования коленчатого вала, который и преобразует линейную энергию во вращение.

Устройство и основные детали бензиновых ДВС

Цилиндр – важнейшая часть бензинового мотора, в котором происходит движение поршня, вызванное взрывом топливной смеси. В описанном выше примере речь идет об одном цилиндре. Такое устройство может иметь двигатель моторной лодки или сенокосилки. В моторах же автомобилей цилиндров больше – три, четыре, пять, шесть, восемь, двенадцать и более.

Расположение цилиндров в ДВС может быть следующим:

— рядным:

— V-образным:

— оппозитным (цилиндры горизонтально располагаются друг напротив друга):

Каждое расположение цилиндров имеет свои плюсы и минусы, из которых складывается характеристики тех или иных двигателей и затраты на их производство.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Принцип работы ДВС 

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье «как устроены бензиновые и дизельные двигатели».

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Принцип работы ДВС современного типа простыми словами

Современные двигатели работают по достаточно простой схеме, которая была изобретена целый век назад. Единственное, что подверглось сильному изменению после производства первого двигателя внутреннего сгорания, это система питания. С карбюраторов и прочих не слишком эффективных средств подачи топлива промышленность перешла на инжектор для бензиновых двигателей. Дизельные агрегаты обладают отдельным типом впрыска через систему с повышенным давлением. Все последние разработки в технологиях работы ДВС являются мелочными дополнениями к уже известной конструкции, которые призваны обеспечить либо автоматическую регулировку определенных параметров работы, либо определенную экономию топлива.

Тем не менее, суть двигателя остается прежней. По части работы двигателя внутреннего сгорания сегодня мы обсудим отдельно службу бензинового и дизельного силового агрегата, а также обсудим некоторые особенности использования бензинового двигателя в гибридных устройствах. Также затронем тему турбины в различных агрегатах, ее типов и смысла использования. Ознакомившись со всеми тонкостями работы современных силовых агрегатов внутреннего сгорания, вы поймете, что нынешние ДВС фактически ничем не отличаются от классических устройств.

Содержание

  • Тонкости работы бензинового двигателя
  • Дизельный силовой агрегат
  • Бензиновый гибридный двигатель
  • Подводим итоги

Бензиновый двигатель внутреннего сгорания — тонкости работы

Двигатель на бензиновом топливе представляет собою классический вариант силового агрегата, который может работать только на очищенном и качественном бензине, производимом из нефти. Современные двигатели работают только на бензине с октановым числом 95 или даже 98. Залив в хороший агрегат бензин плохого качества, вы можете приобрести массу проблем.

Топливо подается в агрегат с помощью бензонасоса, а количество подачи регулируется специальной системой впрыска. Инжекторы обладают тонкими форсунками, которые распыляют топливо в системе, позволяя его полностью сжечь в камерах сгорания. После подачи топлива по трубке на систему инжектора происходят следующие процессы:

  • инжектор распыляет бензин, превращая его в облако пара, а также смешивает получившиеся частицы с воздухом;
  • смесь бензина и кислорода попадает дальше в камеру сгорания, где в верхней части поджигается свечей зажигания;
  • подожженный бензин быстро воспламеняется, формируя определенной мощности взрыв с конкретным давлением и усилием;
  • камера сгорания исключительно герметична, потому сила этого взрыва направляется на рабочую плоскость поршня;
  • от мощности удара поршень опускается вниз и приводит в движение коленчатый вал, на котором закреплены другие поршни;
  • с помощью неоднократного повторения такого процесса происходит постоянное вращение двигателя.

Если топливо не распыляется должным образом, поскольку форсунки забиты или поломаны, один из цилиндров не будет давать нужной мощности, поскольку топливо не сможет поджигаться и нормально выполнять свои функции. В таком случае двигатель теряет мощность и значительно увеличивает расход. Также в таком агрегате крайне важна фильтрация воздуха.

Турбина в бензиновых двигателях представляет собой механизм усиленной подачи воздуха, за счет чего на определенных режимах работы увеличивается мощность агрегата без увеличения потребления топлива. Интенсивная подача воздуха с разными значениями позволяет компаниям достигать невероятных технических характеристик вполне стандартных бензиновых агрегатов.

Дизельный силовой агрегат — второй тип ДВС

Еще один важный тип двигателя, который стал прекрасной альтернативой бензиновому агрегату в обыденной и коммерческой эксплуатации, — это дизельный силовой агрегат. Его стандартными преимуществами считается менее активный расход топлива и очень ощутимая тяга. Такие выгоды дают возможность полностью переформатировать стиль поездки, изменить привычки управления автомобилем.

Дизельный силовой агрегат подает топливо также через форсунки со значительным распылением. Это требует высокой чистоты дизельного топлива и значительной безопасности работы системы подачи топлива, поскольку жидкость подается на форсунки в достаточно большом давлении. Принцип работы агрегата несколько отличается от бензинового:

  • топливо подается на распыление в гораздо большем давлении, оно прогревается еще до входа в камеры сгорания;
  • под воздействием значительного давления поршней в камерах сгорания топливо самовоспламеняется;
  • создаваемая при этом энергия производит толчок поршня в нижнее положение, выводя при этом другие поршни вверх;
  • для работы двигателя требуется меньше топлива, а вот подача воздуха имеет большое значение;
  • по данной причине в дизельных двигателях практически всегда присутствует турбина, распространены только турбодизели;
  • агрегат создает очень завидную мощность поршней, потому даже на низких оборотах он обладает большой тягой.

Определенная специфика работы дизельного двигателя вызывает и некоторые особенности его эксплуатации. В частности, водителю придется научиться раньше переключать передачи, довольствоваться низкими оборотами и контролировать тягу машины. Современные турбодизели потребляют на 15-20 процентов меньше топлива на ту самую мощность, чем бензиновые агрегаты.

Объемистые и тяговитые дизельные двигатели в промышленности могут работать не только на продуктах нефтеобработки. Многие агрегаты приспособлены даже на сжигание сырой нефти, а также принимают в качестве топлива природные биомасла, которые воспламеняются при сильном давлении. Это может стать одним из будущих перспективных моментов автомобилестроения.

Бензиновый гибридный двигатель — электричество в моде

Не так давно на рынок начали поступать гибридные автомобили. Это машины, у которых силовой агрегат состоит из двух частей. Первая часть не отличается от стандартных бензиновых агрегатов, но зачастую не столь объемистая и мощная. А вторая часть представлена электродвигателями в разных количествах и расположениях.

Батареи для электродвигателя оснащены отдельным генератором, который заряжается от работы бензинового агрегата. Также энергия берется из рекуперации энергии торможения и прочих процессов, которые обычно теряются в стандартном исполнении. Гибрид работает по следующей схеме:

  • в стандартных ситуациях городской поездки используются только электромоторы, вы ведете электромобиль;
  • когда энергия батарей на исходе, в дело включается бензиновый двигатель, нагнетающий запас в аккумуляторах;
  • также при резком нажатии на педаль газа включаются сразу все двигатели, давая огромную энергию;
  • при полной разрядке батарей ДВС продолжает работать и весьма экономично везет вас в нужном направлении;
  • у некоторых гибридных автомобилей есть выход для зарядки батарей от обычной электрической сети.

Такие технологии являются дыханием будущего, поскольку экономия на гибридных автомобилях ощутима. Большой внедорожник с такой установкой может затрачивать всего 5-6 литров топлива, независимо от выбранного режима поездки. Хороший двигатель внутреннего сгорания обеспечивает быструю зарядку батарей.

Сегодня активно развивается применение гибридных установок на основе дизельного двигателя. В таком случае расход опускается до невероятных 2-3 литров на 100 километров. Впрочем, технологии гибридного использования знают и расход в 1 литр на 100 километров, который является эталонным для современных производителей автомобилей. Предлагаем изучить принцип работы гибридного двигателя на следующем видео:

Подводим итоги

Сегодня покупатель автомобилей имеет большой выбор технологий, которые для него будут оптимальными во всех отношениях. Подобрать лучшее решение будет непросто, поскольку производители расписывают преимущества своих предложений в самых неожиданных аспектах. Иногда правильно преподнесенная технология кажется нам самым важным элементом автомобиля, но на самом деле не занимает и части технического потенциала транспорта.

Потому многие покупатели просто становятся жертвами рекламного влияния, покупая те или иные технологии и оплачивая их в полной мере. Сегодня лучше отказаться от рекламы при выборе типа машины. Положитесь на собственные впечатления и ощущения, на решения, которые вам нравятся больше всего. В каждом типе двигателя и силовой установки есть свои преимущества и недостатки. Расскажите о главных преимуществах двигателя в вашем автомобиле.

Понравился этот контент? Подпишитесь на обновления!

 

Фирменные турбины бензиновых двигателей

Принцип работы карбюратора – главные проблемы и возможные неполадки

Принцип работы двигателя на дизельном топливе

Устройство топливных систем автомобилей: основные элементы и неполадки

Как заводить машину правильно в зависимости от типа двигателя?

К списку статей

Социальные комментарии Cackle

Принципы работы бензинового двигателя – Научные проекты

Сбор информации:

Узнайте о бензиновых двигателях. Читайте книги, журналы или спрашивайте профессионалов, которые могут знать, чтобы узнать о принципах работы бензиновых двигателей. Посетите веб-сайт старинных двигателей, чтобы увидеть простой дизайн первых бензиновых двигателей. Следите за тем, откуда вы получили информацию.

Физика бензинового двигателя

также известная как

Четырехтактный двигатель внутреннего сгорания

Наиболее часто используемый сегодня тип автомобильного двигателя основан на цикле Отто, названном в честь его создателя Николауса Отто. Термин «четырехтактный» относится к четырем характерным движениям, которые совершает поршень во время преобразования химической энергии в энергию вращения, которую можно использовать для практического использования, в данном случае для приведения в движение автомобиля.

Это изображение используется в качестве ссылки на части двигателя, которые упоминаются на этой странице веб-сайта.
Простой двигатель включает один цилиндр, один поршень, свечу зажигания, установленную на одном конце цилиндра, и коленчатый вал на другом конце цилиндра. Цилиндр также включает в себя два клапана. Один клапан предназначен для входа смеси воздуха и бензина, а другой клапан для выхода горячих газов.

1. Нарушение хода:

Первый удар цикла описывается как цикл впуск , начинает двигаться вниз. В то же время, когда поршень начинает свой путь вниз, впускной клапан открывается и позволяет воздуху втягиваться в полость цилиндра с помощью движущегося вниз поршня. Также в это время небольшое количество бензина впрыскивается в камеру через топливную форсунку и смешивается с воздухом. Бензин необходимо смешивать с воздухом, потому что жидкий бензин не горит, поэтому он должен испаряться форсункой и смешиваться с воздухом. Идеальное соотношение воздуха и газа составляет 14 частей воздуха на одну часть топлива. Это соотношение контролируется электронным способом с помощью компьютера, подключенного к топливному насосу и форсункам, которые подают количество топлива в зависимости от количества воздуха, которое двигатель может всосать в цилиндр.

 

 

 

2. Такт сжатия:

Второй такт, также известный как такт сжатия, начинается с закрытия впускного клапана. Когда впускной клапан закрывается, между поршнем и верхней частью цилиндра, где расположены клапаны, создается герметичная камера. Затем поршень начинает свой путь вверх, смесь бензина и воздуха сжимается в соотношении примерно 10:1. Это соотношение возникает из-за различий в объеме между объемом камеры цилиндра в верхней части хода поршня и объемом камеры цилиндра, когда поршень находится в нижней части своего пути. Чем больше это отношение может быть достигнуто, тем большую мощность может производить двигатель. Для автомобилей с заданным объемом 454 дюйма3 или 5,0 литров это общий объем всех цилиндров на такте впуска. Таким образом, двигатель объемом 454 дюйма3 с 8 цилиндрами может удерживать 56,75 дюйма3 на цилиндр и, следовательно, при степени сжатия 10:1 можно сжать это до 5,67 дюйма3. Это сжатие создает большое давление в камере цилиндра.

 

 

 

3. Такт сгорания:

Третий такт цикла, рабочий такт относится к самому сгоранию. Теперь, когда камера цилиндра заполнена сильно сжатым воздухом и бензином, искра от свечи зажигания инициирует взрыв в камере, который вызывает быстрое расширение сжатой смеси, в результате чего поршень очень быстро опускается вниз. Расширение газа, вызванное сгоранием, является самой важной стадией цикла. Также очень важно, чтобы в системе не было утечек, иначе давление будет потеряно, что приведет к потере мощности.

Как только поршень достигает нижней части своего пути после взрыва, все, что остается в камере цилиндра, — это отходы. Как только поршень начинает свое движение вверх в цилиндре, выпускной клапан открывается, и поршень вытесняет выхлоп из камеры и от двигателя. После этого удаления выхлопных газов впускной клапан открывается, позволяя воздуху поступать в камеру и продолжать цикл.

 

 

 

 

 

ЦЕЛИ ИЗУЧЕНИЯ ГЛАВЫ

По завершении этой главы вы должны быть в состоянии объяснить принципы работы двигателя

  • .
  • Объясните процесс цикла двигателя.
  • Укажите классификацию двигателей.
  • Обсудите конструкцию двигателя.
  • Список вспомогательных агрегатов двигателя.

Автомобиль всем нам знаком. Двигатель, который приводит его в движение, — один из самых увлекательных и обсуждаемых из всех сложных механизмов, которыми мы пользуемся сегодня. В этой главе мы кратко объясним некоторые принципы работы и основные механизмы этой машины. Изучая его работу и конструкцию, обратите внимание, что он состоит из многих устройств и основных механизмов, описанных ранее в этой книге.

ДВИГАТЕЛЬ СГОРАНИЯ

Мы определяем двигатель просто как машину, которая преобразует тепловую энергию в механическую. Двигатель делает это за счет внутреннего или внешнего сгорания.

Горение — это акт горения. Внутренний означает внутренний или закрытый. Так, в двигателях внутреннего сгорания сгорание топлива происходит внутри двигателя; то есть горение происходит в том же цилиндре, который производит энергию для вращения коленчатого вала. В двигателях внешнего сгорания, таких как паровые двигатели, сжигание топлива происходит вне двигателя. На рис. 12-1 показаны в упрощенном виде двигатель внешнего и внутреннего сгорания.

Двигатель внешнего сгорания содержит бойлер с водой. Подводимое к котлу тепло заставляет воду кипеть, что, в свою очередь, приводит к образованию пара. Пар проходит в цилиндр двигателя под давлением и заставляет поршень двигаться вниз. С внутренней

Рисунок 12-2.- Цилиндр, поршень, шатун и коленчатый вал для одноцилиндрового двигателя.

двигатель внутреннего сгорания, сгорание происходит внутри цилиндра и непосредственно отвечает за движение поршня вниз.

Преобразование тепловой энергии двигателем в механическую основано на фундаментальном законе физики. В нем говорится, что газ будет расширяться при приложении тепла. Закон также гласит, что сжатие газа увеличивает его температуру. Если газ ограничен и не имеет выхода для расширения, применение тепла увеличит давление газа (как это происходит в автомобильном баллоне). В двигателе это давление воздействует на головку поршня, заставляя его двигаться вниз.

Как известно, поршень в цилиндре движется вверх и вниз. Движение вверх-вниз известно как возвратно-поступательное движение. Это возвратно-поступательное движение (прямолинейное движение) должно измениться на вращательное движение (поворотное движение), чтобы повернуть колеса транспортного средства. Кривошип и шатун изменяют это возвратно-поступательное движение на вращательное.

Все двигатели внутреннего сгорания, будь то бензиновые или дизельные, в основном одинаковы. Все они полагаются на три элемента: воздух, топливо и зажигание.

Топливо содержит потенциальную энергию для работы двигателя; воздух содержит кислород, необходимый для горения; и зажигание начинает горение. Все они являются основными, и двигатель не будет работать без какой-либо из них. Любое обсуждение двигателей должно основываться на этих трех элементах, а также на шагах и механизмах, необходимых для доставки их в камеру сгорания в нужное время.

Как сделать проект:

Этот проект по большей части является исследовательским и выставочным проектом. Вы будете делать чертежи или вырезать из цветной бумаги или картона модели компонентов простого двигателя внутреннего сгорания. Смонтируйте все на доске с надлежащим описанием. Информация, которая вам нужна для этого, приведена выше, а остальное — произведение искусства и зависит от вашего творчества.

Дополнительные идеи проекта:

Возможно, вы захотите изучить некоторые аспекты двигателей внутреннего сгорания. Ниже приведены некоторые примеры и рекомендации:

Как температура двигателя внутреннего сгорания влияет на КПД двигателя?

При первом запуске двигатель холодный, а через некоторое время становится горячим. Если температура действительно влияет на эффективность, производители могут настроить свою конструкцию таким образом, чтобы двигатель достиг своей эффективной температуры за меньшее время. Когда двигатель работает с высокой эффективностью, все топливо сгорает и превращается в углекислый газ и воду. Если двигатель не имеет высокого КПД, это просто означает, что часть топлива и газов, таких как CO, которые указывают на неполное сгорание, будут выходить из выхлопа (глушителя). Это вредные газы, которых мы стараемся избегать. На инспекционных станциях компьютеризированное испытательное оборудование измеряет количество CO и несгоревшего топлива, выходящего из выхлопных газов. Для простого эксперимента вы можете использовать обычный детектор угарного газа, который можно приобрести во многих хозяйственных магазинах, и проверить газы, выходящие из выхлопных газов. Попросите вашего помощника завести автомобиль и, пока он еще холодный, проверьте выхлопные газы на наличие угарного газа. Оставьте двигатель включенным и повторяйте проверку каждую минуту. Запишите температуру двигателя, отображаемую внутри автомобиля, вместе с вашими показаниями CO. Запишите результаты в таблицу и при необходимости нарисуйте график. Используйте таблицу результатов для анализа и заключения.

Сколько CO выбрасывается в воздух каждый день двигателями внутреннего сгорания?

Вы можете провести это исследование с экспериментом или без него. Сделайте поиск и узнайте добычу нефти или газа в мире. Вес углекислого газа примерно в 3 раза больше веса сжигаемого топлива. Вы даже можете провести эксперимент, чтобы увидеть, какой процент газов, существующих в двигателе, составляет углекислый газ. Для хранения газов можно использовать большой баллон. (запишите, сколько секунд потребовалось двигателю, чтобы произвести такое количество газа.) Завяжите нитку, чтобы закрыть воздушный шар. Измерьте объем воздушного шара (для этого нужны некоторые расчеты). Затем наполните пробирку или небольшую стеклянную бутылочку раствором аммиака. Осторожно поместите отверстие воздушного шара над емкостью с аммиаком и закрепите его, чтобы газ не вытекал. Теперь откройте нить, чтобы газ внутри воздушного шара вступил в контакт с аммиаком. Аммиак поглощает углекислый газ, поэтому через несколько часов объем воздушного шара уменьшится. Снова измерьте объем. Разница в объеме и будет объемом углекислого газа.
Если у вас нет большого воздушного шара, используйте большой полиэтиленовый пакет. Вы можете получить аналогичный результат с некоторой осторожностью.

Если вы рассчитаете количество CO2 (двуокиси углерода), производимого каждым автомобилем в каждую секунду или минуту, вы можете использовать его для расчета количества углекислого газа, производимого всеми автомобилями в городе, стране или мире.

Приведенные выше примеры — это не все, что вы можете сделать с этим проектом. Думайте сами и спрашивайте других, чтобы придумать больше идей.

Принципы работы четырехтактного бензинового двигателя

Четырехтактный двигатель (также известный как четырехтактный ) представляет собой двигатель внутреннего сгорания, в котором поршень совершает четыре отдельных хода, которые составляют один термодинамический цикл. Под ходом понимается полный ход поршня по цилиндру в любом направлении. Четыре отдельных хода называются:

  1. ВПУСК : этот ход поршня начинается в верхней мертвой точке. Поршень опускается от верхней части цилиндра к нижней части цилиндра, увеличивая объем цилиндра. Смесь топлива и воздуха нагнетается атмосферным (или более высоким) давлением в цилиндр через впускное отверстие.
  2. СЖАТИЕ : при закрытых впускном и выпускном клапанах поршень возвращается в верхнюю часть цилиндра, сжимая воздух или топливно-воздушную смесь в головке цилиндра.
  3. МОЩНОСТЬ : это начало второго оборота цикла. Пока поршень находится близко к верхней мертвой точке (ВМТ), смесь сжатого воздуха и топлива в бензиновом двигателе воспламеняется от свечи зажигания в бензиновых двигателях или воспламеняется за счет тепла, выделяемого при сжатии в дизельном двигателе. Возникающее в результате сгорания сжатой топливно-воздушной смеси давление заставляет поршень вернуться к нижней мертвой точке (НМТ).
  4. ВЫПУСК : во время такта выпуска поршень снова возвращается в верхнюю мертвую точку, в то время как выпускной клапан открыт. Это действие вытесняет отработанную топливно-воздушную смесь через выпускной клапан (клапаны).

Конструкция и принципы разработки

Ограничения выходной мощности

Четырехтактный цикл
A: Впуск
B: Сжатие

8

D: Выхлоп

1=ВМТ
2=НМТ

Максимальная мощность, вырабатываемая двигателем, определяется максимальным количеством всасываемого воздуха. Количество энергии, вырабатываемой поршневым двигателем, связано с его размером (объемом цилиндра), будь то двухтактная или четырехтактная конструкция, объемным КПД, потерями, соотношением воздух-топливо, теплотворной способностью топлива. , содержание кислорода в воздухе и скорость (об/мин). Скорость в конечном итоге ограничивается прочностью материала и смазкой. Клапаны, поршни и шатуны испытывают большие силы ускорения. На высоких оборотах двигателя может произойти физическая поломка и вибрация поршневых колец, что приведет к потере мощности или даже разрушению двигателя. Флаттер поршневых колец возникает, когда кольца колеблются вертикально внутри поршневых канавок, в которых они находятся. Флаттер колец нарушает герметичность между кольцом и стенкой цилиндра, что вызывает потерю давления и мощности в цилиндре. Если двигатель вращается слишком быстро, пружины клапанов не могут сработать достаточно быстро, чтобы закрыть клапаны. Это обычно называют «поплавком клапана», и это может привести к контакту поршня с клапаном, что серьезно повредит двигатель. При высоких скоростях смазка поверхности контакта поршень-цилиндр имеет тенденцию к нарушению. Это ограничивает скорость поршня промышленных двигателей примерно до 10 м/с.

Поток во впускных/выпускных отверстиях

Выходная мощность двигателя зависит от способности всасываемого (воздушно-топливной смеси) и выхлопного газа быстро проходить через отверстия клапанов, обычно расположенные в головке цилиндров. Для увеличения выходной мощности двигателя можно устранить неровности во впускных и выпускных трактах, такие как дефекты литья, а также с помощью стенда воздушного потока можно изменить радиусы поворотов портов клапанов и конфигурацию седла клапана, чтобы уменьшить сопротивление. Этот процесс называется портированием, и его можно выполнить вручную или на станке с ЧПУ.

Наддув

Одним из способов увеличения мощности двигателя является нагнетание большего количества воздуха в цилиндр, чтобы при каждом рабочем такте вырабатывалась большая мощность. Это можно сделать с помощью устройства сжатия воздуха, известного как нагнетатель, который может приводиться в действие коленчатым валом двигателя.

Наддув увеличивает пределы выходной мощности двигателя внутреннего сгорания относительно его рабочего объема. Чаще всего нагнетатель работает всегда, но существуют конструкции, которые позволяют отключать его или запускать на различных скоростях (относительно частоты вращения двигателя). У наддува с механическим приводом есть недостаток, заключающийся в том, что часть выходной мощности используется для привода нагнетателя, в то время как мощность тратится впустую на выхлоп высокого давления, поскольку воздух сжимается дважды, а затем получает больший потенциальный объем при сгорании, но только расширяется. в один этап.

Турбокомпрессор

Турбокомпрессор — это нагнетатель, приводимый в действие выхлопными газами двигателя посредством турбины. Он состоит из двух частей высокоскоростного узла турбины, одна сторона которого сжимает всасываемый воздух, а другая сторона приводится в действие отходящим потоком выхлопных газов.

На холостом ходу и на низких и средних оборотах турбина вырабатывает небольшую мощность из-за небольшого объема выхлопных газов, турбонагнетатель малоэффективен, и двигатель работает почти как без наддува. Когда требуется гораздо большая выходная мощность, скорость двигателя и открытие дроссельной заслонки увеличиваются до тех пор, пока выхлопных газов не станет достаточно, чтобы «раскрутить» турбину турбонагнетателя, чтобы начать сжимать во впускном коллекторе гораздо больше воздуха, чем обычно.

Турбокомпрессор обеспечивает более эффективную работу двигателя, поскольку он приводится в действие давлением выхлопных газов, которое в противном случае (в основном) было бы потрачено впустую, но существует конструктивное ограничение, известное как турбозадержка. Повышенная мощность двигателя доступна не сразу из-за необходимости резко увеличить обороты двигателя, создать давление и раскрутить турбо, прежде чем турбо начнет выполнять какое-либо полезное сжатие воздуха. Увеличенный объем впуска вызывает увеличение выхлопа и ускорение вращения турбонагнетателя и т. д., пока не будет достигнута устойчивая работа с высокой мощностью. Другая трудность заключается в том, что более высокое давление выхлопных газов заставляет выхлопные газы отдавать больше своего тепла механическим частям двигателя.

Отношение штока и поршня к ходу

Отношение штока к ходу — это отношение длины шатуна к длине хода поршня. Более длинный шток снижает боковое давление поршня на стенку цилиндра и силы напряжения, увеличивая срок службы двигателя. Это также увеличивает стоимость и высоту двигателя и вес.

«Квадратный двигатель» представляет собой двигатель с диаметром цилиндра, равным его длине хода. Двигатель, у которого диаметр цилиндра больше, чем длина его хода, является двигателем с квадратным сечением, и наоборот, двигатель с диаметром отверстия, который меньше длины его хода, является двигателем с квадратным сечением.

Клапанный механизм

Клапаны обычно приводятся в действие распределительным валом, вращающимся со скоростью, равной половине скорости коленчатого вала. Он имеет ряд кулачков по всей длине, каждый из которых предназначен для открытия клапана во время соответствующей части такта впуска или выпуска. Толкатель между клапаном и кулачком представляет собой контактную поверхность, по которой кулачок скользит, открывая клапан. Во многих двигателях используется один или несколько распределительных валов «над» рядом (или каждым рядом) цилиндров, как на иллюстрации, на которой каждый кулачок непосредственно приводит в действие клапан через плоский толкатель. В других конструкциях двигателей распределительный вал находится в картере, и в этом случае каждый кулачок контактирует с толкателем, который контактирует с коромыслом, открывающим клапан. Конструкция верхнего кулачка обычно допускает более высокие обороты двигателя, поскольку обеспечивает наиболее прямой путь между кулачком и клапаном.

Клапанный зазор

Клапанный зазор представляет собой небольшой зазор между толкателем клапана и штоком клапана, обеспечивающий полное закрытие клапана. На двигателях с механической регулировкой клапанов чрезмерный зазор вызывает шум в клапанном механизме. Слишком маленький зазор клапана может привести к тому, что клапаны не будут закрываться должным образом, что приведет к снижению производительности и возможному перегреву выпускных клапанов. Как правило, зазор необходимо регулировать каждые 20 000 миль (32 000 км) с помощью щупа.

В большинстве современных серийных двигателей используются гидравлические подъемники для автоматической компенсации износа компонентов клапанного механизма. Грязное моторное масло может привести к поломке подъемника.

Энергетический баланс

Двигатели Отто имеют КПД около 30%; другими словами, 30% энергии, вырабатываемой при сгорании, преобразуется в полезную энергию вращения на выходном валу двигателя, а остальная часть представляет собой потери из-за отходящего тепла, трения и агрегатов двигателя. Существует несколько способов восстановить часть энергии, потерянной в результате сброса тепла. Использование турбокомпрессора в дизельных двигателях очень эффективно за счет повышения давления входящего воздуха и, по сути, обеспечивает такое же увеличение производительности, как и увеличение рабочего объема. Компания Mack Truck несколько десятилетий назад разработала турбинную систему, которая преобразовывала отработанное тепло в кинетическую энергию, которая возвращалась в трансмиссию двигателя. В 2005 году BMW объявила о разработке турбопарогенератора, двухступенчатой ​​системы рекуперации тепла, аналогичной системе Mack, которая рекуперирует 80% энергии выхлопных газов и повышает эффективность двигателя Отто на 15%. Напротив, шеститактный двигатель может снизить расход топлива на целых 40%.

Современные двигатели часто специально разрабатываются так, чтобы они были чуть менее эффективными, чем могли бы быть в противном случае. Это необходимо для контроля выбросов, таких как рециркуляция отработавших газов и каталитические нейтрализаторы, которые уменьшают смог и другие атмосферные загрязнители. Снижение эффективности можно компенсировать с помощью блока управления двигателем, использующего методы сжигания обедненной смеси.

В Соединенных Штатах корпоративная средняя экономия топлива предписывает, что транспортные средства должны достигать в среднем 35,5 миль на галлон (миль на галлон) по сравнению с текущим стандартом 25 миль на галлон. Поскольку автопроизводители стремятся соответствовать этим стандартам к 2016 году, возможно, придется рассмотреть новые способы проектирования традиционных двигателей внутреннего сгорания (ДВС). Некоторые потенциальные решения по повышению эффективности использования топлива для удовлетворения новых требований включают в себя зажигание после того, как поршень находится на максимальном расстоянии от коленчатого вала, известного как верхняя мертвая точка (ВМТ), и применение цикла Миллера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *