Содержание
принцип работы для чайников, устройство, как работает
10
Автоматическая коробка переключения передач (АКПП, коробка-автомат или «автомат») — устройство, которое принимает, преобразовывает, передает и изменяет направление крутящего момента. Вместо механической коробки передач автолюбители покупают авто с вариатором, роботизированной или классической АКПП. Каждому виду присущи свои преимущества и недостатки. Что же выбрать, и чем автомат лучше механики?
Что такое АКПП?
Коробка-автомат относится к механизмам, которые входят в состав трансмиссии и работают автоматически. Она облегчает управление автомобилем, тем самым снижает нагрузку на водителя во время движения. В отличие от ручной коробки передач она самостоятельно переключает скорости и не нуждается в постоянном использовании переключающего рычага.
АКПП появилась в результате трех независимых друг от друга разработок. Изготовление планетарных механических КП, полуавтоматических КП и внедрение гидравлики в трансмиссию привело к рождению прототипа современной коробки-автомат. Первая АКПП была гидромеханической, затем появился ее роботизированный аналог и бесступенчатый вариатор.
Устройство и характеристики механизма
Чтобы понять, какое у автоматической коробки передач устройство и принцип работы, нужно рассматривать ее типовой вариант. Конструкция классической АКПП:
- гидротрансформатор;
- планетарный ряд;
- система управления и контроля.
Гидротрансформатор передает крутящий момент от двигателя к валу. Функционально он соответствует сцеплению МКПП, но в отличие от него работает самостоятельно, а не под контролем человека. Гидротрансформатор находится между двигателем и коробкой передач. Во время работы он вращается на высокой скорости и выдерживает огромные нагрузки. Кроме передачи крутящего момента, этот узел снижает вибрации двигателя и запускает масляный насос, который входит в коробку передач.
Планетарный ряд состоит из планетарного редуктора и нескольких механизмов, которые по принципу действия похожи на блок шестерен в МКПП. Крутящий момент от двигателя переходит на гидротрансформатор, который передает его на планетарные механизмы. Те, в свою очередь, за счет фрикционных дисков, дифференциала, муфты свободного хода и взаимодействия с главным редуктором передают полученное усилие на колеса. Передача крутящего момента через планетарные механизмы осуществляется через трансмиссионную жидкость.
Планетарные механизмы блокируются тормозной лентой, передним и задним фрикционами, которые входят в состав планетарного ряда. Тормозная лента отвечает за кратковременную блокировку планетарных механизмов и перераспределение крутящего момента. От ее исправности зависит плавность хода автомобиля. Когда тормозная лента не отрегулирована, то в момент включения первой или задней передачи автомобиль двигается рывками. Подобное движение сокращает срок службы трансмиссии и двигателя.
За работу всех механизмов АКПП отвечает система управления и контроля. В нее входят устройства, на которых возложен контроль механики коробки передач и головное управление узлом. К примеру, благодаря такой системе подается масло к механизмам коробки-автомат и обеспечиваются передаточные взаимосвязи между ее отдельными компонентами.
В устройство управления входит насос, маслосборник и клапанная коробка, выполняющая функции контроля и управления. За счет системы клапанов и плунжеров скорость автомобиля, нагрузка мотора и сила давления на педаль газа преобразуются в гидравлический сигнал. Когда фрикционные диски последовательно включаются и выключаются, эти сигналы автоматически изменяют передаточные отношения в АКПП.
Принцип работы
Трансмиссия и АКПП, как ее составляющая, работают по сложному механизму. Используйте объяснение об автоматической коробке передач и ее принципе работы для чайников, чтобы разобраться в работе механизма.
Принцип работы автоматической коробки передач можно условно разделить на несколько этапов:
- Работающий двигатель передает крутящий момент на вал.
- Через вал момент силы поступает на гидротрансформатор, связанный с АКПП.
- С гидротрансформатора усилие направляется на механизмы планетарного ряда.
- Блок управления передает на планетарные механизмы сигналы, основанные на проанализированной информации о работе автомобиля.
- После этого планетарные механизмы включают нужную передачу и передают крутящий момент на колеса.
Обратите внимание! Механической коробке передач необходимо сцепление и непосредственное участие водителя, тогда как в коробке-автомат работа сцепления возложена на гидротрансформатор, а роль водителя на себя берут различные управляющие узлы АКПП.
Виды АКПП, их преимущества и недостатки
Под понятием АКПП подразумевают и классическую конструкцию, и электронный вариант, и вариатор. Каждому виду есть чем похвастаться перед аналогами.
Классическая автоматическая коробка передач
Под классикой подразумевают гидротрансформаторную коробку-автомат, конструкция которой была рассмотрена выше.
Преимущества и недостатки классической АКПП:
Плюсы | Минусы |
Плавный ход без рывков | Низкое КПД и увеличенный расход топлива по сравнению с механикой и автоматическими аналогами |
Предохраняет двигатель от перегрузок | Большой объем масла |
Надежна и проста в обращении, не требует от водителя специфических навыков | Низкая динамика, из-за которой возникают ощутимые паузы между переключением скоростей |
К ней проще подобрать запасные части | Плохо переносит сильные морозы. В холодную погоду не нужно резко стартовать и раскручивать двигатель |
Подходит для водителей-новичков и автовладельцев, которые неуверенно себя чувствуют на дорогах с оживленным трафиком |
Роботизированная
Коробка-робот стала недорогой альтернативой классической АКПП. Она может работать в ручном и автоматическом режиме. По принципу действия похожа на механику. Но в отличие от МКПП за выжимку сцепления и переключение скоростей отвечает электронное устройство.
Преимущества и недостатки роботизированной АКПП:
Плюсы | Минусы |
Понятная и более надежная конструкция, чем у коробки-автомат и вариатора | Ощутимые паузы между переходами с одной скорости на другую. Особенно это заметно при переключении с низшего ряда на высшей и наоборот |
Недорога в обслуживании | Набор скорости с ощутимыми провалами |
Проста в ремонте | Трудно трогаться под горку |
Наличие ручного переключения передач | Нарушение правил эксплуатации приводит сцепление в негодность за короткий срок |
Вариатор
Вариатор — бесступенчатая трансмиссия, которая составила достойную конкуренцию классической АКПП.
Преимущества и недостатки вариатора:
Плюсы | Минусы |
Экономичен в расходе топлива | Непригоден для езды по бездорожью, потому что перегревается в сложных условиях эксплуатации |
Предельно возможная динамика разгона | Дорогостоящий ремонт и обслуживание |
Плавно переключает скорости даже при разгоне или в момент торможения | |
Безопасен на гололеде | |
Предохраняет мотор от нагрузок |
Разница между коробкой-автомат у переднеприводных и заднеприводных автомобилей
Автомобили с передними ведущими колесами оснащены более компактной коробкой-автомат. Внутри корпуса находится отделение для дифференциала (главной передачи).
Инструкция по использованию автоматической коробки передач
Основные правила безопасной эксплуатации:
- Ознакомиться с режимами АКПП.
- Аккуратно и выдержано переключать передачи.
- Вместо режима «нейтраль» использовать в начале езды режим «драйв», а в конце — «паркинг».
- Лучше не использовать автомобиль АКПП в качестве буксира для прицепов, сломанных авто.
Главное — своевременное обслуживание и замена масла. За техническим состоянием коробки-автомат должен следить каждый владелец авто.
Что категорически запрещается делать?
Следуйте правилам эксплуатации и никогда не допускайте пробуксовки колес, не заводите авто с разгона и не транспортируйте его «на привязи».
Обслуживание и ремонт АКПП
Обслуживание АКПП заключается в проверке режимов переключения передач, регулярной замене масла и масляного фильтра. Чтобы коробка-автомат могла исправно работать, меняйте масло каждые 30000-40000 км. Используйте качественное масло подходящего сорта.
Коробка-автомат — сложный механизм, который продолжает находить сторонников и противников. Зная принцип работы и конструктивные особенности АКПП, водителям будет проще управлять автомобилем и избегать ее преждевременных поломок.
устройство и принципы работы АКПП
Автоматическая коробка передач имеет ряд неоспоримых достоинств. Она существенно упрощает управление автомобилем. Переключения производятся плавно, без рывков, что улучшает ездовой комфорт и увеличивает срок службы трансмиссии. Современные АКПП имеют возможность ручного переключения передач и режимов работы, могут подстраиваться под стиль вождения конкретного водителя.
Но даже самые совершенные гидромеханические коробки не лишены недостатков. К ним относятся: сложность конструкции, высокая цена и стоимость обслуживания, более низкий КПД, худшая динамика и повышенный расход топлива по сравнению с механической КПП, медлительность переключений.
Содержание статьи
- 1 Устройство и принцип работы АКПП
- 2 Режимы работы гидротрансформатора
- 3 Как работает планетарная передача
- 4 Как работает система управления АКПП
- 5 Неисправности АКПП
Устройство и принцип работы АКПП
Автоматическая коробка передач состоит из следующих основных узлов: гидротрансформатора, планетарного ряда, системы управления и контроля. Коробка переднеприводных автомобилей дополнительно содержит внутри корпуса главную передачу и дифференциал.
Гидротрансформатор
Чтобы понять, как работает АКПП, необходимо представлять себе, что такое гидромуфта и планетарная передача. Гидромуфта – устройство, состоящее из двух лопастных колес, установленных в одном корпусе, который заполнен специальным маслом. Одно из колес, называемое насосным, соединяется с коленвалом двигателя, а второе, турбинное, – с трансмиссией. При вращении насосного колеса отбрасываемые им потоки масла раскручивают турбинное колесо. Такая конструкция позволяет передавать крутящий момент примерно в соотношении 1:1. Для автомобиля такой вариант не подходит, так как нам нужно, чтобы крутящий момент изменялся в широких пределах. Поэтому между насосным и турбинным колесами стали устанавливать еще одно колесо — реакторное, которое в зависимости от режима движения автомобиля может быть либо неподвижно, либо вращаться. Когда реактор неподвижен, он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем большее воздействие оно оказывает на турбинное колесо. Таким образом момент на турбинном колесе увеличивается, т.е. мы его трансформируем. Поэтому устройство с тремя колесами это уже не гидромуфта, а гидротрансформатор.
Планетарная передача
Но и гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в нужных нам пределах. Да и обеспечить движение задним ходом ему не под силу. Поэтому к нему присоединяют набор из отдельных планетарных передач с разным передаточным коэффициентом — как бы несколько одноступенчатых КПП в одном корпусе. Планетарная передача представляет собой механическую систему, состоящую из нескольких шестерён – сателлитов, вращающихся вокруг центральной шестерни. Сателлиты фиксируются вместе с помощью водила. Внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, как планеты вокруг Солнца (отсюда и название- планетарная передача), внешняя шестерня – вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга.
Переключение передач осуществляется системой управления, которая на ранних моделях была полностью гидравлической, а на современных на помощь гидравлике пришла электроника.
Режимы работы гидротрансформатора
Движение масла в гидротрансформаторе
Перед началом движения насосное колесо вращается, реакторное и турбинное — неподвижны. Реакторное колесо закреплено на валу при помощи обгонной муфты, и поэтому может вращаться только в одну сторону. Включаем передачу, нажимаем педаль газа — обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает турбинное. Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток масла, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом с помощью реактора увеличивается крутящий момент, что и требуется при разгоне автомобиля. Когда автомобиль разогнался, и движется с постоянной скоростью, насосное и турбинное колеса вращаются примерно с одинаковыми оборотами. При этом поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Увеличения крутящего момента не происходит, гидротрансформатор переходит в режим гидромуфты. Если же сопротивление движению автомобиля возросло (например, автомобиль едет в гору), скорость вращения ведущих колес, а, соответственно, и турбинного колеса падает. В этом случае потоки масла опять останавливают реактор — крутящий момент возрастает. Таким образом осуществляется автоматическое регулирование крутящего момента в зависимости от режима движения.
Отсутствие жесткой связи в гидротрансформаторе имеет свои достоинства и недостатки. Плюсы: крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы — низкий КПД, так как часть энергии теряется при «перелопачивании масла» и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.
Для устранения этого недостатка в гидротрансформаторе применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колес гидротрансформатора, то есть он начинает выполнять функцию обычного «сухого» сцепления. При этом обеспечивается жесткая непосредственная связь двигателя с ведущими колесами, как в механической трансмиссии. На некоторых АКПП включение режима блокировки предусмотрено и на низших передачах. Движение с блокировкой является наиболее экономичным режимом работы АКПП. При повышении нагрузки на ведущих колесах блокировка автоматически выключается.
При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, поэтому в конструкции АКПП предусматривается система охлаждения с радиатором, который или встраивается в радиатор двигателя, или устанавливается отдельно.
Как работает планетарная передача
Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев.
В одинарной планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй — ведомым. Третий элемент при этом неподвижен.
Неподвижный | Ведущий | Ведомый | Передача |
Корона | Солнце | Водило | Понижающая |
Водило | Солнце | Повышающая | |
Солнце | Корона | Водило | Понижающая |
Водило | Корона | Повышающая | |
Водило | Солнце | Корона | Реверс, понижающая |
Корона | Солнце | Реверс, повышающая |
Для получения прямой передачи необходимо зафиксировать между собой два любых элемента, которые будут играть роль ведомого звена, третий элемент при таком включении является ведущим. Общее передаточное отношение такого зацепления 1:1.
Таким образом, один планетарный механизм может обеспечить три передачи для движения вперед (понижающую, прямую и повышающую) и передачу заднего хода.
Передаточные отношения одиночного планетарного ряда не дают возможности оптимально использовать крутящий момент двигателя. Поэтому необходимо соединение двух или трех таких механизмов. Существует несколько вариантов соединения, каждое из которых носит название по имени своего изобретателя.
Механизм Симпсона
Планетарный механизм Симпсона, состоящий из двух планетарных редукторов, часто называют двойным рядом. Обе группы сателлитов, каждая из которых вращается внутри своей коронной шестерни, объединены в единый механизм общей солнечной шестерней. Планетарный ряд такой конструкции обеспечивает три ступени изменения передаточного отношения. Для получения четвертой, повышающей, передачи последовательно с рядом Симпсона установлен еще один планетарный ряд. Схема Симпсона нашла наибольшее применение в АКПП для заднеприводных автомобилей. Высокая надежность и долговечность при относительной простоте конструкции – вот ее неоспоримые достоинства.
Механизм Равинье
Планетарный ряд Равиньё иногда называют полуторным, подчеркивая этим особенности его конструкции: наличие одной коронной шестерни, двух солнечных и водила с двумя группами сателлитов. Главным преимуществом схемы Равиньё является то, что она позволяет получить четыре ступени изменения передаточного отношения редуктора. Отсутствие отдельного планетарного ряда повышающей передачи позволяет сделать редуктор коробки очень компактным, что особенно важно для трансмиссий переднеприводных автомобилей. К недостаткам следует отнести уменьшение ресурса механизма приблизительно в полтора раза по сравнению с планетарным рядом Симпсона. Это связано стем, что шестерни передачи Равиньё нагружены постоянно, на всех режимах работы коробки, в то время как элементы ряда Симпсона не нагружены во время движения на повышенной передаче. Второй недостаток – низкий КПД на пониженных передачах, приводящий к снижению разгонной динамики автомобиля и шумности работы коробки.
Коробка передач Уилсона состоит из 3 планетарных редукторов. Коронная шестерня первого планетарного редуктора, водило второго редуктора, и коронная шестерня третьего постоянно соединены между собой, образуя единое целое. Кроме того, второй и третий планетарные редукторы имеют общую солнечную шестерню, которая приводит в действие передачи переднего хода. Схема Уилсона обеспечивает 5 передач вперед и одну заднего хода.
Планетарная передача Лепелетье объединяет в себе обыкновенный планетарный ряд и пристыкованный за ним планетарный ряд Равинье. Несмотря на простоту, такая коробка обеспечивает переключение 6 передач переднего хода и одну заднего. Преимуществом схемы Лепелетье является ее простая, компактная и имеющая небольшую массу конструкция.
Конструкторы постоянно совершенствуют АКПП, увеличивая количество передач, что улучшает плавность работы и экономичность автомобиля. Современные «автоматы» могут иметь до восьми передач.
Как работает система управления АКПП
Системы управления АКПП бывают двух типов: гидравлические и электронные. Гидравлические системы используются на устаревших или бюджетных моделях, современные АКПП управляются электроникой.
Устройством «жизнеобеспечения» для любой системы управления является масляный насос. Его привод осуществляется непосредственно от коленвала двигателя. Масляный насос создает и поддерживает в гидравлической системе постоянное давление, независимо от частоты вращения коленвала и нагрузки на двигатель. В случае отклонения давления от номинального функционирование АКПП нарушается ввиду того, что исполнительные механизмы включения передач управляются давлением.
Момент переключения передач определяется по скорости автомобиля и нагрузке на двигатель. Для этого в гидравлической системе управления существуют два датчика: скоростной регулятор и клапан – дроссель или модулятор. Скоростной регулятор давления или гидравлический датчик скорости устанавливается на выходном валу АКПП. Чем быстрее едет машина, тем больше открывается клапан, тем больше давление проходящей через этот клапан трансмиссионной жидкости. Предназначенный для определения нагрузки на двигатель клапан — дроссель соединяется тросом либо с дроссельной заслонкой (в бензиновых двигателях), либо с рычагом ТНВД (в дизелях).
В некоторых автомобилях для подачи давления на клапан – дроссель используется не трос, а вакуумный модулятор, который приводится в действие разряжением во впускном коллекторе (при увеличении нагрузки на двигатель разряжение падает). Таким образом, эти клапаны формируют давления, пропорциональные скорости движения автомобиля и загруженности двигателя. Соотношение этих давлений и позволяет определять моменты переключения передач и блокировки гидротрансформатора. В «принятии решения» о переключении передачи участвует и клапан выбора диапазона, который соединен с рычагом селектора АКПП и, в зависимости от его положения, запрещает включение определенных передач. Результирующее давление, создаваемое клапаном — дросселем и скоростным регулятором, вызывает срабатывание соответствующего клапана переключения. Причем, если машина ускоряется быстро, то система управления включит повышенную передачу позже, чем при спокойном разгоне.
Определение момента переключения передач
Как это происходит? Клапан переключения находится под давлением масла от скоростного регулятора давления с одной стороны и от клапана – дросселя с другой. Если машина ускоряется медленно, давление от гидравлического клапана скорости нарастает, что приводит к открытию клапана переключения. Поскольку педаль акселератора нажата не полностью, клапан – дроссель не создает большое давление на клапан переключения. Если же машина ускоряется быстро, клапан – дроссель создает большее давление на клапан переключения, препятствуя его открытию. Чтобы преодолеть это противодействие, давление от скоростного регулятора давления должно превысить давление от клапана — дросселя, но это произойдет при достижении автомобилем более высокой скорости, чем при медленном разгоне.
Блок клапанов в сбореКорпус блока клапановАКПП в разрезе
Каждый клапан переключения соответствует определенному уровню давления: чем быстрее движется автомобиль, тем более высшая передача включится. Блок клапанов представляет собой систему каналов с расположенными в них клапанами и плунжерами. Клапаны переключения подают гидравлическое давление на исполнительные механизмы: муфты фрикционов и тормозные ленты, посредством которых осуществляется блокировка различных элементов планетарного ряда и, следовательно, включение (выключение) различных передач. Тормоз – это механизм, который осуществляет блокировку элементов планетарного ряда на неподвижный корпус АКПП. Фрикцион же блокирует подвижные элементы планетарного ряда между собой.
Электронная система управления так же, как и гидравлическая, использует для работы два основных параметра: скорость движения автомобиля и нагрузку на двигатель. Но для определения этих параметров используются не механические, а электронные датчики. Основными из них являются датчики: частоты вращения на входе коробки передач, частоты вращения на выходе коробки передач, температуры рабочей жидкости, положения рычага селектора, положения педали акселератора. Кроме того, блок управления АКПП получает дополнительную информацию от блока управления двигателем и других электронных систем автомобиля (например, от АБС). Это позволяет более точно, чем в обычной АКПП, определять моменты переключений и блокировки гидротрансформатора. Программа переключения передач по характеру изменения скорости при данной нагрузке на двигатель может легко вычислить силу сопротивления движению автомобиля и ввести соответствующие поправки в алгоритм переключения, например, попозже включать повышенные передачи на полностью загруженном автомобиле.
АКПП с электронным управлением так же, как и простые гидромеханические коробки, используют гидравлику для включения муфт и тормозных лент, но каждый гидравлический контур управляется электромагнитным, а не гидравлическим клапаном.
Применение электроники существенно расширило возможности АКПП. Они получили различные режимы работы: экономичный, спортивный, зимний. Резкий рост популярности «автоматов» был вызван появлением режима Autostick, который позволяет водителю самостоятельно выбирать нужную передачу. Каждый производитель дал такому типу коробки передач свое название: Audi – Tiptronic, BMW – Steptronic. Благодаря электронике в современных АКПП стала доступна и возможность их «самообучения», т.е. изменение алгоритма переключений в зависимости от стиля вождения. Электроника предоставила широкие возможности для самодиагностики АКПП. И речь идет не только о запоминании кодов неисправностей. Программа управления, контролируя износ фрикционных дисков, температуру масла, вносит необходимые коррективы в работу АКПП.
Неисправности АКПП
Неисправности в работе АКП чаще всего проявляются в вялом разгоне, толчках при переключениях, невключении одной или нескольких передач, беспорядочном их переключении, посторонних шумах при работе. Причиной многих неполадок в работе является недостаточный уровень масла в коробке. На большинстве автомобилей порядок его проверки одинаков. Установив машину на ровную площадку, при заведенном двигателе и нажатой педали тормоза поочередно, на несколько секунд, включаем все режимы. Это позволяет маслу растечься по всем каналам. После этого селектор АКП устанавливаем, в зависимости от конкретной марки, либо в нейтральное положение, либо в положение парковки. Вынимаем щуп и проверяем уровень. На щупе может быть или две метки – минимального и максимального уровня, или четыре – две для холодного масла, две для прогретого.
На некоторых марках процедура проверки отличается от вышеописанной. Например, на «автоматах» Хонды уровень масла проверяют при неработающем двигателе. Не на всех коробках имеются щупы, а может быть только контрольное отверстие, закрытое пробкой. В этом случае уровень проверяется «сервисным» щупом, который есть только в мастерской. Для проверки уровня может использоваться и контрольная пробка в поддоне.
В некоторых автомобилях в главной передаче применяются не цилиндрические, а конические гипоидные шестерни, которые смазываются трансмиссионным маслом. Поэтому если шестерни располагаются в одном корпусе с фрикционами АКП, для масла используется отдельный картер. При доливке важно не перепутать пробки, так как масла для коробки и главной передачи, естественно, несовместимы.
При недостаточном уровне масла из коробки слышны посторонние звуки, начинает шуметь масляный насос. Перелив тоже вреден – лишнее масло вспенивается, подвергается перегреву и окислению. Излишки легко откачать с помощью шприца с надетой на него гибкой трубкой.
После проверки уровня в обязательном порядке следует оценить состояние масла – его цвет и запах. Нормальное, рабочее масло должно быть темно-коричневого или темно-красного цвета и не иметь запаха гари. Оно должно быть текучим и не липким. О наличии неисправностей свидетельствуют механические примеси и помутнение. Примеси попадают в масло в результате износа деталей коробки. Помутнение вызывается попаданием антифриза, если масляный радиатор АКП встроен в радиатор охлаждения двигателя. Кроме того, фрикционы, впитывая антифриз, разбухают, теряя при этом свои свойства. Если масло имеет запах гари, это верный признак подгорания фрикционов. Тяжелые условия эксплуатации приводят к перегреву масла, при этом оно обесцвечивается. Если цвет и запах масла в норме, то его уровень восстанавливают доливкой, если же масло непригодно, его заменяют с обязательной заменой и масляного фильтра. Масло также рекомендуется заменить после 120-150 тысяч километров пробега, даже если производитель обещает его использование на протяжении всего срока службы коробки.
Одна из важнейших деталей АКПП – насос. Они бывают шестеренчатого или лопастного типа. Насос создает давление, необходимое для работы коробки. Если уровень масла недостаточен, в систему попадает воздух. Так как воздух сжимается, давление в гидросистеме падает. В результате передачи переключаются с запозданием, фрикционы пробуксовывают и быстрее изнашиваются. К нарушениям в работе насоса могут привести и повреждения поддона. Если автомобиль ударился днищем, после чего появился громкий шум – в первую очередь проверьте поддон. Деформированная деталь мешает нормальной закачке масла.
В случае, если наблюдаются нарушения в работе коробки, а уровень масла и его качество в норме, необходима более серьезная диагностика. Электроника – самая капризная и непредсказуемая часть АКПП. Все современные коробки имеют собственный блок управления, в котором фиксируются ошибки в ее работе. Но сканеры, способные считывать полную информацию, имеются только у официальных дилеров. Однако некоторые ЭБУ имеют «продвинутую» систему самодиагностики, что упрощает работу диагноста специализированного сервиса. Но вот найти хорошего диагноста непросто. Ведь он должен не только знать, как работает АКПП, но и как она взаимодействует с системой управления двигателем. Например, из-за неисправности датчика массового расхода воздуха на некоторых автомобилях может снижаться давление масла в АКПП. В результате фрикционы «буксуют», а малоопытный специалист будет искать неисправность в самой коробке очень долго. Хороший диагност должен обладать аналитическими способностями, ведь инженеры постоянно совершенствуют конструкции АКП, вводя новые датчики и исполнительные механизмы. Документация по ремонту далеко не всегда отражает эти изменения, специалисту сервиса приходится разбираться в них самостоятельно.
Кроме того, в работе вполне исправной коробки могут возникать временные сбои. Например, при плотном городском движении электроника, перегреваясь, начинает хаотично переключаться с первой на вторую передачу и наоборот. Как только условия движения становятся более равномерными, работа АКП нормализуется. Такую же нелогичную работу может спровоцировать и «спортивный» стиль езды. Владелец обращается в сервис с жалобой, а диагност не находит в памяти ЭБУ никаких ошибок!
Еще один важный узел любой АКПП – гидротрансформатор. Он играет роль сцепления, передавая крутящий момент от двигателя. Наиболее часто встречающиеся его неисправности – поломка муфты свободного хода реактора и износ упорных подшипников. При выходе из строя муфты падает передаваемый гидротрансформатором крутящий момент, разгон автомобиля становится медленным. Износ упорного подшипника проявляется повышенным шумом при положении селектора во всех «ездовых» режимах и его пропадании в положениях «нейтрали» и «парковки». Сильный износ может привести к тому, что турбинное и насосное колесо цепляются друг за друга, и загиб их лопаток неизбежен.
Вообще, при любом ремонте АКПП гидротрансформатор в обязательном порядке вскрывают для проведения профилактики. Такую работу производят высококвалифицированные специалисты. Гидротрансформатор закрепляют и вскрывают по сварочному шву. Особого мастерства требует регулировка зазоров подшипников и окончательная сварка при сборке.
Как работает автоматическая коробка передач?
Если вы похожи на большинство, то разбираться в тонкостях вашего автомобиля так же просто, как разбираться в продвинутой ядерной физике. Но именно так хотят производители автомобилей. Они проектируют ваш автомобиль, грузовик или внедорожник так, чтобы они оптимально работали сами по себе. Таким образом, если он работает правильно, вы даже не заметите, что происходит.
При этом полезно точно знать, как работают различные системы и компоненты вашего автомобиля, чтобы лучше понимать необходимость регулярного планового технического обслуживания. Возможно, ни одна другая система не является более важной для понимания, чем та, которая обеспечивает движение вашего автомобиля: ваша трансмиссия.
Ваш двигатель и ваша трансмиссия
Подождите минутку: разве двигатель автомобиля не обеспечивает его мощность? Да, но что-то должно рассеивать эту энергию на колеса и контролировать динамику движения вашего автомобиля, включая скорость, расход топлива и число оборотов в минуту. Это работа вашей передачи. Поскольку ваш двигатель генерирует крутящий момент (сила, которая создает вращение), ваша трансмиссия использует различные передаточные числа, которые регулируют энергию вращения для вращения колес. При включении передачи (или при остановке) должен быть какой-то механизм, который отключает трансмиссию от двигателя, чтобы двигатель мог продолжать вращаться. В противном случае ваш двигатель либо глохнет каждый раз, когда вы останавливаете автомобиль, либо вы не можете контролировать ускорение.
В механической коробке передач это достигается включением сцепления при каждом переключении передач. С автоматом переключение передач срабатывает за вас. Простота эксплуатации автоматических коробок передач делает их гораздо более привлекательными для водителей. Действительно, только около 10 процентов автомобилей на американском автомобильном рынке по-прежнему предлагают варианты с механической коробкой передач.
Что такое автоматическая коробка передач
Вам важно задать себе вопрос: «Как работает автоматическая коробка передач?» Просто потому, что большинство автомобилей имеют автоматические коробки передач. Вместо сцепления в автоматической коробке передач используется преобразователь крутящего момента. Это гидромуфта, в которой используется отдельный насос и турбина, вращающиеся в противоположных направлениях внутри самого преобразователя, что позволяет двигателю вращаться независимо от трансмиссии.
Вместо того, чтобы использовать разные наборы шестерен для блокировки и разблокировки выходных валов коробки передач, автоматическая коробка передач использует один набор шестерен для достижения разных передаточных чисел. Сложная гидравлическая система регулирует работу различных ремней и муфт, управляющих коробкой передач, а шестеренчатый насос прокачивает трансмиссионную жидкость. Затем регулятор регулирует движение клапанов переключения, которые подают гидравлические жидкости для включения различных передач. По мере того, как давление жидкости внутри регулятора увеличивается или уменьшается, он заставляет клапаны переключения закрывать и открывать различные контуры шестерен.
Понимание того, как работает ваш автомобиль, является важным компонентом его технического обслуживания. Тем не менее, простое понимание сложности вашей коробки передач может не означать знания того, как правильно ее обслуживать. При возникновении проблем с трансмиссией лучше доверить ремонт нашей команде сертифицированных специалистов ASE в Sun Auto Service. Вместе мы сможем обеспечить правильную работу вашего автомобиля.
2.972 Как работает автоматическая коробка передач
АВТОМАТИЧЕСКАЯ ТРАНСМИССИЯ (См. также: Руководство Трансмиссия) | ||
ВОПРОСЫ ИЛИ КОММЕНТАРИИ | ||
АВТОР: | Райан Дж. Андерсон | |
ЭЛЕКТРОННАЯ ПОЧТА: | ? | |
КУРС: | 2 | |
КЛАСС/ГОД: | 4 |
ОСНОВНОЕ ФУНКЦИОНАЛЬНОЕ ТРЕБОВАНИЕ:
Конвертировать
мощность двигателя (T x w) и более широкий диапазон выходной мощности w без ручного переключения.
КОНСТРУКТИВНЫЙ ПАРАМЕТР:
Автоматическая коробка передач
ГЕОМЕТРИЯ/СТРУКТУРА:
Сечение автомата Трансмиссия |
ОБЪЯСНЕНИЕ КАК ЭТО РАБОТАЕТ/ПРИМЕНЯЕТСЯ:
Автоматическую коробку передач можно разделить на две основные части; гидротрансформатор и коробка передач.
Гидротрансформатор приводится в действие коленчатым валом двигателя. Это, в свою очередь, приводит к
остальная передача. Гидротрансформатор не является механизмом прямого привода. Это
передает энергию от механического к жидкостному и обратно к механическому. Это позволяет проскальзывать так
что автомобиль может остановиться при торможении, даже если передачи в
коробка передач все еще включена. Он также поглощает удары от двигателя к приводу.
поезда или от трансмиссии к двигателю. Внезапные рывки случаются гораздо реже, чем при
механическая коробка передач. Более подробное описание работы гидротрансформатора доступно
здесь.
Коробка передач представляет собой набор муфт, планетарных передач и тормозов. Задействовав эти
компонентов в различных сочетаниях, угловая скорость приводного вала может быть
варьировалась гораздо больше, чем просто изменение угловой скорости коленчатого вала. За
Например, когда трансмиссия, смоделированная на предыдущей диаграмме, находится на первой передаче,
Задействованы муфта переднего хода и тормозная лента водила второй планетарной передачи. Солнечная шестерня
Однако тормозная лента и высшая передача заднего хода не задействованы. Следуя за силой
блок-схему на схеме видно, как детали будут двигаться в трансмиссии.
Включение и выключение компонентов коробки передач контролируется другим
подсистема. Эта подсистема состоит из клапанов переключения, гидроблока, масляного насоса и
губернатор. Этот регулятор связан с выходным валом и с дроссельной заслонкой в
автомобиль. Чем быстрее вращается приводной вал, тем быстрее вращается регулятор. Губернатор
использует центробежную силу для направления масла из масляного насоса через клапаны переключения передач в
соответствующие сцепления и тормозные ленты. При ускорении клапаны переключения выдвигаются
направление масла через гидроблок к механизмам переключения передач в
коробка передач. Когда вы замедляетесь, происходит обратное.
ДОМИНИРУЮЩАЯ ФИЗИКА:
Переменная | Описание | Метрические единицы | Английские единицы |
Р в | Мощность от коленчатого вала | Вт | Мощность в л. с. |
Р вых | Выходная мощность на приводной вал | Вт | Мощность |
П потеря | Потеря мощности | Вт | Мощность |
ш | Скорость вращения вала | рад/с | об/мин |
Преобразователь крутящего момента получает мощность от вращающегося коленчатого вала:
P кривошип = T кривошип x w кривошип As
функция времени
С помощью крыльчатки он передает мощность на трансмиссионную жидкость. Жидкость
затем передает мощность обратно через турбину. В этот момент мощность
передается механически через комбинации муфт и планетарных передач и
в конечном итоге на приводной вал. Часть мощности снова передается
трансмиссионной жидкости с помощью гидравлического насоса. Эта сила используется для «запуска»
автоматическая коробка передач. То есть он используется для переключения передач.
Мощность также рассеивается в трансмиссии через кулоновское трение и вязкостное
рассеивание. Эта мощность будет обозначаться как P loss .
P потеря = f(трение, вязкостные эффекты, переключение передач……)
Мощность, которую можно получить, равна:
P из = (T из x w из ) = P из
— П потеря = (T в x w в ) — P потеря
ОГРАНИЧИВАЮЩАЯ ФИЗИКА:
Производительность/использование трансмиссии ограничено ее:
Эффективность:
КПД трансмиссии определяется как P из / P из =
ч.
КПД снижается в течение срока службы трансмиссии по мере износа деталей и
трансмиссионная жидкость собирает грязь. Эффективность также варьируется во время каждой операции. Как
трансмиссионная жидкость нагревается, вязкость падает. Это становится более эффективным в этом
меньше сопротивление шестерням и потоку жидкости к сцеплениям и тормозам. Это также
означает, что через гидротрансформатор передается меньшая мощность, что приводит к меньшему
эффективность. Общее изменение эффективности представляет собой сумму двух воздействий.
Трансмиссионная жидкость:
Трансмиссионная жидкость является ключом к тому, почему работает автоматическая коробка передач. Как и все
жидкости, трансмиссионная жидкость имеет определенные характеристики, которые ограничивают/определяют передачу
мощности в трансмиссии.
Ограничения размера:
Автоматическая коробка передач должна входить в определенное заданное место. Первоначально это было
тот же объем, что и для механической коробки передач.