Содержание
Назначение и классификация двигателей внутреннего сгорания
Двигатель
внутреннего сгорания —
это устройство, в котором химическая
энергия топлива превращается в полезную
механическую работу.
ДВС
классифицируют:
а)По
назначению — делятся на транспортные,
стационарные и специальные.
б)По
роду применяемого топлива — легкие
жидкие (бензин, газ), тяжелые жидкие
(дизельное топливо).
в)
По способу образования горючей смеси —
внешнее (карбюратор) и внутреннее у
дизельного ДВС.
г)
По способу воспламенения (искра или
сжатие).
д)
По числу и расположению цилиндров
разделяют рядные, вертикальные,
оппозитные, V-образные, VR-образные и
W-образные двигатели.
В
поршневом ДВР для обеспечения его работы
имеются след.механизмы: кривошипно-шатунный
механизм, механизм газораспределения
и система питания и охлаждения.
Общее
устройство двигателей внутреннего
сгорания
Поршневые
двигатели внутреннего сгорания
классифицируются по количеству тактов
в рабочем цикле на двухтактные
и четырёхтактные.
Рабочий
цикл в поршневых двигателях внутреннего
сгорания состоит из пяти процессов:
впуска, сжатия, сгорания, расширения и
выпуска. В двигателе рабочий цикл может
быть осуществлен по следующей широко
применяемой схеме:
1.
В процессе впуска поршень перемещается
от верхней
мертвой точки (в.м.т.)
к нижней мертвой
точке (н.м.т.),
а освобождающееся надпоршневое
пространство цилиндра заполняется
смесью воздуха с топливом. Из-за разности
давлений во впускном коллекторе и внутри
цилиндра двигателя при открытии впускного
клапана смесь поступает (всасывается)
в цилиндр в момент времени, называемый
углом открытия впускного клапана φа.
Воздушно-топливная
смесь и продукты сгорания (всегда
остающиеся в объёме пространства сжатия
от предыдущего цикла), смешиваясь между
собой, образуют рабочую смесь. Тщательно
приготовленная рабочая смесь повышает
эффективность сгорания топлива, поэтому
её подготовке уделяется большое внимание
во всех типах поршневых двигателей.
Количество
воздушно-топливной смеси, поступающее
в цилиндр за один рабочий цикл, называется
свежим зарядом, а продукты сгорания,
остающиеся в цилиндре к моменту
поступления в него свежего заряда —
остаточными газами.
Чтобы
повысить эффективность работы двигателя,
стремятся увеличить абсолютную величину
свежего заряда и его весовую долю в
рабочей смеси.
2.
В процессе сжатия оба клапана закрыты
и поршень, перемещаясь от н.м.т. к в.м.т.
и уменьшая объём надпоршневой полости,
сжимает рабочую смесь (в общем случае
рабочее тело). Сжатие рабочего тела
ускоряет процесс сгорания и этим
предопределяет возможную полноту
использования тепла, выделяющегося при
сжигании топлива в цилиндре.
Двигатели
внутреннего сгорания строятся с возможно
большей степенью сжатия, которая в
случаях принудительного зажигания
смеси достигает значения 10—12, а при
использовании принципа самовоспламенения
топлива выбирается в пределах 14—22.
3.
В процессе сгорания происходит окисление
топлива кислородом воздуха, входящего
в состав рабочей смеси, вследствие чего
давление в надпоршневой полости резко
возрастает.
В
рассматриваемой схеме рабочая смесь в
нужный момент вблизи в.м.т. поджигается
от постороннего источника с помощью
электрической искры высокого напряжения
(порядка 15 кв). Для подачи искры в цилиндр
служит свеча зажигания, которая
ввертывается в головку цилиндра.
Для
двигателей с воспламенением топлива
от тепла, выделяющегося от предварительно
сжатого воздуха, запальная свеча не
нужна. Такие двигатели снабжаются
специальной форсункой, через которую
в нужный момент в цилиндр впрыскивается
топливо под давлением в 100 ÷ 300 кГ/см² (≈
10—30 Мн/м²) и более.
4.
В процессе расширения раскаленные газы,
стремясь расшириться, перемещают поршень
от в.м.т. к н.м.т. Совершается рабочий ход
поршня, который через шатун передает
давление на шатунную шейку коленчатого
вала и проворачивает его.
5.
В процессе выпуска поршень перемещается
от н.м.т. к в.м.т. и через второй открывающийся
к этому времени клапан, выталкивает
отработавшие газы из цилиндра. Продукты
сгорания остаются только в объёме камеры
сгорания, откуда их нельзя вытеснить
поршнем. Непрерывность работы двигателя
обеспечивается последующим повторением
рабочих циклов.
Процессы,
связанные с подготовкой рабочей смеси
к сжиганию её в цилиндре, а также
освобождением цилиндра от продуктов
сгорания, в одноцилиндровых двигателях
осуществляются движением поршня за
счёт энергии маховика, которую он
накапливает в процессе рабочего
хода.
В
многоцилиндровых двигателях вспомогательные
ходы каждого из цилиндров выполняются
за счёт работы других (соседних) цилиндров.
Поэтому эти двигатели в принципе могут
работать без маховика.
Для
удобства изучения рабочий цикл различных
двигателей расчленяют на процессы или,
наоборот, группируют процессы рабочего
цикла с учетом положения поршня
относительно мертвых точек в цилиндре.
Это позволяет все процессы в поршневых
двигателях рассматривать в зависимости
от перемещения поршня, что более удобно.
Часть
рабочего цикла, осуществляемая в
интервале перемещения поршня между
двумя смежными мертвыми точками,
называется тактом.
Такту,
а следовательно, и соответствующему
ходу поршня присваивается название
процесса, который является основным
при данном перемещении поршня между
двумя его мертвыми точками (положениями).
В
двигателе каждому такту (ходу поршня)
соответствуют, например, вполне
определённые основные для них процессы:
впуск, сжатие, расширение, выпуск. Поэтому
в таких двигателях различают такты:
впуска, сжатия, расширения и выпуска.
Каждое из этих четырёх названий
соответственно присваивается ходам
поршня.
В
любых поршневых двигателях внутреннего
сгорания рабочий цикл складывается из
рассмотренных выше пяти процессов по
разобранной выше схеме за четыре
хода поршня или всего за два хода поршня.
В соответствии с этим поршневые двигатели
подразделяют на двух- и четырёхтактные.
Назначение
и устройство кривошипно-шатунного и
газораспределительного механизмов
двигателя.
Крив..
преобразует прямолинейное
возвратнопоступательное движение
поршня во вращательном движении
коленчатого вала.
Механизм
газораспределения – предназначен для
впуска горюч.смеси или воздуха и выпуска
из него отработавших газов.
Система
питания, охлаждение двигателей
Система
питания предназначена для приготовления
горючей смеси, и подвода её в цилиндр
или подачи топлива в цилиндр.
Система
питания карбюр.двиг. состоит из фильтра
грубой очистки диафрагменного топливного
налога, фильтра тонкой очистки карбюратора,
и топлива воздухопровода. Система
дизеля: фильтры грубой очистки,
подкачив.насоса, насоса высокого
давления.
Система
питания двигателя на сжатом газе из
баллонов, расходного клапана, редуктора,
дозирующего устройства. Система питания
двигателя на сжиженном газе: баллоны,
накопит. и констр.вентиля, расходный
вентиль, испарения редуктора
корбюр.смесителя.
Система
охлаждения – для отвода теплоты от
нагретых деталей в атмосферы . Может
быть жидкостной или воздушной.
Наиболее
распространенная жидкостная система
(принудительная). На состоит из нососа,
паровоздушного клапана, радиатора,
термостата, термометра, вентелятора.
Воздушная система состоит из венелятора.
Смазочная
система и система пуска двигателя
Система
включает масляный насос, фильтр очистки
масла, водомасляный теплообменник,
картер масляный, маслоналивную горловину,
трубку и указатель уровня масла.
Систем
пуска служит для пуска основного
двигателя. Для этого используется
стартер или пуск. карбюратор двигателя.
Основные
понятия и определения двигателя
внутреннего сгорания
Нижняя
мертвая точка(НМТ)-положение поршня в
цилиндре, при котором расстояние от
него до коленчатого вала – наименьшее.
Верхняя
мертвая точка(ВМТ)-положение поршня в
цилиндре, при котором расстояние от
него до коленчатого вала – наибольшее
Ход
поршня (S)
– расстояние по оси цилиндра между
мертвыми точками
Рабочий
объем цилиндра (Vр)-
объем, освобождаемый поршнем при
перемещении от НМТ до ВМТ
Объем
камеры сгорания(Vc)
– объем под поршнем находящимся в ВМТ
Полный
объем цилиндра – сумма объемов камеры
сгорания и раб.цилиндра,т.е.объем над
поршнем
Литраж
двигателя (Vл)
– сумма раб.объемов всех цилиндров.
Vл=Vp*i
Степень
сжатии (Е) – отношение полного объема
цилиндра к объему камеры сгорания
E=Vп/Vc
За
время работы двигателя внутреннего
сгорания в его цилиндрах происходят
периодически сменяющиеся процессы,которые
обуславливают работу двигателя.
Совокупность этих процессов называется
рабочим циклом.
Такт
– это часть рабочего цикла,движение от
НМТ до ВМТ.
Двигатель внутреннего сгорания
26.07.2014 /
30.03.2019
•
59853 /
12425
ДВС или двигатель внутреннего сгорания — это механизм, который принадлежит к тепловым машинам. Принцип действия двигателя внутреннего сгорания — преобразование тепловой энергии, получаемой от сгорания жидкого топлива, в механическую.
Поршни и шатуны
Простейший ДВС состоит из блока двигателя — чугунной или алюминиевой детали, в которой вырезается рабочий цилиндр. По цилиндру, совершая возвратно-поступательные движения движется поршень. Поршень, как правило, сделан из легкого и прочного сплава, поскольку должен длительное время выдерживать значительные нагрузки и температуры, при этом не разрушаясь и не деформируясь.
С одной стороны поршень соединен с шатуном. Это узел, обеспечивающий связь поршня с коленчатым валом. Представляет из себя цельнолитую деталь со сквозным неразъемным отверстием со стороны поршня и сквозным разъемным кольцом со стороны коленчатого вала. Шатун, соединенный с поршнем называется поршневой группой, поскольку сами по себе они практически бесполезны.
Коленчатый вал
Коленчатый вал — это вторая по массивности деталь двигателя. Представляет собой сложный вал, разбитый на условные сектора, некоторые из которых смещены относительно центра вращения вала. Каждый такой сектор отполирован до зеркальной поверхности и называется шейкой. Каждая шейка коленчатого вала — создана для того, чтобы работать в скользящей паре «шейка — шатун» или «шейка — опорный подшипник». Подшипники, на которых лежит коленвал, как правило скольжения. Он отполирован до зеркального состояния. На противоположной стороне колена, называемого шейкой, обычно делается наплыв для балансировки вала. Такая система называется кривошипно-шатунный механизм (КШМ).
Вал, соединенный с поршнем через шатун, создает жесткую структуру, которая обеспечивает преобразование вращательных движений коленвала в возвратно-поступательные движения поршня в цилиндре и наоборот.
Сверху блок цилиндров закрывается головкой двигателя, в которой находится распределительнй вал, клапана и каналы впуска-выпуска. Распредвал жестко связан с коленвалом посредством цепной или ременной передачи. Распредвал открывает и закрывает впускные и выпускные клапана. Такая конструкция применяется в четырехтактном двигателе Отто. Этот механизм ДВС называется газораспределительный механизм (ГРМ). Он обеспечивает отвод выхлопных газов из цилиндра, впуск топливовоздушной смеси в цилиндр перед тактом сжатия, обеспечивает герметичность камеры во время сжатия и сгорания топливной смеси.
Система запускается с помощью стартера. Стартер представляет собой либо механический привод, например педаль в мопедах и некоторых мотоциклах, или шнур в мотопилах или газонокосилках. В четырехтактных двс используется, как правило электрический стартер, который приводится в движение с помощью аккумуляторной батареи.
Двигатель внутреннего сгорания может быть двух, четырех и даже шести тактным.
Такты ДВС
Каждый такт поршневого двигателя внутреннего сгорания обозначает завершенное действие. Например в двухтактном двигателе тактов два — первый — рабочий, когда топливо засасывается, одновременно с выходом наружу отработанных газов, второй — когда топливо сжимается и происходит его сгорание. В двухтактном двигателя каналы впуска и выпуска входят прямо в цилиндр, но расположены на разному ровне, что позволяет отработанным газам выходить раньше, чем поршень открывает второй, впускной канал.
Четырехтактный двигатель, соответственно, имеет четыре этапа действия.
Первый — поршень идет вниз, при этом открыт впускной клапан открыт — в рабочий объем засасывается порция топливно-воздушной смеси (ТВС).
Второй такт — оба клапана закрыты, поршень идет вверх, сжимая ТВС. Когда поршень доходит до верхней мертвой точки (ВМТ), второй такт заканчивается.
Начинается третий такт — поршень проходит ВМТ, коленвал при этом поворачивается примерно на два-три градуса и происходит запал ТВС путем мощной искры из свечи зажигания. ТВС воспламеняется и начинает расширяться, активно сгорая. Поршень уходит вниз. В нижней мертвой точке НМТ, заканчивается третий такт.
Четвертый такт — поршень идет вверх, открывается выпускной клапан цилиндра — отработанные газы выходят в выхлопной коллектор.
01:4025.12.2007
Work cycle of 4-stroke internal combustion engine 3D
Рабочий цикл 4-х тактного двигателя внутреннего сгорания
03:1311.10.2006
Deutz engine 1
mechanical engineering is really interesting! Dont judge a book by its cover.
Преимуществом четырехтактного двигателя является высокий коэффициент наполнения во всем диапазоне частот вращения коленчатого вала, низкая чувствительность к падению давления в выпускной системе, возможность управления кривой наполнения путем подбора фаз газораспределения и конструкцией впускной системы. Почти все автомобильные двигатели это четырехтактные поршневые двигатели внутреннего сгорания. Они обладают множеством характеристик – такие как крутящий момент, мощность, степень сжатия, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных особенностей.
Любой ДВС — это по сути насос, который способен черпать энергию из прокачиваемого топлива, сгораемого в нем в процессе прокачки.
Из чего состоит двигатель?
Названия групп автозапчастей
Предлагаем услуги:
Где Вы предпочитаете обслуживать двигатель?
На специализированной СТО
На фирменной СТО
По рекомендации
Где дешевле
Несложные работы — сам
Обслуживаю полностью сам
поршень и цилиндр | машиностроение
поршень и цилиндр
См. все СМИ
- Связанные темы:
- цилиндр
оформление
поршень
Инсульт
поршневое кольцо
См. все связанное содержание →
поршень и цилиндр , в машиностроении, скользящий цилиндр с закрытой головкой (поршнем), который перемещается возвратно-поступательно в несколько большей цилиндрической камере (цилиндр) под действием давления жидкости или против него, как в двигателе или насосе. Цилиндр паровой машины ( кв.в. ) с обоих концов закрыт пластинами с возможностью прохождения штока, жестко прикрепленного к поршню, через одну из торцевых крышек посредством сальника и сальника (паронепроницаемое соединение).
Цилиндр двигателя внутреннего сгорания закрыт с одного конца пластиной, называемой головкой, и открыт с другого конца, чтобы обеспечить свободное колебание шатуна, соединяющего поршень с коленчатым валом. Головка блока цилиндров содержит свечи зажигания в двигателях с искровым зажиганием (бензиновых) и обычно топливную форсунку в двигателях с воспламенением от сжатия (дизельные); на большинстве двигателей клапаны, контролирующие впуск свежей воздушно-топливной смеси и выпуск сгоревшего топлива, также расположены в головке.
Подробнее Из Британники
Бензиновый двигатель: Поршневые двигатели
В большинстве двигателей цилиндры представляют собой гладкие отверстия в основном конструктивном элементе двигателя, известном как блок, который обычно изготавливается из чугуна или алюминий. На некоторых двигателях цилиндры футерованы гильзами (вкладышами), которые можно заменить при износе. В алюминиевых блоках используются вкладыши из центробежного чугуна, которые помещаются в форму при отливке алюминия; эти вкладыши не заменяемы, но их можно расточить.
Поршни обычно оснащены поршневыми кольцами. Это круглые металлические кольца, которые входят в канавки в стенках поршня и обеспечивают плотную посадку поршня внутри цилиндра. Они помогают обеспечить уплотнение для предотвращения утечки сжатых газов вокруг поршня и предотвращения попадания смазочного масла в камеру сгорания.
Важной характеристикой двигателя внутреннего сгорания является его степень сжатия, определяемая как отношение общего объема камеры сгорания с полностью выдвинутым поршнем (максимальный объем) к общему объему с полностью сжатым поршнем (минимальный объем). Фактическая степень сжатия на практике несколько меньше. Более высокие степени сжатия обычно обеспечивают лучшую производительность двигателя, но для них требуется топливо с лучшими антидетонационными характеристиками.
Тесно связанная со степенью сжатия характеристика, известная как рабочий объем — т. е. изменение объема (измеряемое в кубических дюймах или кубических сантиметрах) камеры сгорания, происходящее при перемещении поршня из одного крайнего положения в другое . Рабочий объем связан с мощностью двигателя в лошадиных силах.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подписаться сейчас
Эта статья была недавно пересмотрена и обновлена Эми Тикканен.
Основы двигателей внутреннего сгорания.
Сумья Басак
Сумья Басак
Эксперт в предметной области — ADS/ADAS | Специалист по картографированию Сопоставление карт SD/HD | Восприятие | DSP-сигналы возможностей
Опубликовано 9 октября, 2018
+ Подписаться
В двигателях внутреннего сгорания (ДВС) рабочее тело состоит из воздуха, топливно-воздушной смеси или продуктов сгорания самой топливно-воздушной смеси. Поршневые двигатели с возвратно-поступательным движением являются, пожалуй, наиболее распространенной формой известных двигателей внутреннего сгорания. Они приводят в действие автомобили, грузовики, поезда и большинство морских судов. Они также используются во многих небольших утилитах. Они могут работать на жидком топливе, таком как бензин и дизельное топливо, или на газообразном топливе, таком как природный газ и сжиженный нефтяной газ. Двумя общими подкатегориями поршневых двигателей с возвратно-поступательным движением являются двухтактный и четырехтактный двигатель . Примеры роторных двигателей внутреннего сгорания включают роторный двигатель Ванкеля и газовую турбину.
Общие цели проектирования и разработки всех тепловых двигателей включают: максимизацию работы (выходной мощности), минимизацию потребления энергии и уменьшение количества загрязняющих веществ, которые могут образовываться в процессе преобразования химической энергии в работу. На рис. 1 показаны основные узлы поршневых двигателей внутреннего сгорания. Конструкция магистрального двигателя является наиболее распространенной, хотя термин «магистральный двигатель» редко используется за пределами индустрии крупных двигателей. Конструкция крейцкопфа в настоящее время используется только в больших тихоходных двухтактных двигателях. Впускные и выпускные клапаны для простоты опущены, однако стоит отметить, что в некоторых конструкциях двухтактных двигателей вместо клапанов используются впускные и выпускные каналы.
Традиционно системы с искровым зажиганием (SI) характеризуются предварительно смешанным зарядом (т. е. топливо и воздух смешиваются перед воспламенением) и внешним источником воспламенения, таким как свеча зажигания. Предварительное смешение может происходить во впускном коллекторе или в цилиндре. Хотя предварительно смешанный заряд имеет относительно однородное пространственное распределение воздуха и топлива в большинстве применений, это распределение также может быть неоднородным.
Обычные дизельные двигатели или двигатели с воспламенением от сжатия (CI) характеризуются впрыском топлива непосредственно в цилиндр примерно в то время, когда требуется зажигание. В результате заряд воздуха и топлива в этих двигателях очень неоднороден: одни регионы чрезмерно обогащены, а другие — обеднены. Между этими крайностями будет существовать смесь топлива и воздуха в различных пропорциях. При впрыске топливо испаряется в этой высокотемпературной среде и смешивается с горячим окружающим воздухом в камере сгорания. Температура испаряемого топлива достигает температуры самовоспламенения и самовоспламеняется, чтобы начать процесс горения.
Принцип и конструкция автомобильных радарных датчиков FMCW в Matlab
22 апр. 2020 г.
Встреча двух прекрасных душ.
27 января 2020 г.
Дизайн системы управления Адаптивный круиз-контроллер (ACC)
8 февраля 2019 г.
Модель Simulink QSS для трансмиссии электрического и гибридного автомобиля.
14 марта 2018 г.
Отслеживание помощи водителю на основе зрения (VB-DAS) с использованием алгоритма Camshift.
28 августа 2017 г.
Разработка Android TV на Exynos5
30 апр. 2017 г.
Linux FrameBuffer — это все, что вам нужно.