Содержание
Как проверить турбину на дизельном двигателе
Необходимость проверить турбину дизельного двигателя своими руками может возникнуть по ряду причин. Выполнение диагностики турбокомпрессора на СТО зачастую потребует определенных финансовых затрат, так как специалисты в большинстве случаев подключают диагностическое оборудование, снимают турбину с двигателя для проверки.
Чтобы выявить неисправности самостоятельно без снятия турбины, можно воспользоваться несколькими способами диагностики. На проблемы с турбокомпрессором могут указывать следующие прямые или косвенные признаки, которые проявляются в процессе работы силового агрегата:
- появление черного, сизого или синеватого дыма выхлопа;
- дизель шумно работает в разных режимах под нагрузкой;
- повышается температура, мотор склонен перегреваться;
- возрастает расход горючего и моторного масла;
- двигатель теряет мощность, падает тяга и динамика;
В самом начале стоит отдельно отметить, что подобные симптомы могут возникать не только по причине неисправностей турбины, но данный элемент также находится в списке.
Содержание статьи
- Визуальный осмотр
- Проверка турбонагнетателя на заведенном двигателе
На начальном этапе диагностики следует проверить уровень и качество дизельного моторного масла. Также необходимо исключить возможное попадание сторонних предметов в турбокомпрессор.
Далее приступаем к анализу цвета выхлопных газов. Падение мощности и черный цвет выхлопа дизеля говорит о переобогащении смеси. Это может указывать на недостаточное количество подаваемого в цилиндры воздуха по причине неисправностей во впуске. Тяга дизельного мотора может также пропадать в результате утечек на выпуске.
Для проверки мотор необходимо завести и оценить звуки в процессе работы турбокомпрессора. Турбина не должна свистеть или скрипеть, не должно быть звука прорывающегося воздуха через соединения. Нужно проверить состояние и герметичность соединений патрубков, по которым осуществляется подача воздуха. Любые неплотности или повреждения недопустимы. Также обязательно проверяется состояние воздушного фильтра, так как загрязнение и снижение его пропускной способности приведет к недостаточной подаче воздуха в цилиндры.
Турбину нужно дополнительно проверять на износ. Для диагностики ротор турбины потребуется провернуть вокруг своей оси. Присутствие небольшого люфта вполне допустимо. В том случае, если ротор касается корпуса, турбине необходим ремонт.
Если дизель дымит белым или сизым выхлопом, тогда это указывает на попадание масла в цилиндры двигателя и его сгорание в рабочей камере. Подобная неисправность может возникать как по причине неисправностей турбокомпрессора, так и других узлов ДВС. Также на проблему указывает большой расход масла (около литра на 1 тыс. пройденных км.)
В этом случае необходимо снова вернуться к проверке воздушного фильтра и ротора турбины. Загрязненный фильтр пропускает малое количество воздуха, что приводит к сильной разнице давлений между корпусом турбины и картриджем с подшипниками. Из этого картриджа масло начинает вытекать в корпус компрессора. Если неисправностей не выявлено, тогда нужно приступить к осмотру сливного маслопровода на наличие загибов, трещин и других дефектов.
Еще одной причиной роста давления может служить активное попадание газов из камеры сгорания в картер двигателя, что препятствует нормальному сливу масла из турбины. Данная неисправность может быть связана с проблемами в работе системы вентиляции картерных газов, дизель начинает сапунить. На моторе с исправной турбиной во впускном и выпускном коллекторе не должно быть признаков обильного попадания масла.
Рекомендуем также прочитать статью о том, почему сапунит дизельный двигатель. Из этой статьи вы узнаете о причинах повышения давления в картере дизельного мотора.
Снова проводим анализ состояния турбины на осевой люфт. Если с компрессором все в норме, тогда причины наличия масла в турбине заключаются именно в повышении давления в картере двигателя. Дополнительно возможно присутствие пробки в сливном маслопроводе.
В случае шумной работы дизеля нужно проверить трубопроводы, через которые воздух подается под давлением, а также ротор турбокомпрессора. Ротор турбины во время прокрутки не должен касаться стенок. Повышенного внимания заслуживает состояние крыльчатки турбины. Любые зазубрины или признаки повреждений крыльчатки требуют немедленного ремонта компрессора. При обнаружении заметных дефектов ротора турбину необходимо снимать для детальной диагностики.
Люфта во время осевого смещения вала турбины не должно быть заметно, так как допустимый люфт составляет 0,05 мм и его не почувствуешь. Смещение вала в радиальном направлении допускает присутствие микролюфта ( допустимое значение около 1мм.), который немного ощущается. Если при оценке состояния турбины замечены сильные отклонения от данных требований и показателей, тогда компрессор можно считать сильно изношенным или неисправным.
Проверять турбину на наддув следует так:
- пригласите помощника;
- запустите двигатель;
- определите патрубок, который соединяет впускной коллектор и турбокомпрессор;
- пережмите указанный патрубок рукой;
- помощник должен погазовать несколько секунд;
Если компрессор работает, тогда патрубок должен будет ощутимо раздуваться. При отсутствии производительности турбины этого не произойдет. Дополнительно следует оценить общее состояние патрубков, а также исключить возможность трещин и других дефектов впускного и выпускного коллектора дизельного двигателя.
➫ Втрата потужності дизельної турбіни: види несправностей
Коректно працююча турбіна дизельного двигуна забезпечує йому приріст корисної потужності без збільшення об’єму циліндрів. Якщо цей вузол зламаний, мотор працює гірше. Щоб своєчасно усунути несправність важливо знати, які чинники вказують на ймовірні несправності. В такому випадку можна буде швидко усунути причину поломки, уникнути дорогого капремонту, повернути машині колишню спритність.
Характерні причини втрати потужності дизельних турбін
Коли автомобіль почав споживати дуже багато палива, під час руху спостерігається нехарактерний шум, здійснюється викид чорного, білого диму з вихлопної труби, саме час виконати технічну перевірку турбіни дизеля. Нижче будуть розглянуті основні першопричини, які призводять до поломок цих агрегатів. При виявленні перших нехарактерних особливостей їх роботи важливо звернутися в спеціалізований сервіс.
Конструкційні особливості
Дизеля комплектуються турбінами зі змінною геометрією (ТІГ, англійський варіант VNT). Замість традиційних перепускних клапанів використовується крильчатка, що перенаправляє потоки відпрацьованих газів. Принцип роботи клапанів і спрямовуючої крильчатки однаковий, для їх управління використовується вакуумна система. VNT-турбіна не працює, коли напрямні лопаті закриті, а відпрацьовані гази не йдуть через компресор.
На турбокомпресор із змінною геометрією погано впливають високі температури. Тому їх використовують тільки з дизельними моторами, де температура вихлопу істотно нижче, ніж у бензинових. Є тільки дві бензинові моделі автомобілів Porsche, що використовують ці агрегати — 718 Boxter, 911 Turbo.
Експлуатаційний ресурс
VNT — це дуже надійний вузол, який рідко виходить з ладу. Якщо своєчасно виконувати обслуговування автомобіля, використовувати якісне паливо, вчасно міняти масло, дотримуватися експлуатаційних рекомендацій, вони прослужать тривалий безремонтний період.
Правильне поводження з двигуном дозволить безпроблемно експлуатувати турбокомпресор близько 200 тис. кілометрів пробігу. Недбале поводження з технікою може привести до того, що агрегат прослужить лише 50-80 тис. кілометрів пробігу.
Причини поломок, ймовірні несправності
Функціонування турбокомпресора може порушитися через забруднення фільтра, нестачі мастила. Розглянемо детально ключові фактори, що провокують поломки.
- Недостатнє змазування. Воно може істотно скоротити термін служби вузла. Причиною цього стане погане паливо, закупорені масляні магістралі, брудний фільтр, забруднення масляної системи.
- «Гаряча парковка». Автомобілі з турбокомпресорами «не люблять», коли після тривалої поїздки, їх відразу глушать. Слід дати мотору трохи попрацювати на холостому ходу.
- Вуглець в маслі мотора. Якщо масло двигуна буде насичено вуглецем, він почне накопичуватися у вигляді відкладень в компресорі. Це призведе до дисбалансу в його роботі і виходу з ладу.
- Некоректна робота вихлопу. Якщо в системі вихлопу відбудеться закупорювання фільтр сажі, тиск вихлопних газів виросте. Внаслідок цього, гази, що надходять в компресор, будуть з більшою силою впливати на його вал, яким складно справлятися із збільшеними навантаженнями. У цьому випадку з’являється характерний свист.
- Чужорідні частинки. Вони можуть потрапити через повітрозабірники. У цьому випадку виникають механічні пошкодження лопатей, що порушує баланс їх обертання, сприяючи передчасного зносу підшипників і вала.
Ознаки потреби ремонту
Розглянемо основні чинники, що вказують на потребу обслуговування і ремонту турбіни із змінною геометрією.
- Свист турбіни — висока ймовірність пошкодження ротора турбіни, який слід відремонтувати.
- Білий дим — свідчить про протікання масла. Можливо, на валу є велика щілина, що призводить до потрапляння мастила в вихлопну систему.
- Збільшений витрата палива — в цьому випадку можливе засмічення магістралі подачі мастила або знос підшипників.
- Чорний дим — його поява свідчить про неправильні пропорції паливної суміші, в якій не вистачає повітря. Можливо, проблема пов’язана з витоком повітря з повітрявода, що направляє його в двигун.
- Недолік потужності — це може бути пов’язано з ушкодженнями компресора. При дефекті лопатей вони не можуть забезпечувати закачування потрібного об’єму повітря в циліндри.
При виявленні перелічених ознак слід виключити поїздки на довгі дистанції і якомога раніше відвідати ремонтну майстерню, щоб усунути проблему.
Объяснение автомобильного турбокомпрессора — saVRee
Введение
Турбокомпрессор сжимает воздух в камеру сгорания для выработки большей мощности . Сжатый воздух имеет большую массу воздуха, чем окружающий воздух, и это увеличивает количество топлива , которое может быть сожжено эффективно в камере сгорания (больше воздуха = больше кислорода для сгорания). Увеличение количества сжигаемого топлива эффективно оказывает соответствующее влияние на выходную мощность двигателя (выходная мощность увеличивается) и, таким образом, более высокое отношение мощности к массе может быть получено для двигателя, оснащенного турбонагнетателем, по сравнению с двигателем без него.
Приблизительно 30-35% всей тепловой энергии, теряемой двигателем, теряется через систему выхлопных газов, но турбонагнетатель снижает эти потери примерно до 20% .
Компоненты турбокомпрессора
Турбокомпрессор состоит из трех основных частей: компрессора , турбины и узла вращения центральной ступицы (CHRA) . Компрессор и турбина соединены общим валом , поэтому оба работают с одинаковой скоростью (одинаковые обороты в минуту).
Турбокомпрессор Турбина с отработавшими газами
Приведенное ниже видео является выдержкой из нашего онлайн-видеокурса «Основы дизельного двигателя» (часть 1).
Выхлопные газы из камеры сгорания подаются на турбину турбокомпрессора, которая приводит ее во вращение. Поскольку турбина вращается, вращается и колесо компрессора (общий вал).
Компрессор сжимает воздух и нагнетает его в промежуточный охладитель . Сжатие воздуха повышает его температуру, что снижает его плотность. Для охлаждения воздуха используется промежуточный охладитель , что снова увеличивает его плотность воздуха. Затем охлажденный сжатый воздух подается в камеру сгорания.
Система турбокомпрессора
Контур обратной связи
выхлопных газов, выбрасываемых из камеры сгорания. Чем больше масса воздуха попадает в камеру сгорания, тем больше топлива может быть эффективно сожжено.
Преимущества
- Повышенная мощность для двигателей аналогичного размера.
- Более высокая тепловая эффективность (поскольку выхлопные газы используются для полезной работы).
- Экономичный . Выходная мощность двигателя увеличивается, но затраты на производство и материалы остаются примерно такими же.
3D-компоненты
На этой 3D-модели показаны все основные компоненты, связанные с типичным турбокомпрессором, включая:
- Колесо компрессора
- Турбинное колесо
- Основной вал
- Корпус
- Подшипники
- Фиксирующие зажимы
Дополнительные ресурсы
https://www. explainthatstuff.com/how-turbochargers-work.html
https://auto.howstuffworks.com/turbo.htm
Газовая турбина или газовый двигатель? Сравнение | Производство электроэнергии и тепла
Бизнес-модели и инициативы по финансированию смещаются в сторону возобновляемых источников энергии на сегодняшнем рынке производства электроэнергии, в то время как текущее отсутствие долгосрочных правил усложняет принятие инвестиционных решений, чем в прошлом.
В этих обстоятельствах правильный выбор перспективной технологии необходим для обеспечения долгосрочной прибыльности проекта и снижения подверженности экологическим рискам, которые могут привести к застою активов .
Чтобы предоставить вам веские аргументы для принятия и объяснения инвестиционных решений, здесь мы сравниваем относительные достоинства газовых турбин (ГТ) и газовых и двухтопливных двигателей , также известных как поршневые двигатели внутреннего сгорания (RICE). Давайте выясним, какая технология имеет наименьший след выбросов , сжигает топливо следующего поколения (более чистое) и лучше всего подходит для ваших конкретных потребностей! Приготовьтесь к довольно сложному ответу, потому что правильный выбор технологии всегда зависит от ваших конкретных требований и типа приложения .
У вас есть вопросы о наших продуктах, решениях и услугах?
Свяжитесь с нами
Вариант использования
Коари, третий по величине город в штате Амазонка, изолирован от национальной энергосистемы. Вся электроэнергия обеспечивалась дизельными генераторами, пока Siemens Energy не построила газовую и паровую электростанцию всего за 13 месяцев.
Газовый двигатель против газовой турбины
Обе технологии обеспечивают множество преимуществ, когда речь идет о преобразовании природного газа в электроэнергию и тепло.
Газ
турбины лучше всего подходят для:
- Высокая эффективность комбинированного цикла
- Высокотемпературная когенерация или комбинированное производство тепла и электроэнергии (ТЭЦ): пар, горячий воздух
- Низкие выбросы при сгорании
- Гибкость газового топлива
- Минимальные затраты на обслуживание
Газовые двигатели лучше всего подходят для:
- КПД открытого цикла
- Низкотемпературная ТЭЦ: горячая вода
- Частые пуски и остановки
- Гибкость жидкого топлива
Хотите сократить выбросы и стать углеродно-нейтральным?
Выбросы электростанций на природном газе мощностью 300 МВт по технологиям генерации
Прежде чем предоставить финансирование, многие крупные финансовые учреждения диктуют ограничения выбросов для проектов электростанций. Эти пределы становятся все ниже и ниже, поскольку кризис глобального потепления продолжает привлекать внимание к общественному мнению.
Чтобы лучше понять проблему загрязнения, давайте сгруппируем вредные химические вещества по их воздействию:
Глобальное воздействие оказывают все химические вещества, вызывающие глобальное потепление, так называемые парниковые газы. Этому эффекту способствуют два химических вещества из энергетической отрасли: CO₂ и метан (CH₄), основной компонент природного газа. CH₄ имеет потенциал глобального потепления в 84 раза выше, чем CO₂ (в среднем за 20 лет, источник: IPCC AR5 2013), и его проскальзывание должно быть сведено к минимуму.
Выбросы электростанций на природном газе мощностью 300 МВт по технологиям производства – парниковые газы (ПГ)
Местное воздействие оказывают такие вещества, как оксиды азота (NOx), окись углерода (CO), твердые частицы (PM2, PM5, PM10…), оксиды серы (SOx), тяжелые металлы и многие другие, вредные для человека и природы.
Правильный выбор технологии сжигания для производства электроэнергии, чтобы свести эти загрязняющие вещества к абсолютному минимуму, и используемое топливо, очень важный фактор выбросов, будут определять содержание и количество выбросов выхлопных газов в течение всего срока службы станции.
Выбросы NOx, CO, твердых частиц и многих других газов выбрасываются в значительно меньших количествах газовыми турбинами по сравнению с газовыми двигателями. Причина этого в другом принципе сгорания: если в двигателях внутреннего сгорания, как и в автомобилях, мощность вырабатывают тысячи одиночных взрывов при очень высоких температурах в цилиндрах, то в газовых турбинах процесс сгорания непрерывный при более низкой и более равномерно распределенной температуре. профиль.
Чтобы значительно сократить выбросы CO₂, необходим наивысший уровень чистой эффективности, поскольку более высокая эффективность снижает удельные выбросы CO₂ в граммах на произведенный кВтч. Поэтому очень важно не тратить зря энергию. Для извлечения большого количества энергии из еще горячих выхлопных газов технологии рециркуляции тепла предлагают решения.
Двигатели имеют более высокий КПД открытого цикла, чем газовые турбины, и меньший расход топлива. Их выбросы CO₂ ниже, но общая концентрация загрязняющих веществ в объеме выбрасываемого газа выше. Поскольку их температура выхлопных газов намного ниже, потенциал извлечения из них дополнительной энергии также намного ниже.
Там, где чистый КПД ГТ составляет около 30–40 %, двигатели показывают явно более высокие значения — до 46 %. Применяя решения по рециркуляции тепла, чистый КПД газовых турбин увеличивается почти до 60%, а для двигателей — примерно до 50%.
Поскольку новые европейские правила уменьшают текущие допустимые пределы наполовину, двигатели должны будут работать с ограничением NOx около 0,15 г/кВтч.
Газовые турбины благодаря своему процессу сгорания имеют преимущество. Как самый чистый традиционный источник энергии, их использование будет незаменимым в энергетическом переходе. У нас есть проверенные технологии для эффективного получения электроэнергии из таких видов топлива, как природный газ и водород. Природный газ является самым чистым из ископаемых видов топлива и производит гораздо меньше выбросов по сравнению, например, с газом. жидкие масла.
Для существенного сокращения выбросов CO₂ мы также рекомендуем выбирать электростанцию с комбинированным циклом, поскольку она обеспечивает самый высокий КПД среди всех доступных в настоящее время технологий сжигания ископаемого топлива, а проскальзывание CH₄ незначительно. Если по какой-либо причине это невозможно, по крайней мере следует использовать технологии сокращения выбросов для фильтрации определенных химических веществ, таких как NOx и CO, из выхлопных газов. К сожалению, выбросы CH4 нельзя легко уменьшить.
Рассматриваете ли вы будущие виды топлива в своих инвестициях?
Жидкое и газообразное топливо следует различать по составу, энергоемкости и многим другим свойствам, а также по углеродоемкости. Ископаемые виды топлива состоят в основном из углеводородов. При сгорании этих видов топлива образуется CO₂. Если обезуглероживание является одним из основных драйверов инвестиций, при оценке наилучшей технологии следует учитывать будущие виды топлива.
Классификация топлива: Типичные составы топлива в различных диапазонах Воббе.
Будущие виды топлива также можно разделить на углеродно-нейтральные, такие как
е-метан и е-метанол, и безуглеродные, такие как зеленый водород или зеленый аммиак
, в зависимости от производственного процесса. Гибкость в использовании топлива
будет приобретать все большее значение при переходе на систему обезуглероженной энергии
.
Использование менее углеродоемкого или безуглеродного топлива для электромобилей очень многообещающе для достижения углеродной нейтральности при производстве электроэнергии. Из-за
быстрый всплеск роста прерывистой генерации возобновляемых источников энергии
аспекты безопасности и доступности энергии
трилеммы становятся все более сложными. Надежная (резервная)
генерация электроэнергии с низким углеродным следом имеет решающее значение для удовлетворения
потребностей потребителей.
Газовые турбины являются самым чистым традиционным источником энергии, а их топливная гибкость идеально подходит для поддержки перехода как к централизованным, так и к децентрализованным сетям. По сравнению с газовыми двигателями газовые турбины имеют значительно более низкую концентрацию загрязнителей воздуха (CO₂, NOx, SOx, твердые частицы) в своих выбросах. Двигатели потребляют меньше топлива и выбрасывают меньший объем газа, но производят более высокую концентрацию загрязняющих веществ.
Газовые турбины могут работать на самых разных видах топлива, с переключением топлива в режиме реального времени для обеспечения надежности энергоснабжения. Эти виды топлива представляют собой не только традиционные ископаемые виды топлива, такие как природный газ, сжиженный нефтяной газ и дизельное топливо, но также и технологические отходящие газы, такие как коксовый газ (COG) и нефтеперерабатывающий газ (RFG), а также низкоуглеродные и нулевые виды топлива, такие как водород, биогаз и возобновляемые источники энергии. природный газ (ГСЧ). Многие из них можно сжечь без значительного снижения производительности, сохраняя при этом минимально возможное воздействие на окружающую среду.
Газовые двигатели могут работать на топливе с очень низкой теплотой сгорания (LHV), таком как синтез-газ (4,5 МДж/Нм³). Они также могут сжигать биогаз, свалочный газ и газы с более высокой теплотворной способностью (факельный газ), пропан и сжиженный нефтяной газ с теплотворной способностью около 110 МДж/Нм³, хотя производительность может отличаться от достижимой на природном газе.
Каждая инвестиция в производство электроэнергии, каждый купленный сегодня газовый двигатель или газовая турбина будут использовать водород в качестве топлива в течение своего срока службы. Клиенты должны быть уверены, что приобретают продукты, готовые к будущему, чтобы избежать возможности остаться с бесхозными активами.
Хотите максимизировать рентабельность предприятия?
Сравнение эффективности одного крупного агрегата с несколькими меньшими агрегатами.
Эффективность электростанции не только является основным фактором прибыльности станции, но и напрямую связана с выбросами CO₂ и пропорциональна им. Повышение эффективности завода снижает его потребление топлива, а при меньшем сжигании ископаемого топлива выбросы CO₂ будут снижены.
Планируете ли вы больше работать с полной или частичной нагрузкой или с остаточной нагрузкой?
Чтобы найти наилучшую технологию и решение для вашего проекта, очень важен ожидаемый рабочий профиль.
Сравнение КПД газовых турбин и газовых двигателей дает неоднозначную картину: для небольших установок простого цикла с меньшей выходной мощностью двигатели обеспечивают наилучший электрический КПД. Например, стандартный электрический КПД газовых двигателей мощностью от 300 до 2000 кВт составляет 40-45%, а общий КПД до 85-92% в низкотемпературных ТЭЦ.
Для электростанций большой мощности с более высокой выходной мощностью газовые турбины в комбинированном цикле являются шагом вперед, поскольку они могут достигать наивысшего электрического КПД при более высокой мощности, до 63%. Для установок мощностью менее 100 МВт доступны установки комбинированного цикла с электрическим КПД, близким к 60%, в то время как даже небольшие установки комбинированного цикла мощностью до 20 МВт имеют конкурентоспособную эффективность по сравнению с двигателями открытого цикла. Установки с комбинированным циклом могут повысить коэффициент использования топлива до 90% или выше и добавить новые источники дохода.
Когда речь идет о прибыльности, решающее значение имеют сокращение времени простоя и максимальная доступность. Газовые двигатели могут обеспечить доступность в среднем более 96%, в то время как промышленные и авиационные газовые турбины могут обеспечить доступность в среднем более 97%.
Эксплуатационные расходы также можно свести к минимуму за счет улучшения графиков технического обслуживания: 60 000 часов работы до капитального ремонта и еще больше (90 000 часов) с более совершенными двигателями, хотя в течение года более частые отключения для планового обслуживания. Газовые турбины требуют меньше ежегодного планового обслуживания, при этом первые значительные вмешательства по техническому обслуживанию обычно происходят между 25 000 и 32 000 часов работы (OH). Техническое обслуживание газовых турбин, как правило, обходится дешевле в евро/МВтч.
Нужен гибкий
резервное питание для остаточного
нагрузка или дополнительные потоки доходов?
Короткое время пуска, высокая скорость линейного изменения, хорошая эффективность при частичной нагрузке и низкий уровень выбросов являются ключевыми требованиями для обеспечения резервного питания в периоды низкой выработки солнечной и ветровой энергии
В связи с увеличением проникновения возобновляемых источников энергии в сеть , не только гибкость в выборе топлива важна для будущего успеха эксплуатации надежной электростанции. Предлагая рынку электроэнергии операционную гибкость, вы увеличиваете потоки доходов от продажи электроэнергии и вспомогательных услуг.
На классических рынках электроэнергии основное внимание уделялось увеличению выходной мощности производителей. Предоставление увеличенной мощности по запросу стало ключевым бизнесом, который также считался обязательным резервом в рамках сетевых кодексов. Прерывистость возобновляемой энергии и возможность использования максимально возможных скоростей линейного изменения с кратчайшим возможным временем отклика стали ключевым аспектом стабильности частоты, которая может быть достигнута только с вращающимся оборудованием, работающим в режиме онлайн.
Чтобы поддерживать выбросы на максимально низком уровне и одновременно с низкими эксплуатационными расходами, все более важным становится низкий, соответствующий требованиям по выбросам диапазон регулирования с высокой эффективностью частичной нагрузки (см. Эффективность). В случае, если генерирующие установки отключены, быстрый и надежный запуск становится необходимым для успешной работы. Эти эксплуатационные свойства во многих странах являются платными услугами, и поэтому можно создать дополнительный поток доходов для повышения прибыльности электростанции.
Поскольку существуют разные технологии с разными уникальными свойствами, мы рекомендуем вам выбрать лучшую технологию и решение для вашего рабочего профиля. В качестве примера критериев принятия решения мы более подробно обсудим возможность запуска.
Возможность быстрого запуска ценится клиентами, поскольку они могут реализовать дополнительные потоки доходов. На рынках с механизмами мощности, ранжированием по заслугам, для вторичной и третичной частотной характеристики операторы станций могут предлагать мощность за 5 или 15 минут по высоким ценам.
Время запуска газового двигателя и газовой турбины зависит от начальных условий. Для газовых турбин требуется только смазочное масло, температура которого должна быть не менее 20° по Цельсию. Газовые двигатели требуют, чтобы температура головок цилиндров была на уровне 60°C или выше, а смазочное масло имело правильную рабочую температуру. Это достигается за счет нагрева и циркуляции охлаждающей воды, что может занять несколько часов, начиная с температуры окружающей среды. Вот почему газовые двигатели часто обслуживают в условиях быстрого пуска, а энергопотребление в режиме ожидания учитывается в общих эксплуатационных расходах.
В целом фазы запуска и загрузки из теплого резерва аналогичны для газовых турбин и газовых двигателей, обычно от пяти до 10 минут. Доступны как газовые двигатели с быстрым пуском, так и газовые турбины, способные достигать полной нагрузки в течение одной-двух минут. И двигатели, и турбины могут работать как с частичной, так и с полной нагрузкой, чтобы адаптироваться к конкретным задачам. Обе технологии могут использоваться для приложений аварийного/резервного питания, резервных приложений с пиковыми нагрузками с небольшим количеством часов работы в год (<2000 часов) или работать в течение 8500 часов в год для приложений с базовой нагрузкой.
Время запуска электростанции с комбинированным циклом намного больше, чем у электростанции с простым циклом. Современной газовой турбине в электростанции с комбинированным циклом требуется менее 30 минут для выхода на полную мощность для горячего запуска. С помощью байпасной трубы операторы могут сначала быстро запустить газовую турбину, а затем синхронизировать паровую турбину.
Как можно
мы безопасно эксплуатируем сеть?
Влияние мгновенной доли прерывистых возобновляемых источников энергии на работу сети.
Безопасная и надежная работа сети требует баланса между выработкой электроэнергии и спросом в любое время. Источники напряжения короткого замыкания или компенсаторы реактивной мощности необходимы для балансировки синхронно вращающихся масс сети (инерции). Питание от короткого замыкания требуется, чтобы иметь возможность обнаруживать сбои и в случае отключения электроэнергии восстанавливать сеть.
Исторически сложилось так, что почти все энергосистемы обеспечивали большую часть ископаемой энергии от угольных и газовых электростанций, а также от атомных и гидроэлектростанций (последние, конечно, не относятся к ископаемой энергии), и они предлагали высокую сеть. потенциал стабилизации из-за их очень больших вращающихся масс и высокой мощности короткого замыкания. Произошло всего несколько событий сетки, которые потребовали вмешательства, например повторной отправки.
Современные экологически чистые источники энергии, такие как ветер и солнечная энергия, не обладают свойствами стабилизации сети (динамическая стабилизация частоты), поскольку они подвержены колебаниям. Следовательно, те установки, которые обеспечивают остаточную мощность нагрузки, должны генерировать как можно больше инерции для динамического управления частотой. По мере снижения производства ископаемой энергии в определенный момент балансирующей мощности будет недостаточно, чтобы предотвратить отказ сети.
Для будущих сетей синхронная инерция становится платным товаром. TSO должны будут изменить свои рейтинги диспетчеризации в зависимости от качества, чтобы учесть предельную стоимость энергии (COE) и привести свои станции к диспетчеризации, что обеспечивает высокую стабильность сети и предотвращает риск сбоев и отключений сети.
Как правило, чем больше размер синхронного электрогенератора, тем меньше необходимо работающего оборудования, чтобы оказать существенное влияние на стабильность сети.
Газовые турбины обеспечивают на порядок более высокую инерцию, чем газовые двигатели, поскольку они работают на гораздо более высоких скоростях, а вся силовая передача вносит свой вклад в механическую энергию. Особенно на электростанциях с комбинированным циклом газовые турбины предлагают высокие возможности балансировки сети и имеют самый низкий уровень выбросов среди всего оборудования для производства энергии из ископаемого топлива. Газовые двигатели имеют очень низкую инерцию, в первую очередь из-за легкого коленчатого вала в двигателе и ротора электрогенератора, который вращается с низким числом оборотов в минуту.
Для получения дополнительной информации о важности возможностей стабилизации сети см. наш информационный документ.
Чтобы предложить вам рекомендации по технологии, наиболее подходящей для ваших требований, мы изучили наиболее распространенные сценарии и/или решения для конкретных потребностей клиентов.
Парижское соглашение и Конференция по изменению климата COP26 привели к явному ускорению выполнения задач по защите климата приверженными странами. Германия стремится к 2045 году стать климатически нейтральной страной и сократить выбросы парниковых газов на 9%.0023
не менее 65 процентов к 2030 году. Поэтапный отказ от угля должен быть завершен не позднее 2038 года, а государственные инвестиции в проекты угля, нефти и природного газа в других странах должны быть сокращены не позднее конца 2022 года. экологически чистый водород.
Германия также взяла на себя обязательство сократить к 2030 году выбросы особо опасного для климата парникового газа метана на 30 процентов.
безуглеродное или -нейтральное производство электроэнергии. У нас есть уникальные возможности, основанные на широком портфолио низкоуглеродных и безуглеродных решений, интенсивном ноу-хау в области энергосистем и великолепных возможностях проектирования систем. Как партнер и новатор, мы делаем реальностью энергетический переход «За пределы угля», масштабируя прорывные технологии уже сегодня.
Великобритания столкнулась с особой ситуацией, которая вынуждает Национальную энергосистему сделать особую конфигурацию распределения электроэнергии по стране. Поставщики энергии не могут обеспечивать 100% доступности, и в ближайшем будущем может возникнуть нехватка угольных электростанций.
Правительство Украины недавно объявило амбициозные цели: значительно увеличить долю возобновляемых источников энергии в своем энергетическом секторе, заменить негибкое угольное производство более чистыми газовыми технологиями и подключить энергосистему к европейской сети ENTSO-E. Оптимальным решением для снижения уровня выбросов углерода и в то же время эффективной поддержки возобновляемых источников энергии является установка газотурбинной технологии. Почему? См. наш информационный документ о высокоэффективных газовых турбинах и решениях для стабилизации сети.
Из-за быстрого роста населения, роста экономической активности и старения угольного флота Южная Африка не может удовлетворить потребности национальной энергосистемы. Этот дисбаланс приводит к текущему кризису сброса нагрузки. Очевидно, что Южная Африка больше не может полагаться на один основной источник энергии.
В настоящее время приоритетом является развитие диверсифицированной энергетической экосистемы в качестве основного требования для обеспечения устойчивого развития страны. Правительство Южной Африки приняло краткосрочную политику и рамки, чтобы помочь им в разрешении кризиса сброса нагрузки. Одна из этих структур включает модернизацию существующей инфраструктуры электроснабжения и интеграцию небольших электростанций, управляемых на местном уровне, в национальную сеть.
Основным экономическим ресурсом в районе Ансоатеги в Венесуэле является добыча нефти и газа. Попутный газ из сырой нефти обеспечивает богатую энергию. Добываются большие объемы нефти, а попутный нефтяной газ (ПНГ) может использоваться в качестве топлива для производства электроэнергии, а не сжигаться в атмосфере (как это было раньше).
Новые доступные виды топлива, новые технологии и амбициозные цели в области возобновляемых источников энергии приносят революционные изменения в коммунальные службы Карибского бассейна.