Рубрики
Разное

Устройство и работа сцепления: Устройство и принцип действия сцепления

Содержание

Принцип работы сцепления

Принцип работы сцепления

Сцепление является важным конструктивным элементом трансмиссии автомобиля. Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний. Сцепление автомобиля располагается между двигателем и коробкой передач.

  • Принцип работы сцепления
  • Схема однодискового сцепления
  • Схема двухдискового сцепления
  • Принцип функционирования
  • Что входит в комплект
  • Передача крутящего момента
  • Принцип работы сцепления. Устройство сцепления автомобиля
  • Характеристика элемента
  • Назначение
  • Классификация по связи ведущих и ведомых частей
  • По типу создания нажимных усилий
  • По типу привода
  • Принцип работы сцепления с механическим приводом
  • Принцип работы сцепления с гидравлическим приводом

В зависимости от конструкции различают следующие типы сцепления:

✔фрикционное сцепление

✔гидравлическое сцепление;

✔электромагнитное сцепление.

Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.

Самым распространенным типом сцепления является фрикционное сцепление.

Различает следующие виды фрикционного сцепления:

✔однодисковое сцепление;

✔двухдисковое сцепление;

✔многодисковое сцепление.

В зависимости от состояния поверхности трения сцепление может быть сухое и мокрое. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.

На современных автомобилях устанавливается в основном сухое однодисковое сцепление.

Однодисковое сцепление имеет следующее устройство:

✔маховик;

✔картер сцепления;

✔нажимной диск;

✔ведомый диск;

✔диафрагменная пружина;

✔подшипник выключения сцепления;

✔муфта выключения;

✔вилка сцепления.

Схема однодискового сцепления

Маховик устанавливается на коленчатом вале двигателя. Он выполняет роль ведущего диска сцепления . На современных автомобилях применяется, как правило, двухмассовый маховик. Такой маховик состоит из двух частей, соединенных пружинами. Одна часть соединена с коленчатым валом, другая — с ведомым диском. Конструкция двухмассового маховика обеспечивает сглаживание рывков и вибраций коленчатого вала. В картере сцепления размещаются конструктивные элементы сцепления. Картер сцепления крепиться болтами к двигателю.

Нажимной диск прижимает ведомый диск к маховику и при необходимости освобождает его от давления. Нажимной диск соединен с корпусом (кожухом) с помощью тангенциальных пластинчатых пружин. Тангенциальные пружины, при выключении сцепления, выполняют роль возвратных пружин.

На нажимной диск воздействует диафрагменная пружина, обеспечивающая необходимое усилие сжатия для передачи крутящего момента. Диафрагменная пружина наружным диаметром опирается на края нажимного диска. Внутренний диаметр пружины представлен упругими металлическими лепестками, на концы которых воздействует подшипник выключения сцепления. Диафрагменная пружина закреплена в корпусе. Для закрепления используются распорные болты или опорные кольца.

Нажимной диск, диафрагменная пружина и корпус образуют единый конструктивный блок, который носит устоявшееся название корзина сцепления. Корзина сцепления имеет жесткое болтовое соединение с маховиком. По характеру работы различают два типа корзин сцепления — нажимного и вытяжного действия. В распространенной корзине сцепления нажимного действия лепестки диафрагменной пружины при выключении сцепления перемещаются к маховику. В вытяжной корзине сцепления наоборот — лепестки диафрагменной пружины перемещаются от маховика. Данный тип корзины сцепления характеризуется минимальной толщиной, поэтому применяется в стесненных условиях.

Ведомый диск располагается между маховиком и нажимным диском. Ступица ведомого диска соединяется шлицами с первичным валом коробки передач и может перемещаться по ним. Для обеспечения плавности включения сцепления в ступице ведомого диска размещены демпферные пружины, выполняющие роль гасителя крутильных колебаний.

На ведомом диске с двух сторон установлены фрикционные накладки. Накладки изготавливаются из стеклянных волокон, медной и латунной проволоки, которые запрессованы в смесь из смолы и каучука. Такой состав может кратковременно выдерживать температуру до 400°С. Накладки ведомого диска могут иметь и более высокую тепловую характеристику. На спортивных автомобилях устанавливают т.н. керамическое сцепление, накладки ведомого диска которого состоят из керамики, кевлара и углеродного волокна. Еще более прочные металлокерамические накладки, выдерживающие температуру до 600°С.

Подшипник выключения сцепления (обиходное название — выжимной подшипник) является передаточным устройством между сцеплением и приводом. Он располагается на оси вращения сцепления и непосредственно воздействует на лепестки диафрагменной пружины. Подшипник располагается на муфте выключения. Перемещение муфты с подшипником обеспечивает вилка сцепления.

Схема двухдискового сцепления

На грузовых и легковых автомобилях с мощным двигателем применяется двухдисковое сцепление. Двухдисковое сцепление осуществляет передачу большего крутящего момента при неизменном размере, а также обеспечивает больший ресурс конструкции. Это достигнуто за счет применения двух ведомых дисков, между которыми установлена проставка. В результате получены четыре поверхности трения.Принцип работы сцепления

Однодисковое сухое сцепление постоянно включено. Работу сцепления обеспечивает привод сцепления.

При нажатии на педаль сцепления привод сцепления перемещает вилку сцепления, которая воздействует на подшипник сцепления. Подшипник нажимает на лепестки диафрагменной пружины нажимного диска. Лепестки диафрагменной пружины прогибаются в сторону маховика, а наружный край пружина отходит от нажимного диска, освобождая его. При этом тангенциальные пружины отжимают нажимной диск. Передача крутящего момента от двигателя к коробке передач прекращается.

При отпускании педали сцепления диафрагменная пружина приводит нажимной диск в контакт с ведомым диском и через него в контакт с маховиком. Крутящий момент за счет сил трения передается от двигателя к коробке передач.

Принцип функционирования

Прежде всего, взаимодействие между двигателем, сцеплением и коробкой передач необходимо для того, чтобы автомобиль мог беспрепятственно двигаться и останавливаться в требуемой точке. Впервые прообраз сцепления стал применяться создателями Мерседеса. Это позволило значительно упростить управление транспортным средством, поэтому сегодня работа автомобиля немыслима без этого важнейшего узла.

Итак, главный принцип работы устройства заключается в соединении первичного трансмиссионного вала и маховика силового агрегата. Благодаря такой схеме удается достичь плавности хода и переключения скоростей в коробке. Без сцепления затруднительно было бы трогаться с места. Оно устанавливается между коробкой передач и силовым агрегатом и дает возможность передавать крутящий момент от движка на колеса и, при необходимости, разрывать эту связь.

Однодисковое сцепление, как и другие его разновидности, подвержено серьезным нагрузкам в процессе эксплуатации. Многие из его составляющих требуют профилактики и своевременной замены. Неумелые и неопытные водители зачастую «палят» сцепление, и это выражение имеет под собой не только переносный смысл, поскольку в салоне автомобиля начинает ощущаться характерный запах гари.

Что входит в комплект

  • диск сцепления, обладающий характерной круглой формой, включающий несколько основных элементов;
  • диск нажимной (корзина) — его основание включает в себя пружины, совмещенные с прижимной платформой и компактно размещенные. В основании этого узла действует выжимной подшипник;

  • подшипник выжимной, отвечает за механический привод в действие вилки, и размещается на первичном валу коробки передач;
  • маховик.

Передача крутящего момента

Ведомый диск постоянно зафиксирован вместе с маховиком при помощи диска нажимного. Чтобы автомобиль тронулся, ведомый диск должен соприкоснуться с маховиком, который вращается.

Происходит это так: водитель выжимает педаль сцепления, что позволяет ему включить 1‑ю скорость. Как только педаль отпускается, пружины диска нажимного соединяют ведомый диск с маховиком. Вследствие этого касания машина начинает постепенно двигаться. Скорость вращения диска и маховика постепенно выравнивается, чем и достигается движение транспортного средства.

Полностью крутящий момент передается тогда, когда выравниваются скорости вращения ведомого диска, диска сцепления и маховика. Если отпустить педаль слишком резко, машина может попросту заглохнуть — этим часто грешат начинающие водители. При переключении любой передачи, необходимо добиваться плавного хода педали, что позволит продлить срок эксплуатации этого узла, да и трансмиссии тоже.

Принцип работы сцепления. Устройство сцепления автомобиля

Сцепление – неотъемлемая часть любого современного автомобиля. Именно этот узел принимает на себя все колоссальные нагрузки и удары. Особенно высокое напряжение испытывают устройства на автомобилях с механической КПП. Как вы уже поняли, в сегодняшней статье мы рассмотрим принцип работы сцепления, его конструкцию и назначение.

Характеристика элемента

Сцепление представляет собой силовую муфту, которая осуществляет передачу крутящего момента между двумя основными составляющими автомобиля: двигателем и коробкой передач. Состоит оно из нескольких дисков. В зависимости от типа передачи усилий данные муфты могут быть гидравлическими, фрикционными или же электромагнитными.

Назначение

Автоматическое сцепление предназначено для временного отсоединения трансмиссии от двигателя и плавной их притирки. Необходимость в ней возникает по мере того, как начинается движение. Временное разъединение мотора и КПП нужно и при последующем переключении скоростей, а также при резком торможении и остановке транспортного средства.

Во время движения машины система сцепления находится по большей части во включенном состоянии. В это время она передает мощность от двигателя к коробке переключения передач, а также предохраняет механизмы КПП от различных динамических нагрузок. Тех, которые возникают в трансмиссии. Таким образом, нагрузки на нее возрастают по мере торможения двигателя, при резком включении сцепления, снижении частоты оборотов коленвала либо при наезде транспортного средства на неровности дорожного полотна (ямы, выбоины и так далее).

Классификация по связи ведущих и ведомых частей

Сцепление классифицируют по нескольким признакам. По связи ведущих и ведомых частей принято различать следующие типы устройств:

  • Фрикционные.
  • Гидравлические.
  • Электромагнитные.

По типу создания нажимных усилий

По данному признаку различают типы сцепления:

  • С центральной пружиной.
  • Центробежные.
  • С периферийными пружинами.
  • Полуцентробежные.

По количеству ведомых валов системы бывают одно-, двух- и многодисковые.

По типу привода

  • Механический.
  • Гидравлический.

Все вышеуказанные типы сцеплений (за исключением центробежных) являются замкнутыми, то есть постоянно выключенными или включенными водителем при переключении скоростей, остановке и торможении транспортного средства.

На данный момент большую популярность обрели системы фрикционного типа. Такие узлы используются как на легковых, так и на грузовых автомобиля, а также на автобусах малого, среднего и большого класса.

2-дисковые сцепления используются только на крупнотоннажных тягачах. Также они устанавливаются на автобусы большой вместимости. Многодисковые же практически не применяются автопроизводителями в данный момент. Раньше они использовались на большегрузах. Также стоит отметить, что гидромуфты в качестве отдельного узла на современных машинах не применятся. До недавнего времени они использовались в коробках автомобилей, однако только совместно с последовательно установленным фрикционным элементом.

Что касается электромагнитных сцеплений, то они на сегодняшний день не получили широкого распространения в мире. Связано это со сложностью их конструкции и с дорогостоящим обслуживанием.

Принцип работы сцепления с механическим приводом

Стоит отметить, что данный узел имеет одинаковый принцип работы вне зависимости от количества ведомых валов и типа создания нажимных усилий. Исключение составляет тип привода. Напомним, он бывает механическим и гидравлическим. И сейчас мы рассмотрим принцип работы сцепления с механическим приводом.

Как же действует данный узел?

В рабочем состоянии, когда педаль сцепления не затронута, ведомый диск зажат между нажимным и маховиком.

В это время передача крутящих усилий на вал производится за счет силы трения.

Когда водитель нажимает ногой на педаль, трос сцепления перемещается в корзине. Далее рычаг поворачивается относительно своего места крепления. После этого свободный конец вилки начинает давить на выжимной подшипник.

Последний, перемещаясь к маховику, — давить на пластины, которые отодвигают нажимной диск. В данный момент ведомый элемент освобождается от прижимающих усилий и таким образом происходит отсоединение сцепления.

Далее водитель свободно производит переключение передачи и начинает плавно отпускать педаль сцепления. После этого система вновь включает в связь ведомый диск с маховиком. По мере отпускания педали сцепление включается, происходит притирка валов. Через некоторое время (пару секунд) узел в полной мере начинает передавать крутящий момент на двигатель.

Последний через маховик осуществляет привод на колеса. Стоит отметить, что трос сцепления присутствует только на узлах с механическим приводом. Нюансы конструкции другой системы мы опишем в следующем разделе.

Принцип работы сцепления с гидравлическим приводом

Здесь, в отличие от первого случая, усилие от педали к механизму передается посредством жидкости.

Последняя содержится в специальных трубопроводах и цилиндрах.

Устройство данного типа сцепления несколько отличается от механического.

На шлицевом конце ведущего вала трансмиссии и стального кожуха, закрепленного к маховику, устанавливается 1 ведомый диск.

Внутри кожуха есть пружина с радиальным лепестком. Она служит выжимным рычагом. Управляющая педаль при этом подвешивается на оси к кронштейну кузова. К ней также прикреплен толкатель главного цилиндра на шарнирном соединении. После того как происходит выключение узла и переключение передачи, пружина с радиальными лепестками возвращает педаль в исходное положение.

В конструкции узла присутствует как главный, так и рабочий цилиндр сцепления. По своей конструкции оба элемента очень схожи между собой. Оба состоят из корпуса, внутри которого присутствует поршень и специальный толкатель. Как только водитель нажимает педаль, задействуется главный цилиндр сцепления. Здесь при помощи толкателя поршень перемещается вперед, благодаря чему давление внутри увеличивается. Последующее его передвижение приводит к тому, что жидкость проникает в рабочий цилиндр через нагнетательный канал. Так вот, благодаря воздействию толкателя на вилку и происходит выключение узла. В то время, когда водитель начинает отпускать педаль, рабочая жидкость поступает обратно. Это действие приводит к включению сцепления. Данный процесс можно описать так. Сначала открывается обратный клапан, который сжимает пружину. Далее идет возврат жидкости из рабочего цилиндра в главный. Как только давление в нем становится меньше усилия нажатия пружины, клапан закрывается, а в системе образуется избыточное давление жидкости. Так происходит нивелирование всех зазоров, которые находятся в определенной части системы.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Устройство и принцип работы сцепления, как работает сцепление, диск сцепления, признаки неисправности. Устройство и принцип работы сцепления. Как работает сцепление. Его устройство и основные неисправности.

Сцепление автомобиля — одно из самых основных конструктивных составляющих транспортного средства. Его главное предназначение — кратковременное отсоединение мотора от трансмиссии и плавное их соединение друг с другом при переключении передач. Автомобильное сцепление также защищает составляющие трансмиссии от перегрузок. Данный конструктивный элемент расположен между мотором и КПП.

Содержание

  • Устройство сцепления, принцип работы сцепления автомобиля
  • Какое сцепление на авто, классификация сцеплений для легковых и грузовых машин
  • Неисправности сцепления, признаки неисправности сцепления
  • Советы профи, как предупредить неисправность сцепления

Устройство сцепления, принцип работы сцепления автомобиля

Элементы сцепления:

  1. Первичный вал КПП.
  2. Маховик мотора.
  3. Вилка выключения сцепления.
  4. Картер КПП.
  5. Отжимные рычаги.
  6. Шестерня КПП.
  7. Выжимной подшипник.
  8. Нажимной диск.
  9. Пружины.
  10. Кожух сцепления.
  11. Картер сцепления.

Чтобы понять предназначение сцепления, следует сопоставить работу мотора с таким понятием, как «движение транспорта». Если представить себе, что маховик двигателя непосредственно соединен с ведущим мостом автомашины, то при запуске мотора, автомобиль должен сразу поехать. Соответственно, чтобы остановить машину, нужно заглушить мотор. Именно для этого и необходимо сцепление, позволяющее в подходящий момент получать от мотора энергию в начале движения либо прерывать данный процесс для прекращения езды.

Классическое сцепление состоит из ведомого и нажимного дисков, а также привода, который заставляет их прижиматься либо разъединяться друг с другом. Закреплена данная конструкция в кожухе, который твердо крепится к маховику коленвала. Нажимной диск довольно массивный и также твердо крепится в кожухе. Стоит отметить, что ведомый диск гораздо тоньше и находится на шлицах основного (первичного) вала КПП автомобиля. Шлицы отвечают за обеспечение его подвижности вдоль оси вала, а также за жесткую сцепку с валом. Что касается нажимного диска, то он не имеет такой сцепки с валом КПП.

В стандартном рабочем положении нажимной и ведомый диски прижаты друг к другу с помощью мощных пружин посредством рычагов и выжимного подшипника. Следовательно, в результате силы трения между данными дисками, на первичный вал КПП от маховика передается крутящий момент. Если отвести нажимной диск от ведомого, происходит прерывание крутящего момента от мотора и прекращение вращения ведомого диска с валом.

Отсоединение дисков производится с помощью вилки сцепления, которая своим видом напоминает детские качели. Сама вилка приводится в действие посредством цепочки рычагов и тяг педалью сцепления, которая расположена в кабине.

Перед запуском мотора автомобилист нажимает на педаль сцепления, воздействуя на вилку посредством тяги и вынуждая ее противоположные концы перемещаться относительно центра в противоположные стороны. Конец вилки оказывает давление на выжимной подшипник, который посредством рычагов заставляет сжиматься пружины, оказывающие давление на нажимной диск. Последний отделяется от ведомого диска, что прерывает передачу вращающего момента. В результате при выжатой педали сцепления и запущенном моторе вращается только маховик.  Чтобы начать движение, необходимо плавно отпустить сцепление, из-за чего по данной цепочке вилка прекратит оказывать свое воздействие на нажимной подшипник, что, в свою очередь, смягчит давление на рычаги. Затем пружины начнут разжиматься, в результате чего придавят к маховику ведомый и нажимной диски. Поскольку ведомый диск твердо крепится к шлицам первичного вала КПП, крутящий момент от мотора будет передаваться по трансмиссии ведущим колесам и транспортное средство начнет движение.

Необходимо отметить, что существует два типа привода сцепления — гидравлический и механический. Механический вариант является самым простым в работе сцепления авто. В данном случае, автомобилист, нажимая на педаль, оказывает влияние на вилку сцепления посредством тяг и тросов. Гидравлический вариант предусматривает поршень с жидкостью. Чаще всего его применяют на большегрузном транспорте, чтобы облегчить работу водителя.

Какое сцепление на авто, классификация сцеплений для легковых и грузовых машин

Зависимо от конструкции сцепление бывает таких типов — электромагнитное, фрикционное и гидравлическое.

Фрикционный вариант сцепления выполняет передачу вращающего момента с помощью силы трения. Сцепление электромагнитного вида контролируется с помощью магнитного поля. В гидравлическом варианте сцепления связь обеспечивается при помощи потока жидкости.

Фрикционный тип сцепления является наиболее распространенным. Зависимо от количества дисков различают такие виды фрикционного сцепления — многодисковые, однодисковые и двухдисковые.

Сцепление бывает мокрое и сухое. В сухом сцеплении предполагается работа дисков в условиях сухого трения. Мокрое сцепление предусматривает эксплуатацию дисков в жидкости.

Как правило, современные автомобили оснащены сухим однодисковым сцеплением. Все компоненты сцепления расположены в картере, который при помощи болтов крепится к двигателю.

Гидравлическое сцепление. Гидромуфта, где передача крутящегося  момента осуществляется гидродинамическим напором жидкости, которая циркулирует между ведущими и ведомыми компонентами, называется гидравлическим сцеплением.

Гидромуфта не применяется на автомобилях в качестве независимого сцепления, поскольку не способна обеспечить абсолютного выключения, что существенно усложняет переключение передач. В результате этого при применении гидромуфты вместе с ней устанавливается фрикционное сцепление, которое предназначено только для переключения передач. При этом во фрикционном сцеплении монтируются более мягкие и пластичные нажимные пружины, что облегчает выключение сцепления.

Электромагнитное сцепление. Сцепление считается электромагнитным, если сжатие ведущих и ведомых элементов осуществляется посредством электромагнитных сил. Электромагнитное сцепление постоянно находится в разомкнутом состоянии.

Грузовые и легковые автомобили с мощным мотором оснащены двухдисковым сцеплением, которое при неизменном размере осуществляет передачу существенно большего крутящего момента, а также предоставляет значительно больший ресурс конструкции. Это достигается за счет применения двух ведомых дисков, посреди которых находится проставка. В результате получены четыре поверхности трения.

Неисправности сцепления, признаки неисправности сцепления

  1. Сцепление не полностью включается («пробуксовывает») в результате замасливания или износа фрикционных накладок ведомого диска, поломки пружин, неудовлетворительной амплитуды хода педали. Для устранения данной неисправности, замените ведомый диск, устраните задиры на дисках, смените неисправные узлы привода.
  2. Сцепление не полностью выключается («ведет») в результате довольно большого свободного хода сцепления, поломки пружины, коробления ведомого диска или несоответственно стоящего нажимного диска. Для устранения данной неисправности сцепления, следует удалить из гидропривода воздух, отрегулировать свободный ход педали, произвести замену неработоспособных дисков и пружин.
  3. В приводе выключения сцепления подтекает тормозная жидкость, что возможно из главного и рабочего цилиндров, а также в соединительных трубках. Чтобы устранить неисправность, визуально найдите место утечки и поменяйте на новые неисправные узлы, после чего прокачайте гидропривод полностью.

Советы профи, как предупредить неисправность сцепления

Чтобы предупредить рассмотренные выше неисправности сцепления, достаточно придерживаться простых правил эксплуатации. При эксплуатации сцепления необходимо периодически осуществлять проверку уровня тормозной жидкости в бачке. Если уровень ниже нормы, обязательно восстановите его.

Пониженный уровень тормозной жидкости или неправильная регулировка сцепления способна привести к тому, что передачи на вашем авто будут тяжело включаться или перестанут включаться вообще. При движении водителю приходится постоянно выжимать и отпускать педаль сцепления, что вынуждает поверхности ведомого диска с большой силой тереться о нажимной диск и маховик, в результате чего, разумеется, со временем боковые поверхности ведомого диска изнашиваются. Это обыкновенный процесс, который предусмотрен конструкцией автомобиля. Любая машина требует внимания к себе. В среднем, при правильной эксплуатации сцепления, замена ведомого диска нужна после 80 000 километров езды.

Как работает сцепление – x-engineer.org

Подавляющее большинство дорожных транспортных средств имеют трансмиссию. Задача трансмиссии — адаптировать мощность двигателя внутреннего сгорания (или электродвигателя в случае электромобиля) к дорожным условиям и условиям движения.

Существует несколько типов коробок передач:

  • MT (механическая коробка передач)
  • AMT (автоматическая ручная коробка передач)
  • DCT (двойное сцепление)
  • AT (автоматическая коробка передач)
  • CVT (бесступенчатая трансмиссия)

Независимо от типа трансмиссии соединение между двигателем внутреннего сгорания и коробкой передач осуществляется через соединительное устройство . В зависимости от типа трансмиссии соединительным устройством может быть сцепление, два сцепления или преобразователь крутящего момента.

Изображение: Положение сцепления в трансмиссии

  1. переднее колесо
  2. двигатель внутреннего сгорания
  3. сцепное устройство (сцепление)
  4. редуктор / трансмиссия
  5. продольный вал (карданный вал)
  6. дифференциал
  7. планетарный вал
  8. заднее колесо

В таблицах ниже приведены сводные данные о возможных соединительных устройствах для каждого типа трансмиссии.

9

Однодисковое сухое сцепление Многодисковое мокрое сцепление Гидротрансформатор
Руководящая коробка передач Да NO
АВТОМАЦИОННАЯ РУКОВОДСТВА Да Да NO
Да NO
YES NO
Да NO
DES. два сцепления) нет
Автоматическая коробка передач нет да да
Бесступенчатая коробка передач нет да да

Все механические коробки передач оснащены однодисковым сухим сцеплением . Сцепление расположено между двигателем и коробкой передач.

Изображение: Схема простого сцепления

Основными функциями сцепления на автомобиле с механической коробкой передач являются:

  • Позволяет отключать питание между двигателем и коробкой передач (например, когда автомобиль стоит, во время переключения передач)
  • осуществляет постепенное соединение двигателя с коробкой передач (например, при трогании автомобиля с места или после переключения передач)
  • обеспечивает соединение двигателя с коробкой передач без проскальзывания

Отсоединение двигателя от коробки передач при включении передачи , необходим для предотвращения падения частоты вращения двигателя ниже скорости холостого хода. Если не выполнить отключение коробки передач, двигатель заглохнет.

Также при переключении на повышенную (или пониженную) передачу на механической коробке передач не должен передаваться крутящий момент на колеса. Это достигается отсоединением двигателя от коробки передач через сцепление.

Изображение: Расположение сцепления на двигателе

Существуют различные типы сцеплений, мы можем классифицировать их в основном по функциям:

  • количество фрикционных дисков:
    • однодисковое
    • многодисковое
  • тип трения :
    • сухой
    • мокрый
  • тип привода:
    • механический (трос или стержень)
    • гидравлический

Чтобы понять, как это работает,Например, однодисковое сухое сцепление 0019 . Подробнее о многодисковом мокром сцеплении будет рассказано позже.

На изображении ниже показана схема однодискового сцепления . Коленчатый вал двигателя, маховик, пружина (катушка или диафрагма) и нажимной диск соединены между собой, они закреплены друг к другу. С другой стороны, диск сцепления соединен с первичным валом коробки передач.

Изображение: Комплект сцепления

Когда педаль сцепления отпущена (как на изображении ниже), пружина давит на нажимной диск, который прижимает диск сцепления к маховику. Таким образом, вращение коленчатого вала передается на первичный вал коробки передач. Пружины создают достаточную силу нажатия, чтобы сцепление не скользило.

При нажатии педали сцепления через механизм рычажного типа действие пружины на нажимной диск снимается, и диск сцепления отрывается от маховика. Таким образом, коленчатый вал отсоединяется от первичного вала коробки передач.

Изображение: Схема сцепления

Для лучшего понимания работы сцепления мы изучим изображение ниже. Кроме того, имеется выжимной подшипник, пружина диафрагменная (не спиральная), а также фиксирующие элементы диафрагменной пружины с кожухом сцепления.

Изображение: Компоненты сцепления (слева – сцепление замкнуто, справа – сцепление разомкнуто)

  1. коленчатый вал
  2. маховик
  3. диск сцепления (фрикционный)
  4. нажимной диск
  5. диафрагменная пружина
  6. первичный вал (КПП) подшипник
  7. крышка (корпус) сцепления
  8. кольцо (шарнир диафрагменной пружины)
  9. установочный штифт
  10. заклепка

При нажатии водителем на педаль сцепления подшипник сцепления (7) давит на внутреннюю часть диафрагменной пружины ( 5). Давление диафрагменной пружины на нажимной диск (4) снимается, и диск сцепления (3) больше не прижимается к маховику.

Если сцепление разомкнуто: коленчатый вал (1) + маховик (2) + крышка сцепления (8) + диафрагменная пружина (5) + нажимной диск (4) + выжимной подшипник (7, внешнее кольцо) вращаются , при этом диск сцепления (3) + выжимной подшипник (7, внутреннее кольцо) + первичный вал коробки передач (6) неподвижны (если включена передача и автомобиль стоит).

Когда мы медленно отпускаем педаль сцепления, диафрагменная пружина начинает давить на нажимной диск. Управляя положением педали сцепления, мы регулируем, какое усилие прикладывается к фрикционному диску нажимным диском. Величина усилия пружины напрямую связана с крутящим моментом сцепления. Когда усилие нажима пружины достаточно велико, сцепление перестает проскальзывать, и двигатель полностью подключается к коробке передач.

Изображение: Компоненты сцепления с системой гидравлического применения (Источник: ZF)

  1. Двойной массовый маховик
  2. Крышка сцепления
  3. Механический релизер
  4. Устройство демпфирования педали
  5. пластиковый педаль
  6. Slave Cylabl Clave Cyland Clave Clave Cylind
  7. Slave Cylavd Clave Clave Colave ​​Clave Clave Colave ​​Clave Clave Colave ​​Clave Clave Colave ​​Clave Clave Clave Clave. (фрикционный) диск

Подшипник сцепления

Изображение: Подшипник выключения сцепления (источник: ZF)

  1. Упорное кольцо (внешнее/внешнее кольцо)
  2. внутреннее кольцо
  3. крепление вилки выключения

Подшипник выключения сцепления служит для соединения неподвижной части (рычага) с подвижной вращающейся частью (диафрагменной пружиной). Внутреннее кольцо соприкасается с нажимным рычагом, а внешнее кольцо давит на диафрагменную пружину. Через подшипник выключения сцепления можно приводить в действие вращающуюся диафрагменную пружину с неподвижным рычагом.

Мембранная пружина

Изображение: Мембранная пружина сцепления

Роль пружины заключается в удержании сцепления в замкнутом состоянии (двигатель соединен с коробкой передач), когда педаль сцепления не нажата. В настоящее время почти все сцепления МТ имеют диафрагменные пружины. Старые версии сцеплений имели несколько (6-8) витых пружин вокруг нажимного диска. Пружина должна оказывать достаточное давление/силу на нажимной диск, чтобы сцепление не скользило, даже если двигатель выдает максимальный крутящий момент.

Нажимной диск

Изображение: Кожух сцепления (источник: ZF)

Нажимной диск соединен с крышкой сцепления и вращается вместе с первичным валом коробки передач. Роль нажимного диска заключается в том, чтобы прижимать диск сцепления к маховику, когда педаль сцепления отпущена. Нажимная пластина довольно тяжелая, имеет немного объема. Причина в том, что при проскальзывании сцепления необходимо рассеивать определенное количество тепла. Тепло улавливается как прижимной пластиной, так и маховиком, а затем выбрасывается в атмосферу.

Фрикционный диск

Изображение: Фрикционный диск сцепления (источник: ZF)

Фрикционный диск является важным компонентом сцепления. Он выполняет роль соединения вращающейся части (маховика двигателя) с другой частью, которая может быть неподвижной или вращающейся (нажимной диск). В связи с этим в течение срока службы фрикционному диску приходится выдерживать высокие механические и термические нагрузки. Тем не менее, фрикционный диск должен удовлетворять следующим требованиям:

  • иметь коэффициент трения в определенных пределах для различных значений крутящего момента, проскальзывания или температуры
  • быть способными выдерживать высокие механические нагрузки
  • работать в условиях высоких температур

Уровень износа фрикционных дисков в основном зависит от количества тепла, выделяемого при соединении/расцеплении двигателя. Количество тепла (энергии) зависит от скольжения и передаваемого крутящего момента. Проскальзывание сцепления — это разница скоростей между маховиком (двигатель) и нажимным диском (входной вал коробки передач).

Например, если нам нужно запустить автомобиль на дороге с большим уклоном (например, 10%), нам нужно увеличить обороты двигателя, чтобы иметь возможность генерировать также более высокий крутящий момент, необходимый для запуска. Сочетание высокой скорости и крутящего момента приводит к выделению большого количества тепла. Подобные события ускорят износ фрикционных дисков сцепления.

С другой стороны, если мы отпустим педаль сцепления слишком быстро, чтобы уменьшить фазу проскальзывания, если разница скоростей между двигателем и коробкой передач высока, это вызовет колебания в трансмиссии или даже заглохнет двигатель.

Наилучший сценарий — как можно более плавно отпустить педаль сцепления при низкой частоте вращения двигателя (если это разрешено) за короткое время. Это может легко сделать опытный водитель, но сложнее новичку.

К концу этой статьи вы должны уметь:

  • определить компоненты однодискового сухого сцепления
  • объяснить, как работает сцепление
  • понять влияние проскальзывания на износ сцепления

Если что-либо из вышеперечисленного недостаточно ясно, используйте контактную форму ниже, чтобы задать вопросы .

Не забудьте поставить лайк, поделиться и подписаться!

Следующая статья:
– Как рассчитать крутящий момент сцепления
– Многодисковое мокрое сцепление

Конструкция промышленного сцепления и техническая информация

«Сцепление — это фрикционное устройство, основной функцией которого является прерывистая передача мощности».

Муфта представляет собой устройство, которое используется для соединения и расцепления двух отдельных тел вращения. Эти два отдельных тела могут состоять из валов, шестерен и звездочек, первичного двигателя или двигателя или любой их комбинации. Приводными компонентами обычно являются насосы, вентиляторы, валы отбора мощности, компрессоры, редукторы и генераторы. Обычно для передачи мощности используется вал ведомого или ведущего компонента.

Методы приведения в действие сцепления

Муфты можно классифицировать по их способу приведения в действие. К ним относятся механические, электрические, гидравлические и пневматические (пневматические). Последние два часто комбинируются, так как многие промышленные модели сцепления, подходящие для гидравлического привода, также могут использоваться в пневматических (воздушных) приложениях.

Посмотреть сравнение способов срабатывания.

Подтип классификации основан на том, используется ли метод приведения в действие для включения или выключения сцепления. Эти подтипы представляют собой муфты с пружинным включением (отключение энергии) и муфты с принудительным включением. Их отличает способ включения сцепления. Говорят, что муфта «включена» при передаче крутящего момента. Он «отключен», когда через устройство не передается крутящий момент.

Муфты с пружинным приводом и муфты с приводом от энергии

Тип Функция Пример
Пружина
(высвобождение энергии)
Крутящий момент передается при отсутствии питания Механизм привода артиллерийского возвышения
Прикладная энергия Крутящий момент не передается до срабатывания Привод коробки отбора мощности «ВОМ»

Пружинная муфта считается «нормально включенной», что означает, что при отсутствии приводной силы муфта будет передавать крутящий момент. Для его отключения требуется энергия срабатывания. Это полезная конструкция, когда ведомый компонент отключается только на мгновение во время нормальной работы. Говорят, что муфта с подаваемой энергией «нормально отключена» — крутящий момент не передается на ведомое устройство до тех пор, пока не будет приложена энергия срабатывания. Большинство применений, связанных с передачей энергии, относятся к подтипу приложений, связанных с энергией.

Как они работают

В муфте с подачей энергии торцевая пластина притягивается к опорной пластине, когда устройство приводится в действие. Между торцевой пластиной и опорной пластиной расположены фрикционные диски. Торцевая пластина плотно сжимает фрикционные диски, включая сцепление и обеспечивая передачу крутящего момента.

В муфте с пружинным приводом (с высвобождением энергии) якорь расположен рядом с опорной пластиной, а зацепляющие пружины вставлены между якорем и опорной пластиной. Эти пружины отталкивают якорь от упорной пластины, прижимая фрикционные диски к торцевой пластине и обеспечивая передачу крутящего момента через устройство. Энергия срабатывания притягивает якорь к опорной плите, сжимая пружины, сбрасывая давление на фрикционные диски и отключая устройство.

Дальнейшая разбивка определяет процесс, посредством которого метод зацепления передает механическую энергию вращения на ведомый компонент, называемый «передачей мощности». К ним относятся трения и позитивное взаимодействие.

Фрикционные муфты и муфты принудительного зацепления

Тип Функция Пример
Трение Управление крутящим моментом Автомобильное сцепление
Положительное зацепление Заблокированное позиционирование Вертолетный привод

В передачах силы трения одинарные или многодисковые фрикционные пластины удерживаются вместе силой пружин или приложением энергии, такой как магнитный поток, или поршнем, находящимся под давлением, для передачи крутящего момента за счет трения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *