Содержание
Принцип работы гидрокомпенсатора клапанов: Типы, устройство, неисправности
Click to rate this post!
[Total: 2 Average: 4.5]
- Типы — какие бывают?
- Устройство
- Видео с объяснением устройства
- Принцип работы
- Распространенные неисправности
- Профилактика и ремонт
Принцип работы гидрокомпенсатора клапанов заключается в автоматической регулировке зазоров в газораспределительном механизме. Он также служит для нивелирования выработок, возникших вследствие естественного износа деталей ГРМ
Типы гидрокомпенсаторов
В зависимости от конструкции и расположения существует несколько типов:
- Гидротолкатель. Ввиду своей простоты и надежности, получил наибольшее распространение, в особенности на моторах зарубежных производителей;
- Гидроопора. Ставится там, где импульс от эксцентрика идет не напрямую, а через рычаг;
- Гидроопора для установки в рычаги и коромысла. Модернизированный вариант гидроопоры. Монтируется непосредственно в одну из деталей в системе газораспределения;
- Роликовый гидротолкатель. Рабочей частью является ролик. В остальном функционирует так же, как остальные представители.
Устройство гидрокомпенсатора
Для примера рассмотрим самый распространенный тип, широко применяемый на современных авто – гидротолкатель. Он устанавливается в специально предназначенную полость головки блока цилиндров между кулачком распределительного вала и наконечником стержня впускного или выпускного клапана.
Видео
Состоит из следующих частей:
- корпус – служит для восприятия усилия от эксцентрика распределительного вала, а также фиксирует положение в теле головки блока цилиндров;
- плунжер – перемещает корпус до полного устранения зазора, а также передает нагрузку дальше;
- втулка – передает полученное усилие на стержень;
- пружина плунжерной пары – разводит подвижные части относительно друг друга;
- шарик – запирает масляный канал после наполнения;
- пружина шарика – является движущей силой в перекрывании сообщения между камерами;
- фиксирующий колпачок – удерживает шариковый запорный механизм на своем месте.
Принцип работы гидрокомпенсатора
После запуска двигателя, масляный насос начинает нагнетать смазку в систему. На стенке цилиндрической полости, в головке блока цилиндров, имеется выходное отверстие, связанное с основной магистралью системы смазки.
На корпусе гидротолкателя имеется кольцевая проточка, которая расположена на одном уровне с каналом в ГБЦ, и отверстие, ведущее во внутреннее пространство. Взаимное расположение канальцев рассчитано таким образом, что они становятся соосными в момент, когда эксцентрик двигается в режиме холостого хода.
Под действием давления внутрь нагнетается смазочный материал. С внутренней стороны, между плунжером и корпусом, также имеется выемка, через которую смазка попадает внутрь. Продавливая сопротивление пружинки, масло поступает под плунжер, толкая его.
Это происходит до тех пор, пока гидрокомпенсатор с верхней стороны не упирается в кулачок распределительного вала, а с нижней – в стержень. Далее давление в пространстве внутри втулки и над ней выравнивается, и этот объем герметично закупоривается.
Таким образом, температурный зазор в газораспределительном механизме исчезает. Поэтому усилие от эксцентрика распредвала передается полностью, обеспечивая заложенное конструкторами функционирование узла.
Гидрокомпенсатор
Неисправности. На выход из строя гидравлического компенсатора, в первую очередь, указывает характерный стук при запуске двигателя. На начальном этапе посторонний шум при прогреве мотора может пропадать по истечении некоторого времени, обычно после прогрева.
Но если не принять мер, продолжив эксплуатацию автомобиля, последует полный отказ. Следствием этого будет являться снижение мощности ДВС, повышенный расход топлива, а также ускоренный износ деталей ГРМ.
Распространенные неисправности гидрокомпенсаторов
Самые распространенные неисправности можно разделить на несколько категорий:
- засорение продуктами разложения масла или другими инородными телами. Здесь основной причиной становится использование некачественной смазки, которая может деградировать и расслоиться, или попадание посторонних засорителей. Сгустки с высокой вязкостью, а иногда даже затвердевшие частички, могут закупорить систему как на уровне подвода, так и внутри гидрокомпенсатора. Это либо полностью парализует работу, либо затрудняет ее;
- недостаточное наполнение. Может быть как следствием загрязнения, так и указывать на низкое давление, создаваемое насосом. В случае с насосом, проблема нуждается в немедленном разрешении, так как страдают не только компенсаторы, но и все трущиеся элементы;
- выработка в плунжерной паре. При этом не обеспечивается полное запирание смазочного материала внутри втулки или, в запущенных случаях, ее заклинивание;
- дисфункция шарикового запорного устройства. Наиболее частой причиной становится засорение. Плунжерная пара перестает выполнять свои функции. Появляются ударные нагрузки;
- появление задиров и шероховатостей на стенках компенсатора и в выемке ГБЦ. При этом затрудняется возвратно-поступательное движение. Это, в особо запущенных случаях, может привести к неполному закрытию впускного или выпускного канала и даже заклиниванию.
Профилактика и ремонт
Наиболее простой и надежный способ профилактики вытекает из разносторонности работы гидрокомпенсатора клапана – использование хорошего моторного масла с требуемыми показателями вязкости. Конструкция проста и надежна, ломаться при должном обслуживании нечему, поэтому этот узел рассчитан на весь срок службы ДВС.
Если поломка явилась следствием какого-либо механического дефекта – здесь поможет только замена. Для замены необходимо произвести демонтаж распредвала.
Если причина поломки засорение – можно попробовать восстановить путем чистки. Для этого компенсатор нужно разобрать.
Разборка. Самый простой способ – обмотать тряпкой и несколько раз несильно ударить о нетвердую поверхность (дерево, пластик), сориентировав его так, как он стоит в ГБЦ. При этом внутренняя подвижная часть должна выйти из своего посадочного места.
Никаких стопорных приспособлений там нет. Также можно использовать щипцы с мягкими губками и вытащить плунжерную пару, потянув за втулку. Ни в коем случае нельзя использовать пассатижи или другой металлический инструмент, так как можно поцарапать или деформировать рабочие поверхности.
Далее нужно разъединить плунжерную пару и снять пружину. После этого снять удерживающий колпачок и извлечь шарик с пружинкой.
Очистка. Ввиду отсутствия резиновых уплотнителей и других элементов, подверженных химическому воздействию, промывку можно производить любой жидкостью для очистки замасленных поверхностей.
Использовать металлические скребки или щетки нельзя, так как подгонка очень точная, и малейшие механические повреждения могут в дальнейшем вызвать поломку. После промывки тщательно высушить все элементы. Продуть сжатым воздухом.
Перед сборкой можно добавить внутрь немного масла (но не нужно наполнять полностью). Это позволит сократить время установления рабочего состояния после пуска двигателя.
Устройство гидрокомпенсатора в чугунном двигателе
Автор Дмитрий На чтение 4 мин. Просмотров 348 Опубликовано
Принцип работы гидрокомпенсаторов, применение которых позволяет исключить стук клапанов двигателя, мы уже рассматривали. Если говорить вкратце, суть сводится к тому, что установленный на толкатель клапана гидрокомпенсатор меняет свою длину, чтобы скомпенсировать зазор между толкателем и кулачком распредвала. В то же время, если бы расстояние между осью распределительного вала и пяткой толкателя клапана, находящегося в закрытом состоянии, не увеличивалось бы из-за теплового расширения деталей, ничего компенсировать бы не пришлось. Под словом «детали» здесь в большей степени подразумевается единственный элемент – головка блока цилиндров. Если эта деталь от тепла не расширяется, то и наличие гидрокомпенсаторов в конструкции привода ГРМ становится лишним.
Для чугуна коэффициент теплового расширения можно считать равным нулю. Поэтому, даже сейчас нет ни одной фирмы, которая оснащала бы гидрокомпенсаторами свои чугунные моторы (из чугуна должна быть выполнена деталь под названием «ГБЦ»). Проиллюстрируем эту закономерность примерами.
Где используют гидрокомпенсаторы фирмы «Рено» и «Тойота»
Собственно, если говорить о двигателях с алюминиевой ГБЦ, то начиная с 80-х годов очень трудно найти серийный ДВС, в котором гидравлические компенсаторы не применяются. К «дизелям» это правило относится в той же степени, что и к бензиновым моторам. Но ещё раз заметим, что здесь мы говорили об «алюминиевых» двигателях. Если же материалом для изготовления ГБЦ служит чугун, то с теоретической точки зрения зазоры между клапанами и кулачками распредвала компенсировать не нужно. Просто, величина этих зазоров может оставаться пренебрежимо малой, так как чугун от нагрева почти не расширяется.
Эту теорию на практике доказывает компания «Тойота», в арсенале которой есть достаточно современный бензиновый мотор с чугунной головкой блока цилиндров. Мы говорим о 16-клапанном двигателе 3SZ-VE, все цилиндры которого расположены в один ряд, а их число насчитывает 4. Конечно, это не FSI, но 100 с лишним «лошадей» для рабочего объема 1495 куб. см – такие значения выглядят неплохо даже по сегодняшним меркам. Поясним, что здесь мы приводим характеристики мотора 3SZ-VE, который компания Toyota производила несколько лет назад.
Фирма «Рено», в свою очередь, продолжает контрактный выпуск своих 8-клапанных двигателей K7M, ставших основой недорогой комплектации автомобилей Largus. Проверенный временем 8-клапанный мотор, как известно, лишён гидравлических компенсаторов, хотя важная составляющая его конструкции (ГБЦ) выполнена из алюминиевого сплава. Сформулируем общее правило: там, где применяется только чугун, гидрокомпенсаторы не нужны, либо, их могут не устанавливать, когда хотят сэкономить.
Эволюция двигателей: всё меньше чугунных деталей
От начала и до завершения выпуска легендарного семейства автомобилей Ford Sierra основу их конструкции составлял карбюраторный двигатель, оснащённый одним распредвалом и выполненный из чугуна. К 89-му году был разработан новый вариант двигателя, в котором чугунная ГБЦ уступила место алюминиевой. Вместе с переходом к новой ГБЦ инженеры дополнили конструкцию и гидравлическими компенсаторами, которые соприкасались уже с двумя распределительными валами. Подобной щедростью отличались не все компании – множество ДВС с чугунным блоком цилиндров и алюминиевой ГБЦ были лишены гидрокомпенсаторов на протяжении всего периода серийного выпуска. Одним из примеров, подтверждающих это высказывание, является бензиновый мотор BMW M10, который был актуален в течение 30-ти лет подряд.
В общем-то, можно заметить, что прогресс в области конструирования ДВС прошёл следующие этапы:
- Блок цилиндров и ГБЦ изготовляли из чугуна;
- Точки крепления распредвала перенесли вверх (на ГБЦ), но сама деталь под названием «ГБЦ» осталась чугунной;
- Началось использование алюминиевых ГБЦ;
- Чтобы решить проблему стука клапанов, в конструкцию привода ГРМ добавили гидрокомпенсаторы.
Таким образом, можно сделать вывод, что использование гидрокомпенсаторов является вынужденной мерой, которая сопутствует повсеместному использованию более лёгких и дешёвых материалов (алюминия и его сплавов). Обычно рассуждают так: если гидравлические компенсаторы есть, значит, двигатель обладает достаточным уровнем качества и является современным, и наоборот. Но теперь мы видим, что подобные рассуждения являются уделом дилетантов.
Выбирая автомобиль для начинающего водителя, лучше отдать предпочтение транспортному средству, максимально неприхотливому в эксплуатации. Сразу можно исключить такие варианты оснащения, как вариатор или РКПП, а двигатель может обладать минимально доступным рабочим объёмом. Основное внимание лучше сконцентрировать на дополнительных опциях, например, таких: парктроник, климатическая система, круиз-контроль. В то же время, интересоваться наличием гидрокомпенсаторов особого смысла нет. Современный «алюминиевый» мотор в своей конструкции их содержит практически в любом случае, если только речь не идёт о самых бюджетных комплектациях или моделях. Удачного выбора.
Видео: Ремонт стандартного гидрокомпенсатора
- Автор: Дмитрий
- Распечатать
Оцените статью:
(0 голосов, среднее: 0 из 5)
Поделитесь с друзьями!
Подводные компенсаторы
ГлавнаяПодводные компонентыКомпоненты ROVПодводные компенсаторы
Надежные подводные компенсаторы давления для наддува подводных гидравлических систем
От малогабаритных легких подводных компенсаторов давления до крупногабаритных постоянно расположенных под водой компенсаторов давления
Компания Seatools располагает обширной базой знаний в области подводной компенсации давления и (критических) компенсаторов давления. Эти знания мы приобрели, не только продавая компенсаторы, но и внедряя их во все наши собственные проекты. Это означает, что наши конструкции подводных компенсаторов давления основаны на более чем 15-летнем опыте и знаниях, полученных в результате внутренних обзоров конструкции и отзывов на местах.
Основываясь на нашей базе знаний, мы разработали ряд высококачественных стандартизированных подводных компенсаторов и предлагаем соответствующие компенсаторы давления практически для любого применения. Тем не менее, мы также можем спроектировать и изготовить подводные компенсаторы давления и подводные резервуары для жидкости по индивидуальному заказу для любого конкретного применения и технических требований.
Помимо предоставления оборудования, мы консультируем наших клиентов по выбору, установке и использованию наших компенсаторов. Мы делаем это, принимая во внимание диапазоны температур, диапазоны давления, уровни наполнения, захваченный воздух, поведение жидкости и другие факторы. Кроме того, мы консультируем клиентов по вопросам установки и использования компенсатора в подводных гидравлических системах.
Для всех наших компенсаторов и резервуаров мы предлагаем программы квалификации и испытаний, разработанные с учетом требований наших клиентов. Наши программы включают внутренние и внешние испытания под давлением, функциональные испытания, испытания на усталость и жизненный цикл, испытания в диапазоне температур и испытания на загрязнение.
КАК МЫ СОЗДАЕМ ЦЕННОСТЬ
Решение для любого применения
Благодаря трем различным диапазонам компенсаторов компания Seatools может обеспечить компенсацию подводного давления практически для любого применения. В случае, если наши стандартные компенсаторы не соответствуют вашим требованиям, мы проектируем и поставляем компенсаторы и системы хранения жидкости, изготовленные по индивидуальному заказу, которые оптимизированы для ваших нужд.
Предложение помимо компенсаторов
Мы не только поставляем подводные компенсаторы давления, но и сопутствующие гидравлические компоненты и системы, такие как подводные ГЭС, гидравлические фильтры и клапанные коробки. Помимо этого предложения, мы поставляем полные гидравлические системы, включая все сопутствующие системы, такие как механика, программное обеспечение, электроника и элементы управления. Чтобы гарантировать правильную доставку с первого раза при вводе системы в эксплуатацию, мы также моделируем электрогидравлические системы спереди назад.
Высококачественные решения
В течение последних 15 лет наши компенсаторы использовались повсеместно. Отзывы, которые мы получили от наших клиентов, привели к созданию подводных компенсаторов самого высокого уровня качества.
Стандартный компенсатор серии
- Базовая серия
- Расширенная серия
- Серия со сверхдолгим сроком службы
Экономичный компенсатор облегченной конструкции
Ряд экономичных подводных компенсаторов давления облегченной конструкции и объемом от 0,6 до 6 литров. Поскольку масса является важным критерием конструкции ROV, наши легкие компенсаторы базовой серии идеально подходят для применения в ROV.
ПОДРОБНЕЕ
Серия подводных компенсаторов высокого класса с широкими возможностями индивидуальной настройки
Высококачественные подводные гидравлические компенсаторы с объемом компенсации от 0,6 до 15 литров. Проверенные временем, высоконадежные и прочные конструкции, выдерживающие относительно высокое избыточное давление. Широко настраиваемый, с вариантами гидравлических соединений, электрических соединений, измерения уровня и т. д.
ПОДРОБНЕЕ
Серия компенсаторов для постоянного подводного применения
Гидравлические компенсаторы для постоянного подводного применения, такие как резервуары с управляющей жидкостью, встроенные в подводные системы добычи. Благодаря оригинальной конструкции минимальное количество движущихся частей подвергается воздействию морской воды, что обеспечивает срок службы компенсатора более 20 лет. Объем компенсаторов варьируется от 20 до 200 литров.
ПОДРОБНЕЕ
КОНТАКТЫ
Хотите обсудить ваш проект с нашими специалистами?
Когда и как регулировать гидравлический насос, чувствительный к нагрузке
Насосы с переменным рабочим объемом используются в гидравлических системах, где требования к потоку меняются. Обычно это означает, что в системе имеется несколько приводов, и в зависимости от текущего цикла машины количество приводов, перемещающихся в данный момент времени, будет колебаться. Наиболее распространенным типом насосов с переменным рабочим объемом являются насосы с компенсацией давления.
Насосы с компенсацией давления
Насосы с компенсацией давления рассчитаны на подачу только той величины потока, которая необходима системе для достижения максимальной эффективности и предотвращения тепловыделения. Компенсатор настраивается на давление, несколько превышающее то, которое требуется для перемещения самой тяжелой нагрузки системы.
Насос с компенсацией давления будет подавать максимальный поток до тех пор, пока давление в системе не достигнет настройки компенсатора. Как только настройка компенсатора будет достигнута, насос будет остановлен, чтобы подавать только тот объем потока, который поддерживает настройку компенсатора в линии.
Всякий раз, когда системе требуется больший поток (например, когда дополнительный привод начинает двигаться), насос увеличивает свой ход, чтобы удовлетворить новую потребность в потоке. Всякий раз, когда необходимо уменьшить расход системы (например, когда один или несколько приводов остановлены), ход насоса уменьшается.
При полной остановке системы ход насоса уменьшается почти до нуля. Он будет перемещать только очень небольшое количество или все, что требуется для поддержания настройки компенсатора в линии, преодолевая любой обход системы или утечки. В то время как насос с компенсацией давления работает эффективно, резервное давление остается высоким.
Регулировка насосов с компенсацией давления
Регулировка насоса с компенсацией давления довольно проста. Когда весь поток перекрыт, а система простаивает, компенсационный клапан настраивается на желаемое давление. Однако некоторые насосы с компенсацией давления имеют два клапана, установленных на корпусе насоса.
Эти две корректировки могут выглядеть почти одинаково. Этот тип насоса с компенсацией давления называется насосом с измерением нагрузки. Вторая регулировка называется клапаном, чувствительным к нагрузке, или клапаном компенсации расхода.
Насос, чувствительный к нагрузке, предназначен для снижения своего давления до гораздо более низкого уровня ожидания, когда система простаивает. Это может экономить энергию и снижать нагрев и износ систем, которые проводят значительное количество времени в состоянии простоя.
Две отдельные регулировки давления позволяют настроить компенсационный клапан на требуемое максимальное давление в системе, а регулировку в зависимости от нагрузки — на гораздо более низкое давление в режиме ожидания.
Всякий раз, когда система перемещает груз, регулировка высокого давления ограничивает давление в системе. Например, при выдвижении цилиндра давление в системе будет увеличиваться настолько, насколько это необходимо для перемещения груза. В конце концов, цилиндр достигает конца своего хода, и поток блокируется.
Когда поток блокируется таким образом, давление в системе не может подняться выше, чем уставка компенсатора, но до тех пор, пока не будет перемещен другой груз, нет необходимости поддерживать такое высокое давление в системе.
Большинство систем измерения нагрузки имеют какой-либо направляющий клапан нагрузки насоса, который может переводить систему в состояние холостого хода до тех пор, пока не потребуется переместить другую нагрузку. Когда нагрузочный клапан насоса смещается, давление в системе падает до гораздо более низкого значения настройки клапана, чувствительного к нагрузке.
Клапан, чувствительный к нагрузке, обычно меньше компенсационного клапана и, как правило, устанавливается непосредственно над компенсатором. Компенсационный клапан находится ближе к насосу. Чувствительный к нагрузке клапан имеет заводскую настройку и обычно не требует регулировки во время первоначальной настройки насоса. В большинстве насосов заводская настройка составляет примерно 200-300 фунтов на квадратный дюйм (psi).
Наиболее распространенная причина регулировки клапана измерения нагрузки заключается в том, что кто-то, не знакомый с насосом, по ошибке попытался установить максимальное давление в системе, отрегулировав клапан измерения нагрузки вместо компенсатора. Это может привести не только к нестабильному давлению в системе, но и в некоторых случаях к аннулированию гарантии на насос.
Типичная конфигурация насоса с компенсацией давления показана на рисунке 1. Клапан загрузки насоса используется для определения того, простаивает ли система или готова ли она перемещать нагрузку. Клапан загрузки насоса обесточивается всякий раз, когда система простаивает.
Управляющее давление на левой стороне клапана измерения нагрузки затем сбрасывается в бак. Линия управления с правой стороны клапана измерения нагрузки соединяется с напорной линией на выходе из насоса. Давление в системе смещает клапан, чувствительный к нагрузке, и направляет давление для уменьшения хода насоса, так что давление в системе падает до значения 300 фунтов на квадратный дюйм, как показано на рис. 2.
Когда груз должен быть перемещен, на клапан загрузки насоса подается питание. Это направляет управляющее давление на левую сторону чувствительного к нагрузке клапана, удерживая его от смещения. Давление в системе смещает клапан компенсатора, чтобы уменьшить ход насоса точно на величину, необходимую для ограничения давления в системе до настройки компенсатора, 3000 фунтов на квадратный дюйм, как показано на рис. 3.
Чтобы настроить давление, всегда сначала регулируйте клапан измерения нагрузки. Насос должен быть остановлен путем закрытия ручного клапана. Когда клапан загрузки насоса обесточен, давление будет расти только до текущей настройки клапана измерения нагрузки. Отрегулируйте чувствительный к нагрузке клапан на желаемое давление.
После настройки клапана измерения нагрузки подайте питание на клапан загрузки насоса. Затем давление в системе будет соответствовать текущей настройке компенсатора. Отрегулируйте компенсатор до нужного значения. Откройте ручной клапан, и систему можно будет снова ввести в эксплуатацию.
Существует несколько вариантов этого дизайна. Иногда для определения наличия нагрузки используется дроссельный клапан. Падение давления, возникающее при прохождении масла через дроссельную заслонку, сигнализирует о необходимости повышения давления в системе.