Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

ТУРБОНАГНЕТАТЕЛЬ. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ. Турбонагнетатель механический


в чем разница / Мужское / Лента.co

   Читать оригинал публикации на 1gai.ru   

В чем разница между электрическими турбинами и электрическими нагнетателями?

Что такое турбонаддув знают те, кто любят впихивать одну деталь в другую, то есть мы с вами. Совсем недавно появились электрические варианты турбины и нагнетателя с механическим приводом (или суперчарджера). Что представляют из себя электрические варианты этих компрессоров и как они работают? 

Прежде чем мы перейдем к обсуждению, давайте освежим наши знания о работе турбин и суперчарджеров. По сути, оба эти устройства увеличивают плотность топливовоздушной смеси, которая поступает в двигатель внутреннего сгорания, где происходит компрессия и возгорание смеси.  Чем выше плотность топливовоздушной смеси, тем мощнее будет ход поршня и работа двигателя, даже без увеличения физического объема цилиндров двигателя.

Именно поэтому небольшие двигатели с турбонаддувом оказываются мощнее своих более крупных аналогов: двигатель получает больше мощности от каждого хода поршня. Как можно увеличить эту плотность? Посредством компрессии поступающего воздуха при помощи нагнетателя. Если нагнетатель работает от ременного привода двигателя, то это нагнетатель с механическим приводом. Если же от турбины, которая извлекает энергию из потока выхлопных газов, то это турбонагнетатель.

Недостаток турбонагнетателя заключается в том, что двигателю нужно некоторое время, чтобы произвести достаточное количество выхлопных газов. Эта досадная заминка называется турбояма. У суперчарджера нет такой задержки, но, чтобы раскрутить турбину, двигателю тоже нужно время, что сказывается на его эффективности. 

Можно предположить, что если к этим системам была добавлена «электрическая» функция, то этих недостатков больше не будет. И это будет правдой. 

На самом деле, я хочу рассказать о трех механизмах: электрический механический наддув, электрический турбонаддув и ту ерунду, которую продают в Интернете. Сразу избавляемся от того, что предлагают в Интернете. А что именно предлагают, например, на eBay можно посмотреть по ссылке.

Сразу скажу, что это не вариант сделать свой PT Cruiser еще мощнее. Это способ присоединить бесполезный откачивающий насос или вентилятор от компьютера к воздухозаборнику непонятно с какой целью. Вы все равно не увидите никаких изменений. Все эти штуки, которые соединяются с вашей 12-вольтовой электрической системой, чтобы запустить «компрессор» - полная дрянь.

В лучшем случае, эти чудеса техники соединятся с генератором, чтобы запустить бесполезный вентилятор, у которого все равно не хватит мощности для нормальной компрессии. Скорее всего, вы, наоборот, потеряете немного мощности из-за ограниченного потока нагнетаемого воздуха. Как говорится, не дайте себя обмануть. 

Итак, настоящие электрические механические нагнетатели все же существуют и по сути, это такие же нагнетатели, как и те, к которым мы привыкли. Они также раскручивают компрессор, чтобы увеличить плотность воздуха, но вместо ременного привода, они работают от электромотора.

Но электромотор — это не та 12-вольтовая пустышка с eBay. Здесь потребуется как минимум 48-вольтовая система. Компрессия воздуха потребляет очень много энергии, поэтому возникают трудности с разработкой электрических систем.

Большинство аккумуляторов и традиционных электрических систем в автомобилях просто не смогут обеспечить такой объем мощности достаточно быстро, чтобы запустить электрический суперчарджер. По этой причине, электрические суперчарджеры обычно идут вместе с суперконденсаторами большой емкости, которые могут хранить энергию и затем очень быстро выдавать электрическую энергию. Такие конденсаторы также можно перезаряжать, как электрические и гибридные автомобили по принципу рекуперативного торможения.

Например, Mazda уже использует суперконденсатор в своей системе i-eLoop в гибридных автомобилях. И хотя это не электрический суперчарджер, это все равно достаточно большой конденсатор, который уже производится и устанавливается в автомобили. Это дает нам надежду, что данная технология скоро станет повсеместной.

Электрические турбонаддувы сбивают с толку и заставляют нас думать, что они отличаются от электрических суперчарждеров. На самом деле, от электрического турбонаддува в них не так и много. Это просто электрические суперчарджеры небольшого размера, соединенные с обычным турбонагнетателем, работающим на потоке выхлопных газов.

Даже по определению, турбонагнетатель получает энергию от выхлопных газов, поэтому полюбившийся термин «электрический турбонагнетатель» просто не имеет никакого смысла.

По большому счету, главная задача электрического турбонагнетателя — избавиться от турбоямы и помочь обычному турбонагнетателю, пока скорость двигателя не достигнет точки, в которой турбина максимально эффективна.  Для этого, электрический турбонагнетатель (который может располагаться там же, где и обычный турбонагнетатель или отдельно, но работающий от того же импеллера) раскручивает компрессор на старте и на малых оборотах, а, когда объем выхлопных газов будет достаточным, он передает работу обычному турбонагнетателю. 

Не знаю, я бы сказал, что это просто электрический помощник, но не самостоятельная система. Такая гибридная система устраняет турбояму и, конечно, вам понравится мощность на всех скоростях двигателя. Требования к мощности автомобиля с электрическими системами менее жесткие, чем к автомобилям с электрическим суперчарджером. Так как турбина эффективно извлекает энергию из отработанных газов, то в целом эта задумка получается эффективней, чем электрический суперчарджер.

Подведем итог: электрический суперчарджер — это электрический механический нагнетатель, управляемый электрическим мотором (обычно) с неким источником хранения энергии. Электрический турбонагнетатель — это электрический суперчарджер, который работает вместе с обычным турбонагнетателем. Наконец, электрический суперчарджер на eBay за 50 баксов — это полная ерунда, которую вы приделаете к своему двигателю просто так для красоты.

Ну как, все понятно? Отлично!

lenta.co

Турбонагнетатель | Тюнинг ателье VC-TUNING

Турбокомпрессоры и турбонагнетатели устанавливаются не только на автомобилях, но и самолетах, поездах, кораблях и других видах транспорта. Система была изобретена швейцарским инженером Альфредом Бюхи, который запатентовал свой турбонагнетатель для двигателя внутреннего сгорания в 1905 году. В 1962/63г. компания Шевроле (General Motors) впервые установила систему турбонаддува на серийный автомобиль, хотя можно предположить, что турбонагнетатели использовались еще в далеком 1952 году, но исключительно на гоночных автомобилях. Как пример, не стоит забывать об успехах Audi Quattro на мировых ралли в 1980-х. Вначале 1980-х с конвейера сошло много машин с турбонаддувом. Некоторые модели были очень достойными, несмотря на ранний этап развития данной области.Как работает система турбонаддуваКак и механические нагнетатели (cуперчарджеры), турбонаддув нагнетает воздух под давлением в двигатель с тем, чтобы увеличить количество кислорода, необходимого для горения. При этом мощность автомобиля увеличивается, но вместе с этим возрастает и расход топлива. Однако, в отличие от компрессоров, турбонаддув использует поток выхлопных газов, который заставляет вращаться турбину. Скорость вращения турбины может достигать 150 000 оборотов в минуту.

Турбины крепятся к выпускному коллектору. Внутри турбин имеются лопасти. Они вращаются под действием выходящего потока выхлопных газов. Турбина соединяется с компрессором посредством вала. Он передает вращение компрессору, который нагнетает воздух в цилиндры.В большинстве турбонаддувов предусмотрен гидростатический подшипник. Он нужен для постоянной смазки вала маслом, поступающим по специальным каналам от двигателя к подшипникам.Так масло подается на вал и смазывает его тонким слоем во время работы. Это обеспечивает свободное вращение вала и охлаждение всех частей турбонаддува.

Современные модели турбонаддувов считаются более надежными, поскольку при их разработке были учтены все недочеты и слабые места предыдущих конструкций.

Установка турбонаддуваЕсли не сделать настройку, скорее всего, количество поступающего воздуха не будет учтено в программе, а это повлечет плохую работу системы или того хуже. .Также важно учитывать сопротивление двигателя. Поскольку воздух имеет свойство расширяться при нагревании, он создает дополнительное давление, которое в свою очередь увеличивает нагрузку на двигатель. Однако на многих современных двигателях вместе с установкой системы турбонаддува ставятся дополнительные устройства. Для этого лучше обратиться к специалистам, которые знают все нюансы работы по установке турбонаддувов.

Сжатый воздух имеет высокую температуру. Чтобы его охладить и увеличить плотность для лучшего горения смеси, необходим интеркулер (воздушный радиатор, который охлаждает воздух).Важно отметить, что, если сжатый воздух очень горячий, его подача слишком интенсивная, и при этом используется бензин с низким октановым числом, а зажигание выставлено на опережение, это может спровоцировать детонацию двигателя. Детонация – самопроизвольное возгорание рабочей смеси в цилиндре (бензин и воздух), в результате которой образуется ударная волна, способная вывести из строя двигатель.Если компрессор начинает «травить», это может вызвать повреждение двигателя и турбин. Предохранительные клапаны разработаны с целью, не допустить движение воздуха в компрессоре в обратном направлении.Автомобили с турбонаддувомМногие производители выпускают автомобили, оснащенные системой турбонаддува. Все, что нужно знать о турбонаддувеБольшой наддув или маленький, что выбрать?Турбонаддувы, как известно, «страдают» задержкой (турболаг). Для того, чтобы турбина начала разгоняться нужно время. Сократить время разгона можно посредством уменьшения веса вращающихся частей. По причине легкой массы небольшие турбины меньше подвержены турболагу, чем более крупные. Но в то же время у больших турбин большее давление нагнетателя, соответственно больший наддув на высоких оборотах двигателя. Существует множество способов минимизировать время разгона турбины, поэтому турболаг не так уж и заметен на современных авто.

Для борьбы с турболагом можно использовать систему твин-турбо. Малая турбина ускоряет наддув, а большая обеспечивает быстрое повышение давления наддува.Перепускной клапан турбокомпрессора (вестгейт)Перепускной клапан позволяет устанавливать турбины меньшие по размеру, так как сокращает любые задержки (турболаги) и в то же время не дает слишком сильно вращаться турбине на высоких оборотах двигателя. Клапан обеспечивает нормальный выход выхлопных газов через лопасти турбины даже при высоком давлении и одновременно замедляет скорость их вращения. Во многих системах турбонаддува применяется внутренний перепускной клапан. Дизели (не все) обходятся без вестгейта, поскольку количество и давление выхлопных газов всегда под контролем, так как зависит от количества, поступающего в двигатель топлива. Небольшие колебания давления наддува никак не влияют на работу двигателя.ПодшипникиИногда в турбонаддувах используются шариковые подшипники. Они уменьшают трение вала во время его вращения лучше, чем подшипники, смазываемые маслом. Они также облегчают вес вала. Это помогает турбокомпрессору быстрее разгоняться и сокращает турболаг.Керамические лопасти турбиныЛопасти из керамики обладают меньшим весом, чем лопасти из стали, хотя последние наиболее часто устанавливаются в турбинах. Поскольку керамические лопасти облегчают вес турбины, они позволяют ей набирать скорость вращения быстрее и сокращают турболаг.Интеркулер/охладитель нагнетаемого воздухаИнтеркулер – полезная вещь. По внешнему виду напоминает радиатор. Его предназначение – охлаждать горячий воздух, проходящий через него, холодным воздухом, поступающим снаружи от вентилятора. Охлажденный воздух имеет большую плотность, а, следовательно, в нем содержится больше кислорода, необходимого для горения. Это увеличивает мощность автомобиля (кислород + бензин = мощность).Регулятор давления наддуваНаддув – это увеличение давления во входном коллекторе, который измеряется в PSI (фунт на квадратный дюйм). Важно остаться в диапазоне регулирования. Качество бензина, равно как и эффективное охлаждение нагнетаемого воздуха, влияет на то, какое будет давления наддува.Регулятор давления может быть использован, чтобы обмануть датчик давления, который распознает меньший импульс и откроет перепускной клапан позже. Это происходит благодаря сокращению давления, поступающего в перепускной клапан, следовательно, наддув увеличивается. Есть регуляторы давления наддува, которые управляются бортовым компьютером.Предохранительный клапан (клапан сброса давления) – антинагнетающий вентиль, перепускной клапан, клапан отвода.Когда вы отпускаете педаль газа, воздух из системы турбонаддува выходит под давлением и можно услышать характерный звук. Перечисленные выше клапаны предназначены для сброса сжатого воздуха, который находится в турбинах. Как только вы отпускаете педаль газа, срабатывает клапан, но турбина при этом продолжает вращаться. Если этого не происходит, значит, произошла поломка системы турбонаддува или других деталей вследствие избыточного давления.Тем не менее, предохранительный клапан (сброса давления) отличается от перепускного (клапана отвода). Предохранительный клапан сбрасывает воздух в атмосферу без учета того, что датчик массового потока воздуха будет все еще ждать, когда выпущенный воздух пойдет в двигатель. Это приводит к тому, что образуется и горит несгоревшее топливо, поскольку двигатель продолжает работать. А поскольку он продолжает работать, то блоком управления подается команда на впрыск топлива, которого итак в избытке. Это грозит поломкой двигателя. Перепускной (клапан отвода) перенаправляет воздух обратно в компрессор, поэтому количество воздуха в системе остается неизменным. У предохранительного клапана нет преимуществ по сравнению с перепускным и наоборот. Поэтому устанавливать можно и тот, и другой, разницы не будет, за исключением, конечно, характерного звука, издаваемого предохранительным клапаном.ТурботаймерПомогает двигателю остыть. Даже при полной остановке автомобиля и без ключа в замке зажигания, это устройство обеспечивает работу двигателя на холостом ходу. В это время масло продолжает циркулировать и охлаждать турбину. Важно дать турбине остыть, поскольку масло, смазывая турбину, может нагреться до предела и отвердеть. Коксование масла крайне опасно – приводит к поломке двигателя.Датчик давления турбиныПомогает постоянно следить за давлением наддува. Необходим, как при оптимальных настройках системы, так и при завышенных.Синтетическое маслоТурбонаддувы требуют частой замены масла, причем оно должно быть синтетическим. Грязное или некачественное масло может повредить всю систему. Синтетическое масло обладает лучшими характеристиками, и предотвращает быстрый износ деталей.

Бензин с высоким октановым числомРекомендуется использовать бензин с более высоким октановым числом, чтобы избежать детонации двигателя. Супер неэтилированный бензин с октановым числом 97 RON считается лучше и стоит дороже, чем неэтилированный с числом в 95 RON.Преимущества и недостатки турбонаддуваПреимущества:

vc-tuning.ru

Турбонагнетатель Википедия

Нагнетатель — механический агрегат, опционально применяемый на поршневых и роторно-поршневых двигателях внутреннего сгорания (далее — ДВС), работающий за счёт того или иного вида энергии, получаемой в процессе работы самого ДВС, и осуществляющий наддув, то есть принудительное нагнетание воздуха в ДВС с целью его всережимной форсировки или (в отдельных случаях) продувки.

Нагнетатель как элемент агрегатного наддува

Применение нагнетателя и его функции
Работа нагнетателя на двухтактном и четырёхтактном моторах

Нагнетатель может применяться на поршневых и роторно-поршневых ДВС, работающих по любому термодинамическому циклу и с любым числом тактов. Для большинства типов подобных ДВС нагнетатель является опциональным элементом конструкции, не влияющим на принципиальную возможность работы самого ДВС. Основная задача нагнетателя здесь — наддув с целью повышения мощности. Под наддувом подразумевается в первую очередь принудительное нагнетание воздуха в ДВС с давлением выше текущего уровня атмосферного, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, в свою очередь, согласно правилу стехиометрической горючей смеси для конкретного типа двигателя, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) на любой сравнимой с безнаддувным двигателем частоте вращения коленвала/ротора. В рамках этой задачи наддув с помощью нагнетателя есть лишь один из возможных методов форсировки и/или повышения КПД, и наличие или отсутствие нагнетателя определяется лишь целями и бюджетом разработчиков конкретного мотора. Исключением из этого правила является только некоторые типы двухтактных поршневых ДВС, где нагнетатель в первую очередь выполняет задачу по принудительной продувке цилиндров на стыке двух рабочих тактов и присутствует во впускной системе такого ДВС практически всегда.

Отсутствие нагнетателя в составе ГТД

В газотурбинных ДВС нагнетатель формально отсутствует. Компрессор, входящий в состав любого газотурбинного ДВС, является абсолютно неотъемлемым элементом конструкции, обеспечивающим принципиальную возможность работы подобного ДВС, и такой компрессор в русскоязычном инженерно-техническом лексиконе нагнетателем не называется, хотя и выполняет функцию принудительного нагнетания воздуха.

Типы нагнетателей по их энергетическому приводу

Нагнетатель работает за счёт того или иного вида энергии, получаемой с самого ДВС либо напрямую, либо опосредованно. Возможно использование энергии выхлопных газов, механической энергии вращения валов ДВС, электрической энергии. В зависимости от своего энергетического привода конструкция нагнетателя имеет свои технические особенности и своё собственное название. Нагнетатели, работающие от энергии выхлопных газов, называются турбонагнетателями, от механического привода — приводными нагнетателями. Также есть нагнетатели, работающие от электрической энергии, но для их описания устоявшийся русскоязычный термин пока отсутствует и их можно называть как электронагнетателями, так и нагнетателями с электроприводом.

Смысл терминов «нагнетатель» и «компрессор»

Важным элементом нагнетателя является воздушный компрессор, который присутствует в конструкции абсолютно любого нагнетателя, независимо от его энергетического привода. При этом контексте агрегатного наддува оба термина — и нагнетатель и компрессор — используются наравне, в том числе в составе сложносоставных слов, типа турбонагнетатель/турбокомпрессор, что у непосвящённых в тему может вызвать вопросы к смысловым оттенкам терминов. Следует понимать, что с точки зрения семантики термин «нагнетатель» подразумевает функцию всего агрегата в целом, а «компрессор» — наименование энергетической машины и главного исполнительного узла абсолютно любого нагнетателя. В русскоязычном речевом обиходе равноправное использование обоих терминов применительно к наддуву фактически допустимо, а оба слова, как в простом, так и в сложносоставном виде в данном случае могут считаться синонимами.

В теории лопастных машин термины "нагнетатель" и "компрессор" не тождественны. Обычно лопастные машины, повышающие давление потока не более, чем на 10%, относят к вентиляторам; на 20...25% - к нагнетателям; большие давления соответствуют компрессорам. В обиходе нагнетатель в сборе часто называют "турбиной", хотя в приводном нагнетателе турбина вообще отсутствует, а в газотурбинном является лишь приводом нагнетателя/компрессора.

Турбонагнетатель

Турбонагнетатель в сборе. Турбина слева, компрессор справа Простой турбонагнетатель фиксированной геометрии в разрезе

Таковым является нагнетатель, конструкция которого включает в себя миниатюрную турбину, а принцип работы основан на использовании энергии потока выхлопных газов самого мотора, на который осуществляется наддув. Выхлопные газы, воздействуя на турбину, располагающуюся в выпускной системе сразу за выпускным коллектором, раскручивают её, а она передаёт энергию вращения на компрессор. Принципиальная конструкция каждого из двух исполнительных узлов турбонагнетателя в общем и целом идентична для любой разработки, доведённой до стадии работающего агрегата, и предполагает одну одноконтурную турбину и один центробежный компрессор. При этом фактическая конструкция турбины, компрессора, вала и корпуса может быть весьма различной: так, помимо канонических простых совмещённых турбонагнетателей фиксированой геометрии на подшипниках скольжения, возможно применение турбин изменяемой геометрии, применение двойных спиральных каналов подвода газов к турбине (так называемый Twin-Scroll), применение двойных каналов выхода воздуха с компрессора, разнесение турбины и компрессора на существенное расстояние друг от друга, применение керамических роторов, установка вала на подшипниках качения. Важными (хотя и не особо декларируемыми) критериями мощности и эффективности турбонагнетателя являются наружные диаметры его турбинного и насосного колёс (что можно примерно оценить визуально по размеру корпуса), частота вращения ротора и величина турболага, присущего всем без исключения турбинам.

Турбонагнетатель всегда работает в режиме высоких температур выхлопных газов, а подшипники вала турбонагнетателя являются самой термонапряжённой деталью мотора, которая контактирует с моторным маслом, что накладывает особые требования как к технологии производства деталей, составляющих турбонагнетатель, так и к качеству масла и его ресурсу. И то и другое долгое время было одним из сдерживающих технологических факторов для какого-либо массового внедрения турбонагнетателей на бензиновых моторах .

Любой бензиновый мотор с турбонагнетателем изначально проектируется под наддув. Применение турбонагнетателя на бензиновом моторе, изначально спроектированном как , без переделок в принципе возможно, но приведёт к быстрому (если не моментальному) разрушению такого мотора при работе. Необходимость постоянного контроля детонации требует наличия некоей управляющей электроники, что обычно подразумевает систему питания мотора на основе электронного (или как минимум электронно-механического) впрыска. Массовые карбюраторные моторы с турбонагнетателями были крайне редки ввиду чрезмерной механической сложности своих систем питания. Широкое применение турбонагнетатели получили на дизельных моторах коммерческого транспорта — на моторах грузовиков, тракторов, локомотивов, судов. Здесь разрешающими факторами стали повышенная детонационная стойкость дизельных моторов и их более высокий КПД, предполагающий меньший уровень теплового излучения, относительная нетребовательность к эффективности работы мотора коммерческого транспорта в переходных режимах, достаточное пространство моторного отсека.

Особенностью работы турбонагнетателя в сравнении с другими агрегатами наддува является то, что в случае его применения эффект от наддува всегда превышает энергетические затраты на наддув. То есть, для любого мотора, оснащённого турбонагнетателем, всегда возможно получить такой режим наддува, который форсирует мотор настолько, что разрушит его. Мощность любого мотора с турбонагнетателем в 100% случаев ограничивается прочностью самого мотора, его моторесурсом, а не эффективностью турбонагнетателя. Необходимость ограничения эффекта наддува есть причина того, что турбонагнетатель никогда не применяется на моторах сам по себе, а только комплексно в составе системы турбонаддува, в которой он является основным её элементом, но не единственным.

Приводной нагнетатель

Объёмный приводной нагнетатель Roots Объёмный приводной нагнететель PowerPlus на основе шиберного пластинчатого насоса

Таковым является нагнетатель, конструкция которого состоит из компрессора и некоего механического привода, посредством которого, в свою очередь, и обеспечивается работа нагнетателя за счёт использования мощности, получаемой с мотора, на который осуществляется наддув. Единого общего вида у приводного нагнетателя нет. Исходя из принципов работы своего компрессора приводные нагнетатели могут быть объёмные, то есть осуществляющие наддув импульсно порциями некоего фиксированного объёма, и динамические, то есть осуществляющие наддув непрерывным потоком. В группу объёмных нагнетателей попадают такие конструкции как: кулачковые (американские Roots, Eaton), винтовые (американский Lisholm, немецкий Mercedes 2000-х годов), спиральные (немецкий G-Lader, применявшийся на Volkswagen 1990-х), шиберные (британский нагнетатель PowerPlus для довоенных MG и Rolls-Royce Merlin). Динамические приводные нагнетатели известны только центробежного типа, известных собственных названий они обычно не имеют, а их конструкция более-менее универсальна и в общем и целом схожа с конструкцией некоего канонического центробежного компрессора. В обоих случаях, независимо от типа компрессора, конструкция его механического привода не имеет принципиального значения для работы нагнетателя в целом, с теми лишь особенностями, что привод компрессора имеет повышающее передаточное отношение (порядка 0,15-0,08), а иные конструкции привода позволяют включать/отключать нагнетатель (в том числе по аналоговому принципу) по команде водителя или блока управления. Сами приводы возможны промежуточными валами, шестернями, зубчатыми ремнями, цепями, набором трапецеидальных ремней, а также прямые приводы с торцов коленчатого или распределительного валов. В случаях отключаемого привода используются муфты различной конструкции.

Особенностью работы приводного нагнетателя в сравнении с другими агрегатами наддува является то, что на его привод мотор вынужден расходовать существенную часть своей так называемой индикаторной мощности. Это приводит к тому, что все моторы с приводными нагнетателями имеют высокий удельный расход топлива, который может в разы превышать удельный расход топлива безнаддувного мотора сравнимой нетто-мощности. На высоких оборотах мотора затраты мощности на привод нагнетателя растут нелинейно относительно роста отдачи от его применения, что ещё более увеличивает значения удельного расхода топлива, а сама разница между индикаторной мощностью и нетто-мощностью на максимальных режимах может достигать значения в 50% от нетто.

Ввиду относительно низкого уровня термонапряжённости при работе, приводные нагнетатели относительно нетребовательны к технологии металлов и качеству смазки, и работоспособный надёжный агрегат наддува на основе приводного нагнетателя был доступен к производству практически одновременно с появлением массовых автомобилей. Однако ввиду требований к точности производства деталей приводные нагнетатели были в любом случае дороги, и их применение в первой половине XX-го века ограничивалось эксклюзивными, псевдоспортивными или гоночными автомобилями. Второй областью применения приводных нагнетателей были поршневые авиамоторы, в которых наддув был призван компенсировать понижение атмосферного давления на высоте и связанное с этим разрежение воздуха. После 2МВ авиация перешла на турбореактивные двигатели, а конструкторы автомобильных моторов пошли по пути безнаддувной форсировки, в результате чего приводные нагнетатели оказались почти забыты, и их уделом остался лишь американский тюнинг или некоторые американские и редкие европейские модели дорожных машин. В начале 2000-х приводные нагнетатели стали появляться на относительно недешёвых дорожных машинах в составе комбинированных агрегатов наддува в паре с турбонагнетателем. Подобные системы наддува применяются до сегодняшнего момента, хотя в последние годы существует тенденция вытеснения комбинированного наддува эффективным всережимным турбонаддувом на основе турбин типа Twin-Scroll или турбин изменяемой геометрии, а также комбинированным наддувом из турбонагнетателя и электронагнетателя.

Специфика применения на автомобильных моторах
Объёмный нагнетатель Roots в работе

На бензиновых моторах серийных легковых автомобилей в случаях разработки мотора под наддув на основе приводного нагнетателя таковой нагнетатель всегда будет только объёмного типа. Обоснованием этого является то важное качество любых объёмных компрессоров, что их производительность всегда имеет линейную зависимость от частоты вращения ротора. Именно поэтому моторы с объёмными нагнетателями удобны для водителя: они работают в переходных режимах не хуже безнаддувных (у них отсутствует какая-либо задержка в раскрутке мотора при нажатии на педаль газа) и увеличивают крутящий момент во всём диапазоне оборотов, что на моторе с объёмным нагнетателем особенно ощутимо на «низах». Также у объёмных нагнетателей есть то конструктивное преимущество, что их применение не требует каких-либо дополнительных управляющих элементов и системах (клапанах сброса давления, электронных блоков управления, дополнительных датчиков), что в периоды отсутствия электронных систем впрыска позволяло легко устанавливать объёмные приводные нагнетатели на карбюраторные моторы или моторы с механическим впрыском. В современных системах комбинированного наддува в случае применения объёмных приводных нагнетателей, таковые отвечают за наддув на низких оборотах мотора и выводятся из работы управляющими системами по достижению достаточного давления наддува параллельно работающего турбонагнетателя.

Центробежный приводной нагнетатель ATI ProCharger

Центробежные нагнетатели также могут применяться на бензиновых моторах легковых автомобилей. Но ввиду того, что в любых центробежных компрессорах зависимость объёма перекачиваемого вохдуха от числа оборотов не является линейной, приводные нагнетатели на их основе делаются либо кратковременно подключаемыми (наподобие машин американского тюнинга), либо устанавливаются на моторы, для которых эффективность работы в переходных режимах и эффективность работы на «низах» не сильно важна (например, машины для гонок на дистанцию в четверть мили). При этом установка подключаемого приводного центробежного нагнетателя на изначально безнаддувный мотор может и не требовать доработок под наддув, если время работы мотора в режиме наддува ограничено. А установка постоянно работающего приводного центробежного нагнетателя помимо доработок под наддув может потребовать наличия клапанов сброса давления (что не нужно в случае объёмных нагнетателей). В любом случае обычные серийные дорожные автомобили приводными центробежными нагнетателями не оснащаются.

И объёмные и центробежные приводные нагнетатели могут применяться не только на бензиновых моторах легковых автомобилей, но и на бензиновых и дизельных моторах тяжёлой техники. Выбор приводного нагнетателя, а не более подходящего турбонагнетателя, здесь, вероятно, объясняется спецификой эксплуатации. Примером первого случая является американский танковый бензиновый мотор Teledyne Continental AVSI-1790; примером второго — советский/российский танковый дизельный мотор В-46.

В современном массовом автомобильном моторостроении использование приводных нагнетателей сходит на нет. Главной причиной этого являются механические потери на привод, выражающиеся в повышенном расходе топлива и повышенных выбросах углекислого газа. Адекватной заменой объёмных приводных нагнетателей сегодня являются турбонагнетатели с турбинами типа Twin-Scroll и с турбинами изменяемой геометрии, а также применение нагнетателей с электроприводом в системах комбинированного наддува, что во всех случаях так или иначе помогает решать проблему турболага в переходных режимах и проблему низкой эффективности обычного турбонаддува на низких оборотах мотора.

Специфика применения на двухтактных моторах
Двухтактный мотор с воздуходувкой (2)

На отдельных типах бензиновых и дизельных двухтактных моторов (с клапанной-щелевой продувкой, со встречным движением поршней), работа которых предполагает относительно невысокие обороты, в качестве неотъемлемого элемента всей конструкции для целей продувки цилиндров на стыке двух рабочих тактов применяются приводные нагнетатели низкого давления. В советском инженерно-техническом лексиконе подобные приводные нагнетатели назывались терминами «воздуходувка» или «продувочный насос». Обеспечиваемое ими давление наддува обычно порядка 0,1-0,2 Бара. На высокооборотных моторах с щелевой продувкой (например, мотоциклетных) подобные воздуходувки/насосы не применяются, и там продувка цилиндров обеспечивается иными способами.

Известны разработки воздуходувок/насосов как на основе объёмных компрессоров, так и на основе центробежных. Пример первого варианта — советский автомобильный дизельный мотор ЯАЗ-206. Пример второго варианта — советский/российский танковый многотопливный мотор 5ТДФ. При этом свойство центробежных компрессоров увеличивать давление наддува с ростом оборотов может использоваться и для целей форсировки мотора в режиме высоких оборотов. Наличие воздуходувки/насоса не отменяет возможности дополнения подобного двухтактного мотора турбонагнетателем, задачей которого является форсировка мотора в чистом виде. Примером таких моторов с турбонаддувом и без будут конструктивно идентичные локомотивные дизели 10Д100 и 2Д100 тепловозов ТЭ10 и ТЭ3.

Электронагнетатель

Схема комбинированного наддува, состоящего из турбины, мотор-генератора, компрессора и аккумуляторной батареи. Работа наддува в режиме турбонагнетателя постоянна, в режиме турбонагнетателя и электронагнетателя — повторно-кратковременна.

Принцип работы электронагнетателя (нагнетателя с электрическим приводом) основан на использовании для привода компрессора электроэнергии из бортовой электрической сети автомобиля. Принципиальная конструкция в общем и целом едина — высокооборотный электромотор и связанный с ним общим валом центробежный компрессор.

Подобные нагнетатели получают распространение на бензиновых моторах легковых автомобилей в последние годы, ввиду широкого внедрения бортовых электросетей с относительно высоким напряжением (~50V) и включением в состав силового агрегата мощных генераторов, аккумуляторов большой ёмкости и конденсаторов. При этом электронагнетатели являются лишь частью общего агрегата наддува и комбинируются с турбонагнетателем (одним или двумя) для совместной работы в рамках функции наддува. Включение электронагнетателя здесь обычно ограничивается переходными режимами работы самого мотора, и в первую очередь такими, на которых эффективность турбонагнетателя низка, например, раскруткой мотора с оборотов холостого хода. В качестве постоянного источника наддува электронагнетатели не применяются, ввиду существенных потерь на перевод механической энергии ДВС в электрическую для питания электромотора и опять в механическую для работы компрессора.

Ссылки

wikiredia.ru

Разница между механическим турбонагнетателем и турбокомпрессором ! - ПОЛЕЗНЫЕ СТАТЬИ - ПОЛЕЗНАЯ ИНФОРМАЦИЯ

Разница между механическим турбонагнетателем и турбокомпрессором !

Задача любого компрессора – увеличение количества воздуха, подаваемого в цилиндры. А, как известно, чем больше воздуха вберет в себя мотор, тем больше он может сжечь топлива, и тем выше будет его крутящий момент. Однако от современного двигателя требуется не только высокая отдача, но и легкость управления. А на это влияют такие параметры, как четкость откликов на нажатие педали газа, равномерность тяги в широком диапазоне оборотов. И здесь результат уже существенно зависит от вида нагнетателя.

 

МЕХАНИЧЕСКИЙ КОМПРЕССОР
   Идея улучшить наполнение цилиндров с помощью компрессора с приводом (как правило, ременным) от коленчатого вала появилась почти одновременно с рождением самого двигателя внутреннего сгорания, то есть в конце 19-го века. А уже в 20-ых годах следующего столетия были выпущены первые компрессорные автомобили.

   Столь быстрому успеху механических компрессоров способствовала их относительная простота и долговечность. При этом наиболее удачным из них оказался нагнетатель, изобретенный братьями Рутс: воздух в нем сжимается двумя роторами, вращающимися в противоположные стороны со скоростью до 20000об/мин.

   Достоинства и недостатки механических нагнетателей обусловлены их жесткой связью с валом мотора. К преимуществам относится эффективный наддув, начиная уже с холостых оборотов двигателя, а так же постоянное поддержание высокого давления во впускном коллекторе, благодаря которому автомобиль следует за педалью газа без каких-либо задержек.

   Главный же недостаток – это отбор мощности у мотора, и, соответственно, увеличение расхода топлива. Причем на мощных компрессорных двигателях эти потери составляют далеко не один десяток лошадиных сил. Но разве можно считать недостатком потребность устройства в энергии для работы? Оказывается можно, ведь есть турбокомпрессоры!

ТУРБОКОМПРЕССОР

   Разумеется, турбонагнетатель – не “вечный двигатель”, но, в отличие от механического компрессора, для сжатия воздуха он использует “бесплатную” энергию выхлопных газов. Действительно, когда в двигателе в конце такта расширения открывается выпускной клапан, то нагретые до 1000 градусов отработавшие газы вырываются из цилиндра под давлением около пяти бар. Поэтому вполне логично поставить на их пути турбину, которая могла бы совершать какую-то полезную работу. Например, нагнетать воздух в цилиндры, как предложил еще 1905 году инженер Альфред Бюи.

   Выдвинутый им принцип турбокомпрессора остался неизменным и до сих пор: к турбине через общий вал пристыковывается центробежный воздушный насос, нагнетающий воздух в цилиндры. Соответственно, чем сильнее отработавшие газы раскручивают ротор турбины, тем большее давление обеспечивает компрессор.

   Однако в производстве такие агрегаты отнюдь не просты, ведь подшипники вала должны выдерживать крайне высокие температуры и огромные, до двухсот тысяч оборотов в минуту(!), скорости вращения. Из-за этого приходится, например, включать турбокомпрессор в единую систему смазки двигателя.

   Другой проблемой турбонаддува является его инерционность, то есть задержки между нажатием водителя на газ и началом интенсивного разгона - драгоценное время уходит на раскручивание турбины. А при низких оборотах двигателя турбокомпрессор и вовсе оказывается беспомощным – потока выхлопных газов просто не хватает для интенсивной раскрутки ротора.

ПЕРСПЕКТИВЫ

   Одно время механические и турбинные нагнетатели являлись полноценной альтернативой друг другу. Но сейчас, когда счет идет на каждый грамм CO2, их пути расходятся. Турбокомпрессоры перестали быть исключительно средством установления рекордов мощности: теперь они помогают создавать экономичные компактные, но при этом динамичные моторы, такие как, например, агрегаты Audi TFSI. А с врожденными недостатками борются с помощью изменяемой геометрии лопастей, или просто установкой вместо одного большого турбокомпрессора двух маленьких, обладающих существенно меньшей инерционностью.

   Что же до механических нагнетателей, то они сдают позиции – уж слишком велики потери мощности. Однако, подключаясь по мере необходимости, они вполне могут дополнять турбонаддув, устраняя задержки и помогая ему на низких оборотах, что и продемонстрировал Volkswagen своим необычным мотором TSI. И если этот двигатель пройдет испытание временем, то, может быть, в будущем давние конкуренты – турбонаддув и механический компрессор - вновь встретятся лицом к лицу, но на сей раз уже в качестве партнеров.

masterturbo.ucoz.ru

ТУРБОНАГНЕТАТЕЛЬ. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Что такое турбонагнетатель? Это компрессор, призванный нагнетать воздух, но его привод осуществляется не от коленвала через ременную передачу, а используя энергию отработавших газов. Рассмотрим устройство и принцип работы турбонагнетателей.

ПРИНЦИП РАБОТЫ ТУРБОНАГНЕТАТЕЛЯ

Работа турбонагнетателя предельно проста. Выхлопные газы, проходя в турбину, приводят во вращение ротор. Колесо центробежного компрессора жестко закреплено на оси ротора и вращается с той же скоростью.

Чем большей энергией обладают выхлопные газы, тем быстрее вращаются колеса турбины и, соответственно, компрессоры. Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, тем выше мощность. При этом частота вращения турбокомпрессора может быть очень и очень высокой – 150 тыс. об/мин.

Большинство турбонагнетателей имеют механизм изменения геометрии турбины. Дополнительное кольцо с управляемыми направляющими лопатками позволяет поддерживать поток выхлопных газов не только постоянным, но и управлять им. Так, на низких оборотах, когда поток невелик, поперечное сечение турбины уменьшается, что увеличивает скорость газов, поступающих на колесо, повышая ее мощность. На высоких же оборотах лопасти полностью открывают вход газам, увеличивая пропускную способность турбины.

Такое гибкое управление позволяет не только расширить диапазон эффективной работы турбонагнетателя, но и существенно снизить потребление топлива и вредные выбросы. Турбонагнетатель с изменяемой геометрией турбины обеспечивает эффективную работу не только на высоких, но и на низких оборотах двигателя.

ПЛЮСЫ И МИНУСЫ ТУРБОНАГНЕТАТЕЛЕЙ

Преимущество в том, что, в отличие от механических нагнетателей, приводимых от коленчатого вала и отнимающих мощность непосредственно у двигателя, турбонагнетатели используют фактически дармовую энергию, которая в обычном двигателе попросту выбрасывается из выхлопной трубы. Это делает турбонагнетатели более эффективными, нежели механические.

Одновременно турбонаддув позволяет получить высокие мощности – свыше 300 л. с. с одного литра объема. Двигатель с турбонагнетателем имеет мощность на 40% выше, чем без него. Как ни странно, но турбированные двигатели более экономичны. Низкое КПД двигателя внутреннего сгорание обусловливается потерями на трение и низкой тепловой эффективностью. С увеличением размеров мотора эти потери резко увеличиваются. Небольшие турбированные моторы в этой связи более предпочтительны.

Турбонагнетатели несовершенны и обладают рядом проблемных мест. Самое заметное – эффект «турбоямы». Отсутствие механической связи между компрессором и двигателем приводит к несоответствию между требуемой мощностью, задаваемой водителем педалью «газа» и производительностью компрессора.

Недостатком турбокомпрессоров считается невысокая эффективность работы на малых оборотах двигателя. Но и эта проблема находит свои решения. Турбины с переменной геометрией, установка двух и более турбин, работающих параллельно (системы bi-turbo), позволяют повысить отдачу системы.

Турбокомпрессоры имеют те же недостатки, что и центробежные нагнетатели. Для эффективной работы они должны вращаться с очень высокой скоростью. Плюс высокий нагрев (порядка 1000 °С), сложности в смазке, отводе тепла. Повышенные температуры сказываются не только на смазке деталей турбонагнетателя, но и на нагнетаемом воздухе: его охлаждение оказывается острым вопросом. Для эффективного охлаждения интеркулер рассчитывается и подбирается с особой тщательностью.

Как и в любом нагнетательном устройстве, в турбонагнетателе необходим клапан, спускающий излишнее давление. С турбиной еще сложнее. Здесь нужно не только следить за давлением наддува, но и перепускать выхлопные газы, чтобы снизить избыток давления в выпускном коллекторе, и исключить чрезмерно высокую скорость вращения ротора на высоких оборотах двигателя.

Нужно сказать, что после работы на повышенных оборотах турбина должна «отдохнуть» на холостых оборотах. Поработав так несколько минут, турбина остывает, и ее можно остановить. Устройство, именуемое турботаймером, позволяет при выключении зажигания глушить двигатель через время, которое можно запрограммировать, либо оно определяется автоматически, исходя из температуры мотора. В отсутствие такого прибора водитель должен обеспечить «режим остывания» самостоятельно.

МЕХАНИЧЕСКИЕ НАГНЕТАТЕЛИ ИЛИ ТУРБОНАГНЕТАТЕЛИ?

Сравнивая нагнетатели с механическим приводом и турбоприводом, надо отметить один факт. Массовое производство позволяет автомобильной промышленности существенно снижать себестоимость моторов с турбонагнетателями. Использование же в тюнинге сопряжено с немалыми трудностями, прежде всего в установке.

Аналогичные центробежные механические нагнетатели более удобны и просты в установке и в эксплуатации. Однако достоинства турбонагнетателей приводят к тому, что их чаще используют при тюнинге двигателя. Существуют готовые комплекты для различных авто.

В заключение следует сказать: турбонагнетатели несомненно интересны, не зря большинство спортивных машин оснащаются турбинами. Высокий КПД и прочие положительные факторы делают их привлекательными как для обычных автомобилей, так и для тюнинга.

youmotor.ru

Механический нагнетатель своими руками - Легкое дело

Самодельный приводной нагнетатель на ВАЗ своими руками

Одной из возможностей продлить жизнь старому автомобилю, например любому ВАЗ 2107, 2106, 2114, 2112, является его тюнинг. Конечно, речь в данном случае идет не об установке новых дисков и чехлов, а в первую очередь о повышении мощности двигателя. И один из самых простых и вполне доступных вариантов обеспечения этого – установить на мотор механический нагнетатель своими силами.

Механический нагнетатель на ВАЗ – за и против

Чем больше мотор и чем больше в нем цилиндров – тем выше его мощность. Таков самый первый вывод при наблюдении за моторами и машинами. Но это не всегда именно так. Чем больше топлива сгорает в цилиндрах двигателя, тем большую мощность он способен показать. Но объем цилиндров конечен, а мощность хочется иметь повышенную. Вот в этих случаях на помощь приходит механический нагнетатель воздуха .

Принцип его действия чрезвычайно прост и работает на любых автомобилях, в том числе семейства ВАЗ 2107, 2106, 2114, 2112 – он обеспечивает подачу дополнительного воздуха в мотор, в результате чего:

  • увеличивается продувка цилиндров, и они лучше освобождаются от остатков сгоревшего топлива;
  • в цилиндры мотора попадает больше топлива, что обеспечивает получение большей мощности;
  • повышается степень сжатия, что также дает прирост мощности.

Такой подход практически похож на режим турбо, применяемый на дизелях. Только там для этих целей используется турбонагнетатель, приводимый в действие выхлопными газами, а в этом случае – механический нагнетатель воздуха, который ремнем связан с коленвалом двигателя. Такой подход гораздо проще, подача воздуха зависит от оборотов двигателя, чем они выше, тем его поступает больше; а также не требует обеспечения режимов работы турбины и может быть выполнен своими руками на любом автомобиле ВАЗ.

Стоит учесть, что если механический нагнетатель ставится на инжекторную машину ВАЗ, то потребуется изменение прошивки. Однако подобную доработку можно сделать и для карбюраторного авто, только в этом случае, скорее всего, придется менять жиклеры в карбюраторе и регулировать угол опережения зажигания.

Не стоит забывать, что вами производится форсирование двигателя ВАЗ, будь то любая его модель 2107, 2106, 2114, 2112, работа должна выполняться комплексно, и только тогда возможно получение ожидаемого результата. Однако это не такая уж и большая плата за прирост мощности.

Как установить воздушный нагнетатель своими руками

Существует несколько подходов, позволяющих установить механический нагнетатель воздуха на автомобили семейства ВАЗ своими руками. Это изготовление самим такого устройства, обеспечивающего режим турбо или форсирование двигателя, или использование готового КИТ-набора.

Самодельный нагнетатель на ВАЗ

При таком подходе определяющим будет механический нагнетатель воздуха. Именно от него зависит вся будущая конструкция. Главное – найти соответствующий требованиям воздушный нагнетатель от импортного автомобиля, или придется использовать самодельный. Возможно и такое, причем в этом случае применяются подходящие детали и узлы от совершенно неожиданных устройств, например, пылесоса.

Изготавливая подобный самодельный воздушный нагнетатель, необходимо учитывать буквально все – габариты, вес, размещение в подкапотном пространстве, как и где будет располагаться приводной шкив и ремень, производительность этого устройства, режимы работы (кратковременный или продолжительный), возможность смазки и многое, многое другое.После того, как появится ясность с компрессором, необходимо рассчитать реализацию турбо режима для двигателя.

Здесь надо учесть, каким образом будет изменена топливная и охлаждающая система автомобиля, какие изменения необходимо внести в его управление и как это осуществить, какое давление окажется допустимым для безопасной работы мотора, при реализации с помощью подобного устройства режима турбо.

Даже приведенный далеко не полный перечень вопросов показывает, что изготовить самодельный воздушный нагнетатель на ВАЗ любого семейства, хоть 2107,2106, хоть 2114, 2112, достаточно сложно, но возможно. Примером может послужить фото, показывающее, что такая работа успешно выполнена. Правда, это не ВАЗ, но важен сам факт – изготовить самодельный воздушный компрессор, в котором его приводной узел подсоединен к коленвалу двигателя, – возможно.

Приводной нагнетатель своими руками – из КИТ-набора

Да, есть в продаже такие комплекты, позволяющие своими руками реализовать режим турбо в автомобилях ВАЗ 2107, 2106, 2114, 2112. Как правило, он включает в себя все нужное для сборки и установки подобного устройства на автомобиль – сам компрессор, ремни, приводной узел, кронштейны и воздуховоды. Что собой представляет подобный комплект, позволяет понять приведенное фото.

Главное достоинство подобного подхода по реализации режима турбо на своей машине – простота и полная адаптация технических решений под конкретный вариант – 2107, 2106, 2114, 2112. Как правило, изготовителями КИТ-наборов являются китайские производители, что обеспечивает их достаточно приемлемую цену.

В качестве достоинств реализации режима турбо таким образом, стоит отметить его заточенность именно на автомобили ВАЗ той или иной модели (2107, 2106, 2114, 2112). К преимуществам подобного подхода следует также отнести то, что при некоторых условиях, когда уровень создаваемого дополнительного давления не больше половины бара, не требуется вмешательства в топливную систему автомобиля .

Расписывать порядок реализации режима турбо из подобного набора нецелесообразно, в каждом из них есть своя инструкция по сборке. К недостаткам можно отнести страну-изготовителя, но здесь уж как повезет. Как выглядит автомобиль после доработки и как ее выполнить, дополнительно поможет понять

Один из доступных автолюбителям способов форсировать мотор старого автомобиля и придать ему новую жизнь – поставить нагнетатель воздуха. Эту работу можно выполнить и своими руками, если использовать имеющиеся в продаже КИТ-наборы на автомобили ВАЗ.

Оцените полезность статьи!

http://znanieavto.ru

legkoe-delo.ru


Станции

Районы

Округа

RoadPart | Все права защищены © 2018 | Карта сайта