Содержание
Принцип работы инжекторного двигателя автомобиля, сравнение с карбюраторным
У этого поста — 1 комментарий.
Содержание статьи:
- Принцип работы инжектора.
- Сравнение с карбюратором.
Современный ритм движения и растущие потребности в комфортном управление автомобилем на передовой рубеж вывели инжекторный (впрысковый) тип двигателя. Он практически вытеснил устаревшую систему карбюраторов. Инжекторный двигатель кардинальным образом улучшил не просто эксплуатационные качества автомобиля, но и изменил показатели мощности (расход топлива, динамику в отношении разгона, экологические характеристики).
Инжекторный двигатель – это двигатель, имеющий инжекторную подачу топлива. Система подобного типа полностью заменила карбюраторную систему и предназначена для всех современных двигателей, использующих бензин.
Инжекторный двигатель – принципы работы.
В сравнении с карбюраторным двигателем, было выявлено, что двигатель с инжектором способен продолжительное время поддерживать высочайшие экологические стандарты, причем без дополнительных ручных регулировок. Это стало возможно лишь из-за самонастройки кислородного датчика по поступающим к нему данным.
И все же, постараемся четко себе представить, как работает инжекторный двигатель. В двигатель инжекторного типа подача топливо в воздушный поток осуществляется с помощью специальных форсунок. Они могут располагаться на выпускном коллекторе, и в этом случае речь идет о системе «Моновпрыск». Если форсунки расположены либо непосредственно во впускном коллекторе каждого цилиндра либо неподалеку от него, принято вести речь о системе «распределенного впрыска». Синонимом этого названия стало «многоточечный коллекторный впрыск». Третий вариант, когда форсунки находятся в головке цилиндров. При подобном расположении впрыск происходит напрямую в камеру сгорания, соответственно система называется « прямой впрыск».
Подача топлива к форсункам в обязательном порядке осуществляется только под давлением. Бортовой компьютер автомобиля в определенный момент времени подает импульс тока, который служит сигналом для открытия форсунок. Объем впрыснутого тока определяет длительность импульса. В свою очередь параметры для длительности подачи тока берутся из данных, поступающих с датчиков, которые и отвечают за контроль над параметрами двигателя. К основным параметрам можно отнести температуру и обороты двигателя, информация о разрежении в задроссельном пространстве и об угле под которым открыта дроссельная заслонка. Не стоит забывать и о контроле над расходом воздуха.
Вот что получает автомобиль, если на нем установлен инжекторный двигатель (сравнение ведется с карбюратором).
1. Осуществляется точная дозировка топлива. Как следствие, расход топлива более экономный, что в свою очередь приводит к снижению токсичности у выхлопных газов.
2. Мощность двигателя возрастает в среднем на 7-10%. Это происходит из-за улучшения наполнения цилиндров. К тому же устанавливается оптимальный угол опережения зажигания, что полностью соответствует рабочему движению двигателя.
3. Динамические свойства автомобиля значительно улучшаются. Вкратце это выглядит так. Система впрыска практически моментально реагирует на малейшие изменения в нагрузке и корректирует параметры топливно–воздушной массы.
4. Автомобиль с легкостью заводится при любых погодных условиях.
Другие похожие статьи:
Инжекторный бензиновый двигатель
Инжекторным называют двигатель, оснащенный системой распределенного впрыска с электронным управлением
Двигатель
Инжекторный двигатель – это основной тип двигателя внутреннего сгорания, который используется в современных автомобилях.
По способу подачи топливной смеси все бензиновые двигатели делятся на карбюраторные и инжекторные. В карбюраторных моторах для подачи топлива и образования смеси происходит в механическом приспособлении под названием карбюратор, а в инжекторных двигателях смесь образуется непосредственно в приемном коллекторе, куда топливо впрыскивается при помощи электронно-управляемых форсунок.
История применения инжектора на бензиновых двигателях
Первую механическую систему впрыска, прообраз современного инжекторного двигателя, разработала фирма BOSCH. Система была установлена на серийном автомобиле Mercedes Benz 300SL в 1954 году. Изменения в системе подачи топлива не были кардинальными — вместо карбюратора использовался механизм дозирования с одной форсункой, который имел электронное управление. Позже такую конструкцию назовут «моновпрыск». Дозировка подачи происходила более точно по объему, но не в каждый цилиндр отдельно, а централизованно, как в карбюраторе.
Одну из первых систем электронного распределенного впрыска под названием Electrojector разработала американская фирма Bendix Corporation в 1957 году
После изобретения распределенного впрыска подача топлива к каждому цилиндру стала производится индивидуально. В этой системе впрыска образование топливной смеси происходит в непосредственной близости от впускных клапанов каждого цилиндра. Топливо поступает к форсункам по трубопроводу и распыляется ими в коллектор. Работа каждой форсунки регулируется. За счет этого контроль дозировки топлива и впрыска в каждый цилиндр удалось поднять на новый уровень.
Но конструкторы не остановились на этом и разработали систему с непосредственным впрыском топлива. Первый подобный серийный двигатель впервые продемонстрировал концерн Mitsubishi в 1996 году. В нем воздух подводится к границе камеры сгорания и впускного клапана, и только в самом цилиндре он встречается со струей бензина.
Устройство и принцип работы инжекторных двигателей
Мощность двигателя зависит от объема смеси воздуха и бензина, в единицу времени поступающего в камеру сгорания. Необходимость замены карбюратора на более совершенное устройство возникла из-за того, что в механическом устройстве (в данном случае, в карбюраторе) не удается реализовать достаточно быстрый отклик на изменение нагрузки на двигатель.
В Японии электронно-управляемый распределенный впрыск для серийного автомобиля предложила компания Toyota. Это была опция для модели Celica 1974 года
В инжекторной системе подача топлива производится впрыском во впускной коллектор с помощью форсунок. Эта система подачи топливо-воздушной смеси сложнее, но гибче и оперативнее карбюратора.
Схема работы системы впрыска инжекторного бензинового двигателя включает в себя сбор информации, ее обработку и подачу электронного сигнала на исполнительные устройства, в данном случае, на форсунки.
Механическая составляющая этой системы состоит из бензонасоса, перепускного клапана топливной магистрали (регулятора давления), устройства для поддержки холостого хода двигателя, и форсунок.
Форсунки бывают механическими и с электрическим приводом. В качестве привода используется электромагнит или пьезоэлемент.
Форсунка
Бензин распыляется форсункой под давлением через очень маленькое отверстие. С одной стороны, это позволяет добиться высокой точности дозировки и отличного распыла, с другой, качество топлива для инжекторных двигателей имеет огромное значение. Забитое отверстие не сможет хорошо распылять топливо, а значит, и оптимальной горючей смеси не получится.
Ассоциация NASCAR запретила использование карбюраторов на гоночных автомобилях одноименной лиги только в 2012 году
Электронно-управляемая форсунка выполняет команды компьютера и подает необходимое количество топлива в изменяемые в соответствии с текущей нагрузкой, точно рассчитанные промежутки времени. В бензиновых двигателях с распределенным впрыском с форсунками взаимодействуют свечи, играющие роль исполнительного устройства. Получив электрический импульс, форсунка под давлением впрыскивает топливо в цилиндр или впускной коллектор и перекрывает подачу после срабатывания свечи.
Блок управления двигателем
Роль компьютерного управления в работе системы впрыска
Самой сложной составляющей инжекторных бензиновых двигателей является электронный блок управления. В его схему входят ПЗУ — постоянное запоминающее устройство, ОЗУ — оперативное запоминающее устройство и микропроцессор. Он обрабатывает поступающие от датчиков электронные сигналы, анализирует информацию и сравнивает с данными, хранящимися в памяти компьютера. Встроенная программа учитывает особенности разнообразных режимов работы двигателя и внешние условия, в которых ему приходится работать. Если в информации обнаруживаются расхождения, компьютер выдает команды исполнительным механизмам для коррекции.
Применение распределенного впрыска сделало возможным появление системы отключения части цилиндров двигателей большого объема
Датчики, собирающие информацию о работе двигателя, действуют совместно с ЭБУ. Они расположены на разных узлах, входящих в конструкцию двигателя. Среди стандартных приборов сбора информации: датчик массового расхода воздуха; датчик положения дроссельной заслонки; датчик детонации; датчик температуры охлаждающей жидкости; датчик положения коленчатого вала и другие. На 16-клапанных двигателях дополнительно устанавливается датчик фаз.
Процесс работы инжекторной системы впрыска выглядит следующим образом: датчик расхода воздуха измеряет поступающую в двигатель массу газа и передает данные компьютеру. На основе этой информации и с учетом других текущих параметров — температуры воздуха и самого двигателя, скорости вращения коленчатого вала, степени и скорости открытия дроссельной заслонки — компьютер рассчитывает оптимальное количество топлива на данный объем воздуха и подает электрический импульс необходимой продолжительности на форсунки. Принимая этот импульс, они открываются и под давлением впрыскивают топливо во впускной коллектор.
Достоинства и недостатки инжекторных двигателей
Главное преимущество инжекторных бензиновых двигателей — экономичность. Она составляет 10-20% в сравнении с карбюраторными двигателями. Кроме того, в случае применения инжектора удается получить с того же рабочего объема двигателя большую мощность. Также, бесспорным преимуществом таких двигателей является меньшее содержание вредных веществ в выхлопных газах.
Минусом можно считать то, что в случае появления неисправности в системе инжекторного впрыска, диагностику и ремонт могут производить лишь квалифицированные специалисты. Сложность подобного профессионального обслуживания и является основным недостатком инжекторных бензиновых силовых установок.
СИСТЕМА ВПРЫСКА: КОМПОНЕНТЫ, ТИПЫ И ПРИНЦИПЫ РАБОТЫ
«Топливная форсунка — это механическое устройство с электронным управлением, которое отвечает за распыление (впрыск) нужного количества топлива в двигатель, чтобы создать подходящую воздушно-топливную смесь для оптимального сгорания ».
Технология создана в начале 20 века и впервые реализована на дизельных двигателях. К последней трети 20-го века он также стал популярным среди обычных бензиновых двигателей.
Электронный блок управления (ECU в системе управления двигателем) определяет точное количество и конкретное время необходимой дозы бензина (бензина) для каждого цикла, собирая информацию с различных датчиков двигателя. Таким образом, ЭБУ посылает командный электрический сигнал правильной продолжительности и времени на катушку топливной форсунки. Таким образом, открывается форсунка, и бензин проходит через нее в двигатель.
На одну клемму катушки форсунки напрямую подается 12 вольт, которые контролируются ЭБУ, а другая клемма катушки форсунки разомкнута. Когда ЭБУ определяет точное количество топлива и время его впрыска, он активирует соответствующую форсунку, переключая другую клемму на массу (массу, т.е. отрицательный полюс).
КОМПОНЕНТЫ
Задачей системы впрыска топлива является дозирование, распыление и распределение топлива по воздушной массе в цилиндре. В то же время он должен поддерживать требуемое соотношение воздух-топливо в соответствии с нагрузкой и частотой вращения двигателя.
* Насосные элементы:
Для подачи топлива из топливного бака в цилиндр.
* Элементы дозирования:
Для измерения подачи топлива в зависимости от скорости и нагрузки на двигатель
* Управление дозированием:
Для регулировки нормы дозирующих элементов при изменении нагрузки и частоты вращения двигателя.
* Контроль смеси:
Для регулировки соотношения топлива и воздуха в зависимости от нагрузки и скорости.
* Распределительные элементы:
Для распределения дозируемого топлива поровну между цилиндрами.
* Регулятор времени:
Для фиксации начала и остановки процесса смешения топлива с воздухом.
ТИПЫ ТОПЛИВНЫХ ФОРСУНОК
1. Подача сверху – Топливо поступает сверху и выходит снизу.
2. Боковая подача – топливо поступает сбоку через штуцер форсунки внутри топливной рампы.
3. Форсунки корпуса дроссельной заслонки – (TBI) Расположены непосредственно в корпусе дроссельной заслонки.
ТИПЫ СИСТЕМ ВПРЫСКА ТОПЛИВА
1. Одноточечный или дроссельный впрыск топлива
Также называемый одноточечным, это был самый ранний тип впрыска топлива, появившийся на рынке. Все автомобили имеют впускной коллектор, через который чистый воздух сначала поступает в двигатель. TBFI работает, добавляя правильное количество топлива в воздух, прежде чем оно будет распределено по отдельным цилиндрам. Преимущество TBFI в том, что он недорогой и простой в обслуживании. Если у вас когда-нибудь возникнут проблемы с инжектором, вам нужно будет заменить только один. Кроме того, поскольку этот инжектор имеет довольно высокий расход, его не так просто засорить.
С технической точки зрения системы дроссельной заслонки очень надежны и требуют меньше обслуживания. При этом впрыск в корпус дроссельной заслонки сегодня используется редко. Транспортные средства, которые все еще используют его, достаточно старые, поэтому техническое обслуживание будет более проблематичным, чем с более новым автомобилем с меньшим пробегом.
Еще одним недостатком TBFI является его неточность. Если вы отпустите педаль акселератора, в воздушной смеси, подаваемой в ваши цилиндры, все еще будет много топлива. Это может привести к небольшой задержке перед замедлением, а в некоторых автомобилях это может привести к выбросу несгоревшего топлива через выхлопную трубу. Это означает, что системы TBFI далеко не так экономичны, как современные системы.
2. Многоточечный впрыск
Многоточечный впрыск просто перемещает форсунки дальше вниз к цилиндрам. Чистый воздух поступает в первичный коллектор и направляется к каждому цилиндру. Инжектор расположен в конце этого порта, прямо перед тем, как он всасывается через клапан в ваш цилиндр.
Преимущество этой системы в том, что топливо распределяется более точно, при этом каждый цилиндр получает свое распыление топлива. Каждая форсунка меньше и точнее, что обеспечивает экономию топлива. Минус в том, что все форсунки распыляют одновременно, а цилиндры срабатывают один за другим. Это означает, что у вас может быть остаточное топливо между периодами впуска, или у вас может быть возгорание цилиндра до того, как форсунка сможет подать дополнительное топливо.
Многопортовые системы отлично работают, когда вы путешествуете с постоянной скоростью. Но когда вы быстро ускоряетесь или убираете ногу с педали газа, эта конструкция снижает либо экономию топлива, либо производительность.
3. Последовательный впрыск
Системы последовательной подачи топлива очень похожи на многоточечные системы. При этом есть одно ключевое отличие. Последовательная подача топлива — это раз. Вместо одновременного срабатывания всех форсунок топливо подается одна за другой. Время согласовано с вашими цилиндрами, что позволяет двигателю смешивать топливо прямо перед тем, как клапан откроется, чтобы всосать его. Такая конструкция позволяет улучшить экономию топлива и производительность.
Поскольку топливо остается в порту только в течение короткого промежутка времени, последовательные форсунки, как правило, служат дольше и остаются чище, чем другие системы. Из-за этих преимуществ последовательные системы впрыска топлива сегодня являются наиболее распространенным типом впрыска топлива в автомобилях.
Единственным недостатком этой платформы является то, что она оставляет меньше места для ошибок. Топливно-воздушная смесь всасывается в цилиндр только через несколько секунд после открытия форсунки. Если он грязный, засоренный или не отвечает, вашему двигателю будет не хватать топлива. Форсунки должны поддерживать свою максимальную производительность, иначе ваш автомобиль начнет работать с перебоями.
4. Прямой впрыск
Если вы начали замечать закономерность, вы, вероятно, догадались, что такое прямой впрыск. В этой системе топливо впрыскивается прямо в цилиндр, полностью минуя воздухозаборник. Производители автомобилей премиум-класса, такие как Audi и BMW, хотят, чтобы вы поверили, что непосредственный впрыск — это новейшее и лучшее изобретение. Что касаемо характеристик бензиновых автомобилей, то они абсолютно правы! Но эта технология далеко не нова. Он использовался в авиационных двигателях со времен Второй мировой войны, а дизельные автомобили почти все имеют непосредственный впрыск, потому что топливо намного гуще и тяжелее.
В дизельных двигателях непосредственный впрыск очень надежен. Доставка топлива может потребовать много злоупотреблений, а проблемы с техническим обслуживанием сведены к минимуму.
В бензиновых двигателях непосредственный впрыск встречается почти исключительно в автомобилях с высокими характеристиками. Поскольку эти автомобили работают с очень точными параметрами, особенно важно обслуживать вашу систему подачи топлива. Несмотря на то, что автомобиль будет продолжать работать в течение длительного времени, когда им пренебрегают, производительность быстро снизится.
СПОСОБЫ ВПРЫСКА ТОПЛИВА
Существует два метода впрыска топлива в системе воспламенения от сжатия
1. Впрыск струей воздуха
2. Впрыск безвоздушного или твердого топлива
1. Впрыск струей воздуха
Первоначально этот метод использовался в больших стационарных и судовых двигателях. Но сейчас это устарело. В этом методе воздух сначала сжимается до очень высокого давления. Затем поток этого воздуха впрыскивается вместе с топливом в цилиндры. Скорость впрыска топлива регулируется изменением давления воздуха. Воздух под высоким давлением требует многоступенчатого компрессора, чтобы держать баллоны с воздухом заряженными. Топливо воспламеняется от высокой температуры воздуха, вызванной высокой степенью сжатия. Компрессор потребляет около 10% мощности, развиваемой двигателем, что снижает полезную мощность двигателя. 92. Этот метод используется для всех типов малых и больших дизельных двигателей. Ее можно разделить на две системы
1. Индивидуальная насосная система: в этой системе каждый цилиндр имеет свой индивидуальный насос высокого давления и измерительный блок.
2. Система Common Rail: в этой системе топливо нагнетается многоцилиндровым насосом в систему Common Rail, давление в магистрали регулируется предохранительным клапаном. Отмеренное количество топлива подается в каждый цилиндр из общей топливной рампы.
Это все о системе впрыска топлива. Если у вас есть какие-либо вопросы относительно этой статьи, задайте их в комментариях. Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подпишитесь на наш сайт, чтобы получать больше информативных статей. Спасибо, что прочитали это.
ПРИНЦИПЫ РАБОТЫ
Форсунки управляются блоком управления двигателем (ECU). Во-первых, ECU получает информацию о состоянии двигателя и требованиях, используя различные внутренние датчики. После определения состояния и требований двигателя топливо забирается из топливного бака, транспортируется по топливопроводам, а затем нагнетается топливными насосами. Надлежащее давление проверяется регулятором давления топлива. Во многих случаях топливо также распределяется с помощью топливной рампы для подачи в разные цилиндры двигателя. Наконец, форсункам приказано впрыскивать необходимое топливо для сгорания.
Точная требуемая топливно-воздушная смесь зависит от двигателя, используемого топлива и текущих требований двигателя (мощность, расход топлива, уровень выбросов выхлопных газов и т. д.)
(Automotive World)
Принцип работы топливной форсунки и Схема
Топливная система двигателя автомобиля делится на два типа: карбюраторный и инжекторный. Оба типа имеют одинаковую функцию подачи бензина во впускной коллектор с идеальным объемом.
Но есть ли в нем кооперативный принцип?
Очевидно, что карбюраторный тип использует принцип разницы давлений, а тип впрыска топлива использует принцип компьютеризированного расчета.
Тогда как работает впрыск топлива? давайте обсудим подробно.
Определение систем впрыска топлива
Система впрыска топлива представляет собой мехатронные схемы, которые объединяют механические и электронные схемы для достижения общей цели, то есть подачи топлива во впускной коллектор с идеальным объемом.
В системе впрыска топлива есть две группы, а именно группа топливопроводов (механическая часть) и группа контроллера (электронная часть).
Система впрыска используется практически во всех выпускаемых сегодня автомобилях. Это связано с тем, что система впрыска имеет много преимуществ.
Преимущества системы впрыска топлива;
- Экономичное использование топлива
- Экологически чистый
- Чистый шум двигателя
- ЕВРО 3 или выше эмиссия
Все вышеперечисленные преимущества достигаются благодаря тому, что принцип работы системы впрыска топлива сильно отличается от принципа работы карбюратора. Кроме того, при определении объема подаваемого топлива также больше ориентиров, так что он может быть более точным.
Принцип работы системы впрыска топлива
Система впрыска топлива и карбюратор работают по одному принципу, то есть по разнице давлений. Однако в системе впрыска топлива давление со стороны топлива увеличивается настолько, что оно превышает пространство впускного коллектора.
Таким образом, можно сказать, что в карбюраторном типе давление во впускном пространстве (Вентури) понижено, так что возникает разница давлений. В то время как в системе впрыска давление со стороны топлива увеличивается, так что возникает разница давлений.
Для повышения давления со стороны подачи топлива имеется электрический насос, который нагнетает топливо в топливные шланги. Поскольку давление со стороны подачи топлива больше, чем на стороне впуска, топливо будет поступать во впускной коллектор через форсунку.
Приведенные выше фрагменты являются только описанием обложки, для получения дополнительной информации, пожалуйста, продолжайте читать.
Основной компонент системы впрыска топлива
- Топливные баки, компоненты для хранения запаса топлива.
- Топливный насос, предназначен для повышения давления топлива в топливных шлангах.
- Топливные шланги, предназначение для слива топлива из бака к форсунке.
- Форсунка предназначена для подачи топлива во впуск в виде аэрозоля
- Системный контроллер регулирует время и продолжительность открытия форсунки.
Рабочая схема системы впрыска топлива
Когда мы запустим двигатель, топливный насос будет работать так, что давление топлива в топливных шлангах увеличится.
Здесь есть поток топлива из бака к топливному насосу и к форсунке.
В этом состоянии давление в топливопроводах превышает давление во впускном коллекторе, поэтому при открытии форсунки топливо может выйти немедленно. Однако форсунка не открывается неосторожно. Но ECU-датчик-исполнительный механизм выполняет расчет для регулирования необходимого объема топлива.
Мы называем это электронным контроллером, потому что в системе впрыска топлива электронных частей больше, чем механических. Для механических частей, только ограничено выше.
Тогда как работает этот электронный контроллер?
Этот электронный контроллер состоит из трех основных компонентов, а именно;
- Датчик
- ЭБУ
- Привод
Датчик служит индикатором состояния индикатора. Примеры датчиков в системе впрыска топлива:
- IAT (температура воздуха на впуске), используется для определения температуры воздуха на впуске.
- MAF (массовый расход воздуха), используемый для определения периода воздуха на основе его расхода.
- MAP (абсолютное давление во впускном коллекторе), используется для определения разрежения во впускном коллекторе.
- ECT (температура охлаждающей жидкости двигателя), используется для определения тепла охлаждающей воды
- Кислородный датчик, используемый для определения уровня кислорода в выхлопных газах.
- CKP (положение коленчатого вала), используется для определения оборотов двигателя.
- CMP (положение распределительного вала), используется для определения положения двигателя TOP 1.
ECU или электронный блок управления — это процессор на транспортном средстве, который вычисляет все данные с датчика. Итак, ECU функционирует для обработки данных, результатом является команда, подаваемая исполнительному механизму.
В то время как исполнительный механизм представляет собой устройство вывода, которое предназначено для преобразования команд от ЭБУ в механические движения. В этом случае форсунка работает как исполнительный механизм. Инжектор получает команду в виде напряжения от ЭБУ, а затем преобразует его в движение для открытия сопла на конце форсунки. Когда сопло открывается, топливо может немедленно выйти.
Тогда какая схема?
Когда мы запускаем двигатель, коленчатый вал автоматически вращается. Это вызывает процесс всасывания на поршне, поэтому датчики системы впрыска будут работать для определения температуры, массы, вакуума и температуры двигателя.