Содержание
что это, принцип работы, описание, драгоценные металлы в нем
Главная
/
Статьи
/
Лямбда-зонд – что это, принцип работы, содержание металлов
С каждым годом количество автомобилей растет, что самым неблагоприятным образом сказывается на экологической ситуации. Страдают от загазованного воздуха не только жители крупных городов, но и вся планета в целом, поскольку озоновый защитный слой атмосферы становится все меньше. По этой причине в цивилизованном мире установлены жесткие правила, требующие установки на автомобилях катализаторов – устройств, поглощающих токсичные компонента выхлопных газов. Это несгоревшие углеводороды, окись углерода и окислы азота.
Катализатор – устройство полезное, но для его эффективной работы нужно создать соответствующие условия. Необходимо постоянно контролировать качество топливно-воздушной смеси.
Что это такое
Оптимальный состав топливно-воздушной смеси содержит 1 часть бензина на 14,7 частей атмосферного воздуха. Если принять такое соотношение за единицу, то его отклонение в большую/меньшую сторону свидетельствует об обогащенном или обедненном составе смеси. Чтобы катализатор работал максимально эффективно, отклонение от оптимальной единицы должно быть не более одного процента.
Технически проблема решается посредством установки встроенного в электронную систему подачи топлива лямбда-зонда, который поддерживает состав топливно-воздушной смеси в катализаторе в оптимальных пределах.
Принцип работы лямбда-зонда
Конструкция датчика состоит из следующих основных элементов:
- металлический корпус;
- керамический изолятор;
- электрический нагреватель;
- электропроводка и токопроводящие контакты.
В процессе работы двигателя внутреннего сгорания содержание кислорода в атмосферном воздухе и в выпускном коллекторе выхлопной системы разное. Один электрод лямбда-датчика «дышит» наружным воздухом, а второй выхлопными газами. Соответственно, ионы кислорода создают в твердом электролите разность потенциалов. Это напряжение передается на бортовую систему управления подачей топлива, в результате чего в режиме реального времени оптимизируется состав топливно-воздушной смеси.
Корректное измерение отклонения количества кислорода в катализаторе возможно только при температуре не ниже 300 градусов. Это обусловлено тем, что циркониевый электролит при меньшей температуре в качестве проводника не работает. Поэтому при холодном пуске лямбда-датчик не принимает участия, а за состав подаваемой в двигатель топливно-воздушной смеси на этом этапе отвечают иные электронные устройства. В современных датчиках кислорода имеется электрический подогрев управляемых бортовым электронным блоком.
Максимальная температура для работы лямбда-датчика также ограничена и не должна превышать 1000 градусов. Поэтому устройство, установленное для быстрого прогрева на выпускном коллекторе перед катализатором, чувствительно к перегреву вследствие длительной езды на максимальных оборотах двигателя.
Может ли работать автомобиль без лямбда-зонда
Ресурс кислородного датчика не превышает 80 000 км и зависит от исправности двигателя, условий эксплуатации автомобиля. Но больше всего на срок эксплуатации влияет качество топлива. Иногда достаточно израсходовать несколько баков некачественного бензина, и датчик перестает работать вообще.
Признаки неисправности катализатора:
- Холостые обороты самопроизвольно падают до 500-600. Причина – в систему поступает обедненная смесь, не обеспечивающая стабильность работы в режиме холостого хода.
- На ходу заметна существенная потеря мощности. Автомобиль с трудом набирает обороты, преодолевает подъемы, медленно разгоняется. Причина та же – некорректное содержание топливно-воздушной смеси.
- Расход увеличился на 20-30%. Из-за слишком обогащенной топливно-воздушной смеси наблюдается темный выхлоп с характерным запахом несгоревшего в катализаторе бензина. На свечах появляется налет черного цвета.
- При ускорении автомобиль дергается.
- На панели управления сигнализирует Check Engine. Теоретически ошибку можно сбросить, но от этого катализатор исправным не станет.
Причины неисправности:
- Топливо низкого качества. Чрезмерное количество примесей приводит к тому, что их несгоревшие остатки оседают на поверхности лямбда-датчика, нарушают токопроводимость его контактов.
- Превышен срок эксплуатации. В идеальных условиях устройство может корректно работать при пробеге 150 000 км и даже больше. В наших реалиях, как правило, не больше 80 000 км. Но это касается оригинального датчика. Ресурс некачественного лицензионного устройства предсказать практически невозможно.
- Неисправность электрической проводки, которая может повредиться по причине перегрева коллектора.
Что делать, если механизм вышел из строя
Прежде всего, нужно убедиться в неисправности лямбда-датчика. В этом плане проще и надежнее всего обратиться на станцию техобслуживания. Если есть желание и возможность, можно сделать визуальную проверку самостоятельно. Начать нужно с осмотра разъемов, проверки надежности их фиксации. Затем следует осмотреть кислородный датчик:
- сажа на корпусе – показатель сгорания обогащенной смеси или чрезмерного перегрева зонда;
- блестящие отложения создает топливо с избытком свинца;
- белый и серый налет возникает вследствие использования масляных и топливных присадок.
Что делать? Если на лямбда-датчике появился свинцовый налет, устройство подлежит замене, поскольку свинец повреждает не только зонд, но и катализатор. То же касается и налета от присадок. Если говорить о саже, то ее можно попробовать почистить своими руками с использованием ортофосфорной кислоты.
Какие драгоценные материалы содержатся в зонде
Керамический твердый электролит гальванического элемента изготовлен из диоксида циркония, легированного оксидом иттрия. Токопроводящие электроды имеют платиновое напыление.
Количество ценных драгметаллов ничтожно мало, и пытаться извлечь их в домашних условиях не имеет смысла. Негодный кислородный датчик может сослужить своему владельцу последнюю службу, если сдать катализатор в утиль. Компания «Лом-АКБ» принимает по выгодным ценам вышедшие из строя автомобильные детали от частных лиц и организаций.
Другие новости
16 Февраля 2021 18:43
Что влияет на цену приема катализаторов
Вторичное сырье – это не только металлический лом, отработанная бумага, стеклянная тара, но и автомобильные катализаторы. Они являются одним из самых востребованных видов сырья, которое принимают для вторичной переработки.
16 Февраля 2021 18:41
Содержание драгоценных металлов в катализаторах и заработок на этом
В автомобиле есть много ценных составляющих и компонентов, начиная от двигателя, коробки передач, кондиционера и заканчивая выхлопной системой, подвеской и кузовом. При этом один-единственный элемент, весящий всего пару килограмм – катализатор – имеет такое содержание драгоценных металлов, что ему бы «позавидовал» любой другой элемент транспортного средства.
05 Ноября 2020 22:22
Признаки забитого катализатора
Каталитический нейтрализатор автомобилисты часто называют просто катализатором. Это устройство, которое очищает выхлопные газы, делая их не такими токсичными и более безопасными для окружающей среды. Оно представляет собой металлический корпус, в котором находится множество керамических ячеек с активным покрытием. Эти компоненты вступают в реакцию с выхлопным газом и очищают его химическим путем. Ячеистая структура задерживает частички сажи.
18 Августа 2020 22:00
Электроника и оргтехника: утилизируем правильно
Со временем любая техника выходит из строя. Но не стоит сразу выбрасывать в мусорный бак технику после того, как она перестала работать. Системный блок, монитор, принтер, а также мышки и другие устройства можно сдать на повторную переработку. Если их правильно утилизировать, то около 94% таких отходов вернутся к нам в виде новых моделей техники и гаджетов. И только 6% содержащихся в них компонентов нельзя будет использовать повторно – они отправляются на заводы по переработке твердых отходов. Все это позволяет минимизировать вред окружающей среде.
Наши пункты приема
загрузка карты…
Лямбда-зонд,что это такое,для чего он нужен и как его проверить? — Общие материалы
Лямбда-зонд. Агент экологической разведки
О назначении лямбда-зонда, или кислородного датчика, сегодня хотя бы приблизительно знает большинство автовладельцев. Пополнить багаж знаний позволит информация, предоставленная российским представительством группы компаний Bosch.
Принцип действия лямбда-зонда
При сгорании в бензиновом двигателе происходит физико-химический процесс, в ходе которого углеводородные молекулы топлива реагируют с кислородом, содержащимся в поступающем воздухе. Возникающие при этом химические соединения на 99% безвредны (азот, углекислый газ, водяной пар), но оставшийся процент содержит вредные элементы, такие, как угарный газ CO, несгораемые углеводороды HC и окиси азота NOx. Одной из целей развития автомобильных технологий является устранение этих компонентов эмиссии в максимально возможной степени. Ключевыми факторами при этом являются оптимизация процесса сгорания в двигателе и система очистки выхлопа.
Трехканальный каталитический конвертер по-прежнему остается наиболее эффективным средством преобразования HC и CO в безопасные воду и углекислый газ (окисление) и NOx в азот (восстановление) в бензиновых двигателях. В то же время катализатор работает только в узком диапазоне пропорций воздушно-топливной смеси, близком к 14,7:1 (λ=1). Если смесь перенасыщена топливом (λ«1), коэффициент преобразования NOx остается высоким, но CO и HC окисляются недостаточно. Если смесь слишком бедная (λ>1), ситуация меняется на противоположную.
Для поддержания оптимальной пропорции воздушно-топливной смеси необходим датчик, передающий сведения о составе выхлопных газов в систему управления двигателем. Именно для этого служит лямбда-зонд, измеряющий остаточное содержание кислорода в выхлопном газе и передающий эти данные в блок управления в форме электрического сигнала. В зависимости от сигнала воздушно-топливная смесь обогащается или обедняется. В дизельных двигателях лямбда-зонд выполняет другую функцию: вместе с массовым расходомером воздуха он помогает точно определять степень рециркуляции выхлопных газов для каждого рабочего режима.
Типы зондов
За последние тридцать лет получили распространение два типа лямбда-зондов — стоковые LSH и LSF и широкополосные LSU. В стоковых выхлопные газы проходят по внешней стороне керамического измерительного элемента, внутри которого находится эталонный воздух. В зависимости от остаточного содержания кислорода в выхлопе, на двух полюсах сенсорного элемента возникает разная концентрация молекул кислорода. Поскольку керамический датчик пропускает ионы кислорода, они могут перемещаться между двумя сторонами сенсорной ячейки, создавая электрическое напряжение. Стоковые датчики генерируют высокое напряжение (около 0,9 В) при насыщенной смеси (низкое содержание остаточного кислорода в выхлопных газах) и низкое (около 0,1 В) — при бедной смеси (высокое содержание кислорода). Скачок напряжения между отдельными уровнями происходит при λ=1. Классический стоковый зонд с подогревом или без представляет собой так называемый контактный датчик. В 1994 г. компания Bosch первой в мире начала на базе керамической планарной технологии серийный выпуск стоковых зондов, устойчивых к высоким температурам и воздействиям окружающей среды. Современное поколение зондов LSF4.2 отличается быстрым временем реагирования, готовностью к работе через 10 секунд после пуска двигателя и долгим сроком службы.
Широкополосные зонды, выпускающиеся с 1998 г., отличаются от стоковых более широким диапазоном измерения и производятся исключительно на базе планарной технологии. Принцип действия широкополосного зонда основан на постоянном поддержании значения λ=1 в измерительной камере при помощи насосного тока. Измерительная камера отделена от потока выхлопных газов пористым диффузионным барьером. При насыщенной смеси в измерительную ячейку накачивается кислород, для чего к насосной ячейке подводится «отрицательный» ток. При λ=1 насосный ток равен нулю. При обедненной смеси кислород выкачивается из измерительной ячейки «положительным» током.
Исходящий сигнал широкополосного зонда пропорционален остаточному содержанию кислорода в выхлопных газах. Такие датчики необходимы, прежде всего, в бензиновых двигателях с прямым впрыском на обедненных смесях, а также в газовых и дизельных двигателях, чтобы блок управления двигателем мог получать точные данные о составе смеси даже при λ>1. Последнее поколение широкополосных зондов Bosch, LSU4.9, поддерживает диапазон измерений при значениях от 0,7 до бесконечности, а также отличается высоким уровнем точности сигнала и временем реагирования менее 30 мс. Благодаря этому возможен индивидуальный контроль состава смеси для каждого цилиндра и, как следствие, более экономичная и экологичная работа двигателя. Полная готовность датчика к работе достигается в течение менее 10 секунд после пуска двигателя, что позволяет еще больше сократить вредные выбросы в фазе прогрева.
Текущие разработки
Лямбда-зонды Bosch© Фото: BoschСтоковые и широкополосные зонды еще долго будут использоваться в современных транспортных средствах, при этом выбор типа датчика автопроизводителем будет зависеть от конструкции двигателя и профиля требований. В некоторых случаях могут применяться комбинации зондов обоих типов. Например, с широкополосным датчиком перед катализатором и стоковым после него.
Лямбда-зонды непрерывно совершенствуются: в настоящее время специалисты Bosch разрабатывают передовой широкополосный датчик с расширенным диапазоном измерения, сокращенным временем реагирования и намного более долгим сроком службы. Новый зонд под условным названием LSU ADV должен поступить в серийное производство в 2007 г. По заявлениям Bosch, он способен обнаруживать остаточное содержание кислорода в выхлопных газах уже при λ=0,65, время реагирования составляет менее 30 мс, а в рабочее состояние зонд приходит всего за 5 секунд. Разработчики компании утверждают, что характеристики зонда LSU ADV делают возможными совершенно новые функции и способы применения, например мониторинг насоса дополнительного воздуха в фазе прогрева или монтаж зонда перед турбокомпрессором. Установка датчика рядом с двигателем позволяет еще точнее контролировать состав смеси индивидуально для каждого цилиндра. Другие направления совершенствования лямбда-зонда — повышение водостойкости и миниатюризация, связанная с постоянным сокращением монтажного пространства в современных автомобилях.
Справка
Группа компаний Bosch является ведущим международным производителем автомобильного и промышленного оборудования, потребительских и бытовых изделий. Объем продаж корпорации, штат которой насчитывает около 250 тысяч сотрудников, составил в 2005 финансовом году 41,5 млрд евро. Основанная Робертом Бошем (1861–1942) в 1886 году в Штутгарте под названием «Мастерская точной механики и электротехники», компания в настоящее время является крупнейшим концерном в области производства, сбыта и технического обслуживания, насчитывая около 270 дочерних компаний и свыше 12 тысяч сервисных центров в более чем 140 странах.
Особая учредительская структура группы компаний Bosch гарантирует ее финансовую независимость и свободу предпринимательства. Она позволяет компании осуществлять необходимые инвестиции, обеспечивающие ее будущее, а также выполнять все социальные обязательства, как было завещано ее основателем. 92% Robert Bosch GmbH принадлежат благотворительному фонду Robert Bosch Stiftung. Предпринимательская деятельность осуществляется компанией Robert Bosch Industrietreuhand KG.
В России в 1904 году было открыто одно из первых зарубежных представительств компании. В настоящее время Bosch представлена пятью компаниями и производственными филиалами в 14 городах Российской Федерации с общим штатом 1720 человек. Bosch представляет в России широкую линейку высококачественных продуктов: от автомобильных запчастей, диагностического оборудования и электроинструментов до бытовой техники, систем безопасности и промышленного оборудования.
В 2005 году консолидированные продажи на российском рынке увеличились с ?248 млн до ?287 млн. Общие продажи за прошедший финансовый год, включая показатели неконсолидированных предприятий, возросли с ?321 млн до ?402 млн.
www.5koleso.ru
Лямбда-зонды Bosch © Фото Bosch:
TechASSIST: диагностика проблем лямбда-зонда
Автор: ELTA Automotive UK
TechAssist 0 комментариев
Лямбда-зонды впервые были установлены на автомобили в 1977 году для повышения эффективности двигателей внутреннего сгорания и снижения вредных выбросов выхлопных газов, таких как угарный газ.
Лямбда-зонды измеряют количество кислорода в выхлопных газах. Эффективному двигателю требуется определенное количество воздуха и топлива в его цилиндрах при сгорании. Идеальное соотношение 14,7:1 (14,7 частей воздуха на 1 часть топлива). Эта идеальная смесь называется Lambda, отсюда и берет свое начало необычное название. Однако их часто также называют датчиками кислорода или датчиками кислорода из-за их основной роли в измерении содержания кислорода. Уровни, рассчитанные Lambda, отправляются в виде данных в ECU, который затем рассчитывает и определяет, как лучше всего достичь идеальной смеси воздуха и топлива при сгорании.
Неправильная топливно-воздушная смесь будет либо богатой, либо обедненной:
• В богатой смеси воздух содержит много несгоревшего топлива, но мало кислорода.
• Бедная смесь имеет противоположный баланс и высокое содержание кислорода из-за недостаточного количества впрыскиваемого топлива.
Многие автомобили теперь оснащены лямбда-зондом перед катушкой и лямбда-зондом после каталитического нейтрализатора. В то время как лямбда-зонд перед катушкой связывается с ЭБУ, регулирующим соотношение воздух/топливо; Лямбда-зонд после каталитического нейтрализатора выполняет диагностическую роль, контролируя каталитический нейтрализатор.
ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ ЛЯМБДА-ДАТЧИКА
Перед тем, как автомобиль не пройдет тест на выбросы или появится контрольная лампа двигателя; водители могут заметить повышенный расход топлива и/или неровный холостой ход. Оба являются признаками неисправности лямбда-зонда. После отказа датчика OBD может отображать либо код P0131, либо P0134.
Многие неисправности лямбда-зондов просто связаны с возрастом. Обычно срок службы датчика без подогрева составляет около 45 000 миль. Срок службы датчика с подогревом обычно приближается к 100 000 миль.
Лямбда-зонд работает при экстремально высоких температурах, поэтому наиболее частой неисправностью, связанной с этой деталью, является повреждение нагревательного элемента датчика. Вибрация или повреждение разъемов и/или проводов также могут привести к поломке.
Другой распространенной причиной преждевременного выхода из строя является загрязнение. Если лямбда вышла из строя в результате загрязнения, вполне вероятно, что датчик будет иметь визуальные подсказки к источнику. Важно проанализировать внешний вид, и если присутствуют признаки загрязнения, необходимо устранить причины до замены датчика.
Ниже приведены визуальные признаки и возможные причины:
ЗАГРЯЗНЕНИЕ АНТИФРИЗОМ
Визуальные признаки
Носик датчика будет загрязнен зернистым белым или светло-серым налетом.
Причина
Охлаждающая жидкость с антифризом могла попасть в процесс сгорания и достичь лямбда-зонда.
Решение
Перед заменой лямбда-зонда всегда устраняйте основную причину неисправности. В этом случае проверьте прокладку головки блока цилиндров на герметичность и при необходимости отремонтируйте.
ЗАГРЯЗНЕНИЕ ПРИСАДКИ ДЛЯ ДВИГАТЕЛЯ
Визуальные признаки
Как и в случае с антифризом, наконечник датчика будет загрязнен белыми или красными отложениями.
Причина
Чрезмерное использование каких-либо присадок к двигателю или топливу может привести к загрязнению или блокировке лямбда-зонда.
Решение
Прежде чем заменять лямбда-зонд, устраните основную причину неисправности. В этом случае требуется очистка топливной системы перед заменой.
ЗАГРЯЗНЕНИЕ МАСЛА
Визуальные признаки
Ищите маслянистые черные отложения, оставшиеся на наконечнике датчика.
Причина
Автомобиль может сжигать чрезмерное количество масла, которое может загрязнить датчик и/или заблокировать его.
Решение
Тщательно проверьте двигатель на наличие утечек, включая все обычные уплотнения, которые могут выйти из строя. После ремонта замените датчик.
ЗАГРЯЗНЕНИЕ ТОПЛИВА
Визуальные признаки
Если топливо сгорает слишком богато, на наконечнике датчика может быть виден черный нагар.
Причина
Повреждение лямбда-зонда или неисправность в топливной системе могут привести к высокому соотношению воздух-топливо с образованием черной сажи, которая повреждает лямбда-зонд.
Решение
Измерьте выхлопные газы, чтобы убедиться, что топливная система работает правильно. Проверьте управление нагревателем лямбда-зонда и нагреватель датчика. Перед заменой датчика устраните все неисправности.
ЗАГРЯЗНЕНИЕ СВИНЦОМ
Визуальные признаки
Носик датчика может быть загрязнен блестящими серыми отложениями.
Причина
В настоящее время это не так распространено, так как этот тип загрязнения обычно вызывается этилированным топливом, воздействующим на платиновые детали или датчик.
Решение
Перед заменой датчика замените все этилированное топливо в системе на неэтилированное.
30 лет революционному лямбда-зонду Volvo
В 1976 году Volvo Cars впервые в мире представила экологически чистый трехкомпонентный каталитический нейтрализатор с лямбда-зондом для контроля выбросов выхлопных газов. Сегодня, 30 лет спустя, практически все автомобили с бензиновым двигателем, выпускаемые по всему миру, оснащены этим гениальным и экологичным компонентом. Так же незаменим для окружающей среды, как трехточечный ремень безопасности — еще одна инновация Volvo — для безопасности.
«Самый значительный прорыв, когда-либо сделанный в области контроля выбросов выхлопных газов транспортных средств». Так сказал Том Куинн, председатель Калифорнийского совета по воздушным ресурсам (CARB), когда 19Модель 77 Volvo 244, оснащенная системой лямбда-зонда, была выпущена на американский рынок осенью 1976 года, и его слова остаются верными и по сей день.
Это был первый по-настоящему эффективный ответ на проблему очистки выхлопных газов автомобилей, особенно от оксидов азота, и принцип, используемый в современных автомобилях, остается прежним. Но это был долгий путь, и требуемая работа была кропотливой.
Обещание Volvo принять меры
Еще в конце 1960-х люди задумались о выбросах выхлопных газов автомобилей. За счет увеличения количества воздуха, поступающего в двигатель, и предварительного подогрева всасываемого воздуха можно было немного уменьшить количество вредных веществ, но далеко не так, как хотелось бы. Например, использовались ранние формы окислительных каталитических нейтрализаторов.
В 1972 году Пер Г. Гилленхаммар, в то время генеральный директор AB Volvo, сделал большой и смелый шаг, который на всемирной экологической конференции в Стокгольме признал, что автомобили вносят большой вклад в неуклонно растущее загрязнение окружающей среды.
Результатом этой встречи стала экологическая декларация Volvo, которая актуальна и по сей день и гласила:
— Volvo не намерена защищать автомобили любой ценой и в любом контексте.
– Автомобили, однако, являются неотъемлемой частью нашей повседневной транспортной системы.
— Volvo заинтересована в том, чтобы автомобили не причиняли травм или повреждений.
– Volvo несет ответственность не только за то, чтобы ее продукты были хорошо работающими видами транспорта, но и за
.что они работают в более широком контексте — в нашей среде, которую мы сегодня называем устойчивой мобильностью.
Примерно в то же время инженеры Volvo обнаружили, что нерегулируемый окислительный каталитический нейтрализатор, который вот-вот должен был быть запущен, при определенных обстоятельствах можно было бы настроить для очистки углеводородов (HC), монооксида углерода (CO) и оксидов азота (NOx) бесконечно больше. эффективно, чем раньше.
Начались работы по увеличению этой возможности путем регулирования топливно-воздушной смеси в узком диапазоне, в котором соотношение для каталитического нейтрализатора было оптимальным.
Стивен Уоллман, создатель системы лямбда-зондов Volvo, вспоминает:
«Компоненты, которые мы использовали в техническом решении, уже существовали, но использовались по-другому и в других областях. Хитрость заключалась в том, чтобы связать их вместе в полную систему и заставить их работать в автомобиле с бензиновым двигателем».
Эффективный прорыв
Ключом ко всему этому была маленькая штучка размером с палец. Датчик кислорода был расположен в выхлопной трубе между двигателем и каталитическим нейтрализатором. Он просто измерял содержание кислорода в выхлопных газах и отправлял информацию в систему управления двигателем, которая, в свою очередь, регулировала топливно-воздушную смесь так, чтобы она оставалась в пределах узкого «окна», которое составляет примерно лямбда = 1 — примерно 14,3:1. оптимальная эффективность каталитического нейтрализатора. В этом диапазоне преобразование выхлопных газов двигателя в каталитическом нейтрализаторе настолько эффективно, что более 90 процентов вредных газов углеводородов, оксида углерода и оксидов азота, образующихся при сгорании, удаляются в каталитическом нейтрализаторе.
В 1977 г. Калифорния ввела новые строгие ограничения выбросов выхлопных газов для трех вредных газов на уровнях: углеводороды 0,41 г/миля; окись углерода 9,0 г/миль; оксиды азота 1,5 г/миль. В те дни это было самое строгое законодательство по выбросам в мире, и с тех пор Калифорния все более и более снижала требования к выбросам выхлопных газов.
Автомобили Volvo с трехкомпонентными каталитическими нейтрализаторами и лямбда-зондами были измерены при содержании углеводородов 0,2 г/миль; окись углерода 3,0 г/миль; оксиды азота 0,2 г/миль! Другими словами, удивительно низкие значения и хорошая маржа. Низкие выбросы оксидов азота, в частности, были сенсационными, и эта работа была должным образом отмечена. Volvo получила экологическую награду от экологического совета президента Картера.
Незаменим сегодня
Для работы лямбда-зонда необходимо было иметь функционирующий каталитический нейтрализатор и неэтилированный бензин, как и сегодня. Когда был представлен лямбда-зонд, неэтилированный бензин был доступен только в Северной Америке и Японии. Сегодня его можно найти повсюду, и он так же незаменим, как лямбда-зонд и каталитический нейтрализатор.