Содержание
Принцип работы инжектора
Устройство и принцип работы инжектора
На сегодняшний день инжекторный двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).
- Устройство и принцип работы инжектора
- Виды инжекторных систем
- Принцип работы инжектора
- Конструкция и принцип работы инжектора
- Принцип работы инжектора
- Принцип работы инжектора на автомобилях
- Электронный блок управления
Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:
- Точное дозирование топлива и, следовательно, более экономный его расход;
- Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
- Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
- Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
- Легкость пуска независимо от погодных условий.
Виды инжекторных систем
Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.
Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.
Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:
- Центральная;
- Распределенная;
- Непосредственная.
Центральная (моновпрыск) инжекторная система
Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.
Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.
Распределенная (мультивпрыск) инжекторная система
Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.
Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.
К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.
Система непосредственного впрыска
Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная.
Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом.
Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.
Принцип работы инжектора
Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.
К механической части инжектора относится:
- топливный бак;
- электрический бензонасос;
- фильтр очистки бензина;
- топливопроводы высокого давления;
- топливная рампа;
- форсунки;
- дроссельный узел;
- воздушный фильтр.
В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.
Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.
Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.
Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.
Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.
С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.
Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.
Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.
На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.
При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.
Конструкция и принцип работы инжектора
Условно эту систему можно разделить на две части – механическую и электронную.
Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры
. Электронная же часть обеспечивает контроль и управление системой.
Механическая составляющая инжектора
К механической части инжектора относится:
- топливный бак;
- электрический бензонасос;
- фильтр очистки бензина;
- топливопроводы высокого давления;
- топливная рампа;
- форсунки;
- дроссельный узел;
- воздушный фильтр.
Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.
Видео: Инжектор
Принцип работы инжектора
Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.
Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.
Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.
Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.
Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.
С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.
Электронная составляющая
Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.
Для своей работы ЭБУ использует показания датчиков:
- Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
- Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
- Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
- Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
- Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
- Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
- Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
- Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока.
Принцип работы инжектора на автомобилях
Принцип работы инжектора заключается в том, чтобы подать своевременно в камеры сгорания топливовоздушную смесь.
Это необходимо для нормального функционирования двигателя.
Системой управления корректируется момент подачи напряжения на электроды свечей, чтобы воспламенить эту смесь. Причем эти параметры контролируются системой датчиков, установленных на двигателе.
Электронный блок управления
Для работы любого инжекторного мотора необходим блок управления микроконтроллерного типа.
К нему подключаются:
- Исполнительные механизмы при помощи электромагнитных реле.
- Датчики через согласующие устройства.
Питание осуществляется от бортовой сети.
Электронный блок состоит из:
- Постоянной памяти – она необходима для хранения информации, записи алгоритмов работы.
- Оперативной памяти – в нее записывается текущая информация, все данные при выключении зажигания стираются из нее.
- Микроконтроллера – он позволяет обрабатывать поступающие сигналы и регулировать работу всех исполнительных механизмов.
В памяти устройства записан алгоритм работы, зависит он от поступающих сигналов с датчиков. Называется этот алгоритм «прошивкой» или «топливной картой».
Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.
Принцип работы инжектора — Лада мастер
Двигатель транспортного средства представляет собой сложную систему, функционирующую слаженно в различных условиях. Еще не так давно машины оснащались карбюраторами, но данная технология несколько устарела, ее успешно заменил инжектор. В оснащенном этим устройством двигателе питание осуществляется инжекторной подачей. Такая технология существенно отличается, устанавливается на машинах, использующих бензин.
Содержание:
- Порядок работы
- Рабочая схема
- Устройство
- Возможные неисправности
Порядок работы
Да, на смену карбюратору пришел инжектор. Он на порядок эффективней своего предшественника. Таким моторам предписывается улучшенный разгон, экономия топлива, неплохие экологические параметры. Это достигается без ручного регулирования и иных манипуляций.
Принцип действия этого устройства в топливной системе основан на подаче бензина, смешанного с воздухом, сквозь специальную форсунку. Их располагают в коллекторе впуска, систему называют моновпрыском. Из-за своих недостатков она успела несколько отойти в прошлое.
Второй вариант расположение форсунок возле впускных цилиндрических клапанов. Этот вид системы называется распределенным впрыском.
Они могут находиться на головке цилиндра. Это прямой впрыск, который используется часто.
Топливо и воздух подаются сразу в камеру.
Система распределенного впрыска разделяется на несколько типов:
- одновременный – имеющиеся форсунки горючее подают все вместе;
- парно-параллельный – приоткрываются парами, на впрыск и на выпуск. Данный метод используют при запуске силовой установки;
- фазированный – раскрывается перед впрыскиванием;
- прямой – топливо-воздушная смесь впускается сразу в ресивер.
Чтобы происходили впрыски топлива, его подводит к распылению давление, создаваемое электрическим бензонасосом. Импульсные сигналы подаются бортовым компьютером. Протяженность импульса и партия бензина или солярки для каждого впрыска определяются по данным, которые поступают с датчиков читки информации функционирования мотора.
Рабочая схема
Работа машины заключается не только в движке и крутящем моменте, сюда следует добавить электроуправление от компьютера. Главный «мозг» оказывает влияние и на функции инжектора. Имеющиеся датчики считывают сведения о количестве горючего, скорости, сетевом напряжении, другие данные.
Контроллер обобщает всю информацию и начинает управлять приборами, регулируя подачу горючего.
Устройство
Чтобы понимать, как он функционирует, следует знать его состав. Сюда входят:
- электронасос;
- электрический блок управления либо контроллер;
- датчик, регулирующий давление;
- датчики;
- форсунка либо сам инжектор.
Возможные неисправности
Инжектор вносит эффективность в работу силовой установки, помогает экономить бензин, помогает делать выхлопные газы более чистыми.
Но если форсунки начинают засоряться, то:
- обороты мотора снижаются;
- зажигание затрудняется;
- набор скорости происходит медленней;
- увеличивается расход топлива;
- в выхлопах увеличивается уровень вредных компонентов.
В современных транспортных средствах имеются электродатчики, выдающие сведения на монитор приборной доски, чтобы водитель имел возможность уточнить неисправность, которую необходимо устранить.
Засорение устройства может быть вызвано бензином, в состав которого входят парафиновые частички и сложные химсоединения. При отключении мотора некоторое количество горючего остается в форсунке. От температуры оно начинает испаряться, парафин застывает. Он то и создает основное препятствие для подачи горючего.
Чтобы восстановить нормальную работоспособность, прибор следует прочистить. Можно воспользоваться компрессорным устройством и специальной промывочной жидкостью. Компрессор монтируется вместо насоса подачи топлива, начинает подавать растворитель в систему. Время процедуры будет зависеть от того, насколько сильны загрязнения форсунок. Если результат не достигнут, следует применить более кардинальный способ.
Чтобы уточнить результативность прочистки, следует выполнить анализ выхлопных газов, уточнить мощность двигателя и уровень падения показателя давления в инжекторе. Если все нормально, значит, очистка проведена успешно.
Второй способ сложнее, подразумевает наличие специальных навыков. Придется разбирать мотор и некоторые узлы машины. До такого состояния устройство рекомендуется не доводить.
Некоторые водители считают, что моноинжектор будет эффективней. Вопрос спорный, на расход топлива влияние не оказывается. Небольшое улучшение можно получить, если одновременно провести чип-тюнинг.
Что такое топливная форсунка и как она работает?
Оглавление
Введение
«Улучшение технологии сегодня приведет к повышению эффективности завтра» очень правильно сказано, поскольку увеличение зависимости человека от машин не только облегчает жизнь, но и увеличивает потребность в топливе. , особенно если мы говорим об автомобилях, количество транспортных средств на дорогах значительно увеличилось с начала 20-го века, что напрямую отражает потребности в топливе, а также цены, поэтому для исследователей возникла необходимость создать инновационную систему, которая может сделать привод доступный, а также надежный. Для решения этой проблемы в 1920 Компания Bosch придумала название устройства «Fuel Injector» для дизельного двигателя, что стало настоящим бумом в области двигателей внутреннего сгорания, так что давайте углубимся в подробности.
Что такое топливная форсунка?
Топливная форсунка представляет собой механическое устройство с электронным управлением, которое используется для впрыска/распыления (точно так же, как шприц) топлива в двигатель для приготовления правильной воздушно-топливной смеси, которая, в свою очередь, обеспечивает эффективное сгорание в двигателе?
Расположение топливных форсунок различается для разных конструкций двигателей, но обычно они устанавливаются на головке двигателя наконечником внутрь камеры сгорания двигателя.
Зачем они нам?
Топливные форсунки необходимы всем автомобилям в наши дни, потому что-
- Принцип работы двигателей внутреннего сгорания прямо указывает на то, что чем качественнее топливно-воздушная смесь, тем лучше будет ее сгорание, что, в свою очередь, обеспечивает более высокий КПД двигателя. , поэтому нам нужны топливные форсунки, которые обеспечивают гораздо лучшее качество топливовоздушной смеси, чем карбюраторы.
- Неправильное смешивание топлива с воздухом, обеспечиваемое карбюраторами, оставляет различные несгоревшие частицы внутри камеры сгорания двигателя внутреннего сгорания, что приводит к неправильному распространению пламени сгорания, из-за которого возникает неисправность двигателя, известная как стук или детонация, чтобы избежать это почти все транспортные средства на дороге сегодня используют технологию впрыска топлива.
- Потери топлива в виде нагара или несгоревших частиц внутри камеры сгорания непосредственно отражают пробег автомобиля, что нежелательно, поэтому, чтобы избежать этого, становится необходимым внедрение технологии впрыска топлива.
- В случае карбюраторов контроль качества топливовоздушной смеси и времени (расчёт топлива) не является точным, как в карбюраторах, регулировка может выполняться механически, но когда речь идёт о топливных форсунках, благодаря интеллектуальному блоку с электронным управлением или ЭБУ достигается высокая точность дозирования топлива.
- Было замечено, что не только пробег, но и производительность автомобилей с впрыском топлива лучше, чем у автомобилей с карбюратором.
Читайте также:
- Типы автомобильных тормозных систем
- Что такое главный цилиндр и как он работает?
- Что такое усилитель тормозов и как он работает?
Типы топливных форсунок
Развитие технологий впрыска топлива привело к появлению различных механизмов впрыска топлива, таких как впрыск топлива через корпус дроссельной заслонки, многоточечный впрыск топлива, последовательный впрыск топлива и непосредственный впрыск, которые можно использовать в зависимости от области применения. но когда дело доходит до типов топливных форсунок, то классифицировать их действительно сложно. По нашему мнению, топливные форсунки можно разделить на –
На основе топлива
На основе впрыска топлива форсунки бывают двух типов-
1. Форсунки дизельного топлива
топлива, чем бензин) непосредственно в камеру сгорания дизеля для дальнейшего сгорания за счет сжатия.
Капилляр и сопло дизельных форсунок выполнены таким образом, что они могут образовывать дизельные пакеты при распылении топлива внутри камеры сгорания.
Дизельные топливные форсунки требуют более высокого давления впрыска, чем бензиновые, поскольку дизельное топливо тяжелее бензина.
2. Бензиновые топливные форсунки
Это топливные форсунки, используемые для впрыска или распыления бензина непосредственно или через впускной коллектор в камеру сгорания для дальнейшего искрового сгорания.
Капилляр и сопло бензиновых топливных форсунок изготавливаются меньше или такими же, как у дизельных топливных форсунок, в зависимости от требований.
Поскольку бензин легче дизельного топлива, для бензиновых форсунок требуется меньшая прокачка, чем для дизельных форсунок.
На основе дозирования топлива
На основе дозирования топлива (контроля скорости, количества и давления топлива) топливные форсунки бывают двух типов-
1. Форсунки с механическим управлением
Они — это топливные форсунки, в которых управление скоростью, количеством, моментом подачи топлива и давлением осуществляется механически с помощью пружины и плунжера, который получает вход от кулачка и топливного насоса, или от распределителя топлива (усовершенствованный).
2. Топливные форсунки с электронным управлением
Это топливные форсунки, в которых управление скоростью подачи топлива, количеством, давлением и синхронизацией осуществляется электронным способом с помощью электронного соленоида, который получает входные данные либо от распределителя топлива, либо от электронный блок управления (усовершенствованный) автомобиля.
Конструкция топливных форсунок
Конструкция топливной форсунки напоминает насадку садового душа, которая используется для распыления воды на траву, ту же цель выполняет топливная форсунка, но разница заключается в том, что вместо водяного топлива , форсунка распыляет топливо внутри двигателя. позволяет понять конструкцию топливных форсунок, рассматривая топливные форсунки с механическим управлением и топливные форсунки с электронным управлением —
Топливная форсунка с механическим управлением
Топливная форсунка с механическим управлением, состоящая из частей:
- Корпус форсунки форсунки устроены так же, как садовый душ. Внутренняя часть корпуса форсунки сконструирована таким образом, что в ней находится точно спроектированный капилляр или канал, через который топливо под высоким давлением из топливного насоса может течь для дальнейшего распыления.
- Плунжер – Плунжер используется на форсунке или узком конце топливной форсунки, который используется для открытия или закрытия форсунки под действием давления топлива, регулируемого распределителем топлива или регулятором двигателя.
- Пружины – 2 пружины используются внутри топливных форсунок с механическим управлением, которые –
- Пружина плунжера – Движение плунжера вперед и назад контролируется пружиной плунжера, которая действует, когда давление топлива внутри топлива Увеличение форсунки приводит к открытию форсунки и возвращается в исходное положение при снижении давления, что, в свою очередь, закрывает форсунку.
- Основная пружина- Основная пружина используется для управления входом топливной форсунки. Основная пружина работает под действием давления топлива, создаваемого топливным насосом.
Читайте также:
- Что такое двигатель Стирлинга – типы, основные части, работа и применение?
- Что такое порядок работы 4- и 6-цилиндрового двигателя?
- Типы коробок передач – полное объяснение
Топливная форсунка с электронным управлением
Это интеллектуальный тип топливной форсунки, которая управляется электронным блоком управления двигателем, который также известен как мозг современных двигателей.
Топливные форсунки с электронным управлением состоят из следующих частей –
- Корпус форсунки. Как и у форсунки с механическим управлением, корпус форсунки этого типа представляет собой точно спроектированную полую оболочку, внутри которой расположены все остальные компоненты.
- Плунжер- Как и в топливной форсунке с механическим управлением, плунжер используется для открытия и закрытия сопла, но в топливной форсунке с электронным управлением открытие сопла управляется электронным способом с помощью электромагнитов.
- Пружина – Как и в топливной форсунке с механическим управлением, пружина плунжера используется для удержания плунжера в его положении, чтобы при необходимости закрыть сопло топливной форсунки.
- Электромагниты – В отличие от топливных форсунок с механическим управлением, этот тип форсунок оснащен электромагнитами вокруг плунжера, который управляет открытием форсунки, принимая электронный сигнал от электронного блока управления двигателя через электронный штекер или штуцер, соединяющий топливную форсунку с электронным блоком управления двигателем.
- Электронный штекер/соединение- На верхнем конце топливной форсунки с электронным управлением имеется штуцер/штекер, через который электронный сигнал от электронного блока управления двигателем передается на электромагниты, которые, в свою очередь, открывают форсунку, чтобы для распыления топлива.
Рабочий
До сих пор нам ясно назначение топливной форсунки. Итак, чтобы понять, как различные части топливной форсунки выполняют эту задачу, давайте рассмотрим механические и электронные топливные форсунки –
Топливная форсунка с механическим управлением
Когда мы включаем зажигание автомобиля, чтобы запустить двигатель, топливный насос двигателя начинает перекачивать топливо к распределителю топлива, который, в свою очередь, начинает регулировать время и количество распыляемого топлива.
- После топливораспределителя топливо подается к форсунке по указанию топливораспределителя по топливопроводам.
- В топливной форсунке, когда это топливо под высоким давлением достигает топливной форсунки, из-за высокого давления это топливо толкает впускную или основную пружину, чтобы попасть в топливную форсунку.
- Когда это топливо попадает в топливную форсунку, оно начинает толкать пружину плунжера, которая, в свою очередь, выталкивает плунжер наружу, и происходит открытие форсунки, что приводит к распылению топлива.
- При завершении впрыска топлива для определенного цикла в соответствии с сигналом от распределителя топлива давление внутри топливной форсунки снижается, благодаря чему пружина плунжера остается в исходном положении, что приводит к закрытию форсунки и распылению топлива. топливо останавливается для этого конкретного цикла.
Топливная форсунка с электронным управлением
Когда мы ON зажигание автомобиля для того, чтобы запустить двигатель, топливный насос вместе с электронным блоком управления двигателем.
- Топливный насос начинает подавать топливо к топливной форсунке, а время, количество и давление топлива, поступающего в топливную форсунку, регулируются электронным блоком управления.
- Электронный блок управления посылает электронный сигнал на топливную форсунку с помощью электронного соединения, благодаря этим электронным сигналам от ECU активируются электромагниты внутри топливной форсунки, что, в свою очередь, выталкивает плунжер наружу, что приводит к открытию форсунки и, наконец, происходит распыление топлива.
- После завершения данного цикла электронный сигнал от ЭБУ прекращается, что в свою очередь деактивирует электромагниты, благодаря чему плунжер возвращается в исходное положение, что приводит к закрытию форсунки и прекращению распыления топлива.
- Закрытие сопла поддерживается пружиной плунжера.
Это все о топливной форсунке. Если вы нашли эту статью полезной и информативной, не забудьте поставить лайк и поделиться ею с друзьями.
Производители новейших двигателей Common Rail полагаются на топливные форсунки с пьезоэлектрическим приводом.
Давление по сокращению выбросов дизельных двигателей растет. Одним из способов достижения этого является более эффективное сгорание топлива в цилиндре. Впрыск топлива в меньших объемах, более частый и более распыленный дает меньше несгоревшего топлива и, в свою очередь, более чистое сгорание с меньшими выбросами. Пьезоэлектрические топливные форсунки (CRI4), в которых используются пьезокристаллы как часть быстродействующего исполнительного механизма, помогают производителям достичь цели Евро-6. Эти инжекторы работают, пропуская электрический ток через стопку пьезокристаллов, заставляя их расширяться; когда кристалл разряжает ток, он сжимается до исходного размера. Расширение и сжатие кристаллов вытесняет топливо внутри форсунки, в результате чего игольчатый клапан открывается и закрывается очень быстро. При таком запуске форсунки топливо подается в камеру сгорания в пять раз быстрее, чем при использовании обычных электрогидравлических соленоидных форсунок. Поскольку пьезоинжектор быстрее, он может выполнять больше впрысков за ход цилиндра и обеспечивает более высокое давление в топливной системе; это улучшает распыление дизельного топлива, обеспечивает улучшенный импульс распыления и большую точность. Результатом является улучшенный контроль сгорания, меньший расход топлива, значительное снижение выбросов, больший крутящий момент и мощность, а также лучшая экономия топлива. Поперечное сечение пьезофорсунки (CRI4) Общие вопросы ремонта и замены Как и все компоненты системы Common Rail, эти форсунки изготавливаются с очень малыми допусками. Отказы обычно происходят из-за неправильной заправки или высокого содержания воды в топливе (из-за отсутствия обслуживания или загрязнения топливной системы). Помните, что форсунки Common Rail работают в агрессивной среде, где они подвержены воздействию высоких температур (до 350°C), должны подавать топливо в камеру сгорания точно, быстро и под чрезвычайно высоким давлением, а также являются точкой уплотнения между камеру сгорания и атмосферу. В некоторых случаях может происходить прорыв картерных газов мимо форсунки из камеры сгорания. Это оставляет нагар между форсункой и головкой блока цилиндров, что часто требует специальных инструментов для снятия форсунок. Тщательная очистка отверстия форсунки и седла уплотнения, использование высококачественных уплотнений вместе с правильным моментом затяжки при установке новых/восстановленных форсунок могут помочь предотвратить подобные проблемы в будущем. Пьезофорсунки используются некоторыми крупными производителями двигателей, особенно популярным является двигатель Renault 2.0 dCi. Тем не менее, это не означает конец соленоидных форсунок, поскольку производители оборудования в настоящее время находят способы заставить соленоиды давать результаты, аналогичные пьезотехнологии. Предостережение Пьезодиагностика может быть опасной, так как форсунки работают при напряжении до 200 вольт и 15 ампер. При отключении во время расширения пьезокристаллов они не смогут заземлиться, и инжектор останется в расширенном состоянии. |