Содержание
Когда нужен ремонт а когда лучше полная замена двигателя
Отказ двигателя — это событие, которое всегда сулит неприятности и требует принятия важных решений:
Стоит ли тратить деньги на замену или ремонт двигателя или целесообразнее было бы вовсе избавиться от старого автомобиля и приобрести новый?
Пригоден ли старый двигатель для ремонта или придется заменить его новым, восстановленным или подержанным?
Какой вариант лучше и разумнее с экономической точки зрения?
Починить или выбросить?
Если вашему авто меньше десяти лет и вы сильно прикипели к нему душой или не можете в настоящий момент позволить себе другой, то, пожалуй, лучшим решением для вас будет отремонтировать или заменить старый двигатель. Автомобили быстро обесцениваются, даже если эксплуатировались они не слишком часто. К тому времени, как вашей машине понадобится новый мотор, ее рыночная цена или стоимость при встречной продаже может быть настолько низкой, что переводить на нее лишние деньги станет просто нерентабельно. Следовательно, если ваш автомобиль стоит меньше $2000, очень хорошо подумайте, прежде чем тратиться на капитальный ремонт. Уж лучше приберегите свои финансы для покупки нового авто.
С другой стороны, если ваша старушка отслужила более десяти лет, и вы ее терпеть уже не можете или ищете предлог обзавестись новым автомобилем, не тратьте на нее ни копейки. Забудьте о ремонте и замене старого мотора. Сдайте ее на утилизацию или пожертвуйте на благотворительность, позаботившись о списании налога, или продайте по дешевке кому-нибудь, кто думает, что сможет ее отремонтировать и «поставить на ноги».
Во-первых, выясните причину отказа двигателя.
Если старый двигатель «набегал» более 150000 миль и сжигает масло, работает кое-как, шумит или глохнет, то ремонт обойдется дорого. Для реконструкции двигателя с большим пробегом потребуется расточить цилиндры под новые поршни большего диаметра. В связи с этим увеличатся затраты на запчасти и услуги автосервиса. Возможно, понадобится расточить соосные отверстия в блоке цилиндров, чтобы восстановить их округлую форму и расположение вдоль одной линии. Также может понадобиться фрезеровка и шлифовка привалочных поверхностей для обеспечения их плоскости. Необходимо будет реставрировать поверхность головок цилиндров, заменить выпускные клапаны (возможно, и гнезда клапанов, если головка алюминиевая), может потребоваться расточка отверстий распредвала вдоль одной оси, чтобы восстановить опорные поверхности. Вдобавок к механической обработке двигатель нужно будет полностью демонтировать, тщательно очистить и проверить на наличие трещин или других повреждений, из-за которых блок или головки могут быть ремонтонепригодными. Если блок и головки цилиндров в порядке, то коленвал, скорее всего, придется переточить, чтобы восстановить поверхности шейки. Может быть, понадобятся новые кулачки, распредвал, толкатели клапанов или поршни, если старые слишком износились. Возможно, также надо будет заменить шатунные и коренные подшипники коленвала, подшипники распредвала, цепь механизма газораспределения и комплект шестерен (или зубчатый ремень привода, если это двигатель с распределительным валом в головке блока цилиндров), масляный насос и любые другие поврежденные или изношенные детали. Все это сводятся к тому, что ремонт влетит в копеечку.
В связи с тем, что реконструкция двигателя с большим пробегом требует немалых усилий, во многих автомастерских и у официальных дилеров вам посоветуют заменить старый мотор новым или восстановленным. В обоих случаях двигатель приходит более-менее укомплектованным и, как правило, может быть установлен за один день. Не будет никаких задержек, связанных с механической обработкой или ожиданием запчастей для старого мотора. На большинство новых и восстановленных двигателей распространяется гарантия.
Приобретать подержанные двигатели может быть рискованно. Двигатель, добытый на автосвалке с какой-нибудь машины с малым пробегом (менее 60000 миль), наверное, будет не так уж плох. Если гарантируется хорошее состояние двигателя (а гарантию дают не все), то его покупка и установка, действительно, гораздо дешевле. Но если пробег мотора довольно большой или автомобиль, с которого его сняли, был списан за негодностью (а не пострадал в аварии), и гарантий никто не дает, лучше не покупайте. Продолжайте искать и сделайте выбор в пользу нового или восстановленного двигателя от проверенного поставщика.
При выборе хорошего б/у двигателя следует помнить, что он должен быть совместимым с вашей системой управления двигателем, с датчиками и электропроводкой. Так как конструкция и настройки двигателей меняются из года в год, то может быть проблематично найти двигатель от авто необходимого вам года, марки и модели, или хотя бы его наиболее близкий аналог.
Новый или восстановленный двигатель?
Заказанный вами новый сменный двигатель может быть усовершенствован, чтобы обеспечить больший рабочий объём или больше мощности в соответствии с вашими пожеланиями. Если же вы не хотите никаких модификаций, то получите точную копию заводского двигателя.
Восстановленный двигатель — это б/у двигатель, который был разобран, проверен и реконструирован до состояния полного восстановления технических характеристик. Детали, подверженные естественному износу, такие как подшипники, кольца, цепи механизмов газораспределения, клапанные пружины, прокладки, пломбы, масляные насосы и т.п., подлежат обязательной замене. Более крупные детали — коленчатые, распределительные валы и поршни — будут заменены в случае необходимости. Конечный продукт должен соответствовать техническим характеристикам оригинального оборудования либо превосходить их.
Еще одно преимущество такого варианта (восстановления двигателя) состоит в том, что это позволит вам повторно использовать полезные детали и продлить их срок службы, вместо того, чтобы сдать их на металлолом. Таким образом, этот подход не только является благоприятным для окружающей среды, но и способствует сохранению и созданию рабочих мест.
Для сравнения, новый двигатель обычно оснащен новыми деталями (блок цилиндров, головки цилиндров, коленчатый вал, шатуны, поршни, распределительный вал, клапаны и т.п.), что, наряду с улучшением характеристик, значительно увеличивает его стоимость по сравнению с восстановленным двигателем.
Как на новые, так и на восстановленные двигатели распространяется гарантия (чем больше гарантийный срок, тем лучше).
Автомобильный двигатель без распределительного вала
В схеме газораспределительного механизма Архангельского имеется центробежный регулятор, сдвигающий моменты открытия и закрытия клапанов в зависимости от частоты вращения коленчатого вала.
Клапан Архангельского открывается при срабатывании электромагнита и закрывается возвратной пружиной.
Использование для перемещения клапана двух электромагнитов позволяет избавиться от возвратных пружин.
В новой конструкции газораспределительного механизма привод расположен сбоку от блока цилиндров. Применение длинных соленоидов увеличивает ход клапанов, позволяет его регулировать в широких пределах.
‹
›
Открыть в полном размере
Исторически сложилось так, что отечественное автомобилестроение развивалось в попытках догнать западных коллег. По-настоящему оригинальные модели (к ним относится, скажем, “Победа”) можно пересчитать по пальцам. И все же интересные разработки, внедрение которых позволило бы нашим автомобилестроителям успешно конкурировать с зарубежными, появляются. Предлагаем вниманию читателей рассказ о необычном механизме, предложенном доцентом кафедры “Электротехника и электрооборудование” Московского автомобильно-дорожного института (Государственного технического университета) Д. А. Сосниным. Устройство позволяет отказаться от применения в двигателе привычного распределительного вала и в то же время гибко управлять фазами газораспределения и величиной хода клапанов.
ТАМ, ГДЕ ЭЛЕКТРОНИКА ПАСУЕТ
Любой автомобилестроитель стремится к тому, чтобы двигатели внутреннего сгорания (ДВС) на его машинах работали в оптимальном режиме: обеспечивали максимальную мощность, равномерность крутящего момента, минимальный расход топлива, наименьшую токсичность выхлопных газов. Однако пока этого никому не удалось добиться в полной мере, поскольку улучшение одних характеристик приводит к ухудшению других. В последнее время, правда, достигнут существенный прогресс благодаря применению автоматизированного управления работой двигателя с широким использованием электроники.
При составлении программы для системы управления двигатель на специальном испытательном стенде вводят в устойчивый режим работы и последовательно корректируют все параметры так, чтобы для данного режима они обеспечивали наилучшие выходные характеристики. То же проделывают при других режимах. Результаты записывают в постоянную память электронного блока в виде многомерной диаграммы, с помощью которой в дальнейшем формируются управляющие сигналы по каждому из параметров.
Например, в комплексной электронной системе “Motronic” (ФРГ), которая управляет впрыском топлива и зажиганием, пять таких диаграмм: для корректировки угла опережения зажигания, времени впрыска топлива, положения клапана рециркуляции (устройства, возвращающего часть выхлопных газов в цилиндр для лучшего дожигания топлива), времени накопления энергии в катушке зажигания и положения дроссельной заслонки. В качестве входных параметров в этой системе используются частота вращения коленчатого вала, крутящий момент и температура двигателя, а также напряжение аккумуляторной батареи. На выходе контролируют соответствие оборотов двигателя крутящему моменту и содержание окиси углерода в выхлопных газах.
К сожалению, в автомобиле есть система, которая не поддается регулированию даже самой изощренной автомобильной электроникой. Это газораспределительный механизм с жесткой кинематической связью между коленчатым и распределительным валами.
Специалисты считают, что классический двигатель достаточно совершенен и если иногда плохо работает, то лишь потому, что “задыхается от собственного выхлопа”; стоит дать двигателю побольше кислорода, позволить “дышать полной грудью”, и ему не будет альтернативы.
Помочь двигателю можно, если бы удалось сдвигать моменты открытия и закрытия клапанов, в первую очередь впускных. Вспоминается, как еще в начале 70-х годов прошлого века автогонщики прибалтийских
республик выигрывали состязания, добиваясь частоты вращения коленчатого вала до 3000 об/мин на холостом ходу и до 8000 об/мин на полном газу. Впоследствии выяснилось, что они раздобыли шаблон распределительного вала, наплавляли кулачки и затем вручную доводили их форму. С такими распредвалами двигатели выдавали высокие характеристики (мощность и крутящий момент), но только на больших оборотах. Для спортивных машин это хорошо, но для “частных” — неприемлемо. Тем не менее такой факт говорит о заметной роли запаздывания или опережения фазы клапанов.
Как же заставить клапан открываться и закрываться в тот момент, который соответствует оптимальной работе двигателя? Ясно, что нужно управлять фазами газораспределения в зависимости от частоты вращения, положения и нагрузки коленчатого вала. Традиционный кулачковый распредвал не позволяет решить эту задачу.
В небольших пределах соотношение фаз газораспределения можно регулировать с помощью механических, электромеханических, гидравлических, пневматических приводов клапанов. Но наиболее перспективным считается электромагнитный привод, управляемый электроникой. С его помощью можно не только оптимизировать работу двигателя, но и расширить его функциональные возможности. Так, четырехцилиндровый двигатель при изменении порядка срабатывания клапанов можно заставить действовать как двух- или трехцилиндровый; он более равномерно работает при переменных нагрузках, потребляет меньше топлива на максимальных оборотах при заданной мощности. Не будет у такого двигателя проблем с изменением направления вращения коленчатого вала.
На первый взгляд все выглядит очень просто, но почему-то на автомобилях электромагнитные клапана пока встречаются только в экспериментальных разработках.
КЛАПАН АРХАНГЕЛЬСКОГО
Попытку реализовать идею электромагнитного клапана с гибким управлением предпринял в середине XX века профессор МАДИ В. М. Архангельский. Включение и выключение электромагнитов происходило при замыкании и размыкании контактов, связанных с кулачками распределительного вала. На место клапан возвращался пружиной.
В схеме Архангельского был предусмотрен центробежный регулятор на распределительном валу. При изменении частоты вращения он смещал положение кулачков и вызывал опережение открывания и закрывания клапанов. Таким образом, регулятор играл роль обратной связи. Это позволяло обходиться без программного управления, которого, кстати, тогда и не могло быть.
К сожалению, несмотря на изящество схемы, работоспособную конструкцию создать не удалось. Дело в том, что клапан должен быстро срабатывать и надежно закрываться, а поэтому требуется возвратная пружина с большой жесткостью. Соответственно нужен мощный электромагнит, который потребляет значительный ток из бортовой сети автомобиля. В те времена не было мощных полупроводниковых вентилей и металлические контакты при коммутации больших токов быстро выгорали. Наконец, при закрытии клапана возвратной пружиной происходил сильный удар головки клапана о гнездо, что вызывало шум при работе газораспределительного механизма и вело к частым поломкам клапанов.
ОДИН ХОРОШО, А ДВА ЛУЧШЕ
Избавиться от многих недостатков, присущих клапану Архангельского, можно, если вместо одного электромагнита поставить два — открывающий и закрывающий. Подобная схема была разработана одним из студентов Тольяттинского государственного университета в дипломном проекте под руководством доктора технических наук профессора В. В. Ивашина.
В данном варианте конструкции пружины не нужны, и поэтому электромагниты могут быть меньших размеров и мощности — ведь большой ток потребляется лишь при закрывании и открывании клапанов, а для их удержания достаточна сила тока в десять раз меньше.
Но главное, теперь можно обойтись совсем без распределительного вала, поскольку задавать время срабатывания и силу тока через обмотку электромагнита может программируемый контроллер — электронное устройство, обычно на микропроцессоре, управляющее работой двигателя и других систем автомобиля.
В НАМИ под руководством кандидата технических наук А. Н. Терехина начали проводить исследовательские и конструкторские разработки газораспределительного механизма с электромагнитным приводом клапанов на базе двигателя М-412. В результате был создан действующий макет газораспределительного механизма с двухсторонними электромагнитами на восьми клапанах. Но с начала 1990-х годов финансирование прекратилось, и перспективная разработка затерялась в архивах.
Несколько лет назад работы над новым газораспределительным механизмом были возобновлены на Волжском автозаводе под руководством главного конструктора АвтоВАЗа П. М. Прусова. Так, среди тем Всероссийского конкурса “Русский автомобиль” (см. “Наука и жизнь” № 12, 2002 г.) была объявлена “Разработка системы электромагнитного привода газораспределительных клапанов для 16-клапанного двигателя ВАЗ”. На конкурс были представлены два проекта, но оба совсем “не по делу”, и их даже не стали рассматривать.
Тем временем над усовершенствованием электромагнитного привода клапанов начали работать японские, американские и (с наибольшим успехом) немецкие автомобилестроители. Уже в 2002 году компания БМВ приступила к испытаниям на реальном 16-клапанном двигателе газораспределительного механизма с электромагнитным приводом всех клапанов.
КОНКУРЕНТОСПОСОБНАЯ КОНСТРУКЦИЯ
Тогда же к разработке электромагнитных газораспределительных клапанов приступили на кафедре “Электротехника и электрооборудование” МАДИ (ГТУ).
Хотя на Западе нас не признавали конкурентами: мол, “отстали на 10 миль” (на жаргоне автогонщиков так говорят об отставших на два круга, что означает — слабаки), однако автором запатентована конструкция, которая решает большинство проблем, присущих электромагнитным приводам.
В ней вместо громоздких электромагнитов, установленных над клапанами, применены длинные соленоиды. Торможение сердечника в длинном соленоиде реализуется не жесткими упорами, а краевыми магнитными полями, и работа привода становится бесшумной. Кроме того, ход клапана может быть сколь угодно большим и регулируемым. Возвратно-поступательное движение от электромагнита к клапану передается через штангу и качающееся коромысло. Благодаря этому привод можно устанавливать не над блоком цилиндров, а на его боковой поверхности. В результате значительно уменьшается высота двигателя, а для охлаждения и смазки деталей привода используются штатные системы автомобиля.
Теперь дело за моторостроителями. Если удастся воплотить идею в металле, в России появится приемистый и экономичный автомобиль, который к тому же будет удовлетворять самым жестким требованиям по чистоте выхлопа.
Как работает двигатель?
ТЕХНОЛОГИИ — Изобретения
Задумывались ли вы когда-нибудь.
..
- Как работает двигатель?
- Что такое внутреннее сгорание?
- Каковы четыре фазы цикла сгорания?
Метки:
См. все метки
- каталитический нейтрализатор,
- сгорание,
- сжатие,
- ,
- выхлоп,
- взрыв,
- топливо,
- впуск,
- ,
- поршень,
- ,
- Наука,
- Технология,
- Транспорт,
- Автомобиль,
- Капюшон,
- Бензин,
- Движение,
- Газ,
- Внутреннее сгорание,
- Сила,
- Энергия,
- Цикл,
- Четырехтактный,
- Воздух,
- Свеча зажигания,
- Катализатор,
- Горение,
- Сжатие,
- Двигатель,
- Выхлоп,
- Взрыв,
- Топливо,
- Впуск,
- Глушитель,
- Поршень,
- Клапан,
- Наука,
- Технология,
- Транспорт,
- Автомобиль,
- Капюшон,
- Бензин,
- Движение,
- Газ,
- Внутреннее сгорание,
- Сила,
- Энергия,
- Цикл,
- Четырехтактный,
- Воздух,
- Свеча зажигания
двигатель
глушитель
Клапан
Сегодняшнее чудо дня было вдохновлено Эдди. Эдди Уондерс , « как работает двигатель на автомобиле » Спасибо, что ДУМАЕТЕ вместе с нами, Эдди!
Вы уже знаете, что завести машину так же просто, как повернуть ключ, но задумывались ли вы когда-нибудь, что на самом деле происходит под капотом?
Когда вашему телу нужно топливо, вы кормите его едой. Когда вашему автомобилю нужно топливо, вы «кормите» его бензином. Точно так же, как ваше тело преобразует пищу в энергию, автомобильный двигатель преобразует газ в движение. Некоторые новые автомобили, известные как гибриды, также используют электричество от аккумуляторов для приведения в движение транспортного средства.
Процесс преобразования бензина в движение называется «внутренним сгоранием».Двигатели внутреннего сгорания используют небольшие контролируемые взрывы для выработки энергии, необходимой для перемещения вашего автомобиля во все места, которые ему нужно проехать.
Если вы создадите взрыв в маленьком замкнутом пространстве, например, в поршне двигателя, высвобождается огромное количество энергии в виде расширяющегося газа. Типичный автомобильный двигатель производит такие взрывы сотни раз в минуту. Двигатель использует энергию и использует ее для движения вашего автомобиля.
Взрывы заставляют двигаться поршни в двигателе. Когда энергия первого взрыва почти иссякает, происходит еще один взрыв. Это заставляет поршни двигаться снова. Цикл повторяется снова и снова, давая автомобилю мощность, необходимую для движения.
Автомобильные двигатели используют четырехтактный цикл сгорания. Четыре такта: впуск, сжатие, сгорание и выпуск. Удары повторяются снова и снова, генерируя энергию. Давайте подробнее рассмотрим, что происходит во время каждой фазы цикла сгорания.
Впуск: Во время цикла впуска впускной клапан открывается, и поршень движется вниз. Цикл начинается с подачи воздуха и газа в двигатель.
Сжатие: Когда начинается цикл сжатия, поршень движется вверх и выталкивает воздух и газ в меньшее пространство. Меньшее пространство означает более мощный взрыв.
Возгорание: Затем свеча зажигания создает искру, которая воспламеняет и взрывает газ. Сила взрыва заставляет поршень опуститься.
Выхлоп: В последней части цикла выпускной клапан открывается для выпуска отработанного газа, образовавшегося в результате взрыва. Этот газ перемещается в каталитический нейтрализатор, где очищается, а затем проходит через глушитель, прежде чем выйти из автомобиля через выхлопную трубу.
Интересно, что дальше?
Подумайте дважды, прежде чем плавать с завтрашним чудом дня!
Попробуй
Накрутил мотор? Обязательно изучите следующие виды деятельности с другом или членом семьи:
- Знаете ли вы, из каких частей состоит автомобиль? Перейти онлайн, чтобы проверить анатомию автомобиля. Узнайте больше о частях автомобиля и о том, что они делают. Можете ли вы определить каждую деталь вашего семейного автомобиля?
- Если вы действительно хотите узнать больше о двигателях, попросите взрослого друга или члена семьи открыть капот семейного автомобиля, чтобы вы могли поближе рассмотреть двигатель. Вы можете себе представить, сколько деталей в современном двигателе? Если возможно, сравните двигатель вашего семейного автомобиля с двигателем другого типа, например, с двигателем газонокосилки.
- Благодаря современным технологиям двигатели меняются, чтобы поддерживать несколько источников топлива. Какими будут двигатели, когда вы станете достаточно взрослыми, чтобы водить машину? Чтобы узнать больше, ознакомьтесь с онлайн-мероприятием NOVA Car of the Future. Как вы думаете, гибрид или электромобиль в вашем будущем? Почему или почему нет?
Wonder Sources
- http://auto.howstuffworks.com/engine1.htm
- http://www.wisegeek.com/how-does-a-car-engine-work.htm
Ты понял?
Проверьте свои знания
Wonder Contributors
Благодарим:
Чез, Каден, Элизабет, Елена и Кристал
за вопросы по сегодняшней теме Wonder!
Удивляйтесь вместе с нами!
Что вас интересует?
Wonder Words
- сжигание
- топливо
- взрыв
- генерирует
- в комплекте
- поршень
- жгут
- двигать
- ход
- впуск
- сжатие
- выхлоп
- клапан
- глушитель
- выхлопная труба
- ключ
- капот
- движение
Примите участие в конкурсе Wonder Word
Оцените это чудо
Поделись этим чудом
×
ПОЛУЧАЙТЕ СВОЕ ЧУДО ЕЖЕДНЕВНО
Подпишитесь на Wonderopolis и получайте
Wonder of the Day® по электронной почте или SMS
Присоединяйтесь к Buzz
Не пропустите наши специальные предложения, подарки и рекламные акции. Узнай первым!
Поделитесь со всем миром
Расскажите всем о Вандополисе и его чудесах.
Поделиться Wonderopolis
Wonderopolis Widget
Хотите делиться информацией о Wonderopolis® каждый день? Хотите добавить немного чуда на свой сайт? Помогите распространить чудо семейного обучения вместе.
Добавить виджет
Ты понял!
Продолжить
Не совсем!
Попробуйте еще раз
Можно ли запустить двигатель внутреннего сгорания в космосе?
| Car Design
Это не такой глупый вопрос, как вы могли подумать, поэтому мы вызвали экспертов.
Еще когда мы писали об усилиях GM по отправке автомобиля обратно на Луну с использованием той же технологии электрической трансмиссии, что и в Hummer EV, пользователь на нашей странице в Facebook заявил, что это имеет смысл, потому что «двигатель не будет работать. в космосе.» Хотя было бы легко проигнорировать такой комментарий, мы решили, что будет интереснее выяснить, действительно ли двигатель внутреннего сгорания (или ДВС) не может работать в космосе. Просто чтобы убедиться, что мы не говорим из-за задницы, мы также задали вопрос исследователям и профессорам Калифорнийского политехнического государственного университета, или сокращенно Калифорнийского политехнического университета.
Что вообще делают двигатели?
Лучше всего начать с переподготовки или, возможно, нового урока для тех, кто не знает, что и как делает двигатель. Простейшая идея состоит в том, что двигатель создает свою собственную мощность посредством «рабочей жидкости» для создания движения. Рабочее тело — это газ или жидкость, которые в первую очередь передают силу, движение или механическую энергию. Мы знаем, что трудно думать о газе как о «жидкости», но в мире науки газ рассматривается как жидкость во многих отношениях. Если бы это было не так, мы бы не поняли, как работают ни аэродинамика, ни пневматические клапаны, не говоря уже о том, чтобы смоделировать их.
Это определение объясняет, почему двигатель отличается от двигателя, которому для создания движения требуется питание от внешнего источника, то есть: электродвигателю для создания движения требуется питание от батареи или другого источника электроэнергии. Однако непрофессионал может использовать слова «мотор» или «двигатель» как синонимы, когда речь идет о движении транспортного средства. Для целей этой статьи мы будем использовать слово «двигатель» только для описания двигателя и не будем менять их местами.
Буква «C» в ICE
Горение – это процесс, при котором топливо сжигается с окислителем при определенном соотношении каждого из них. Это сгорание создает тепло, которое вызывает расширение газов в нашем цилиндре — нашей рабочей жидкости. Это все, что представляет собой сгорание, и именно поэтому большинство людей, когда их спросят, объяснят, почему двигатель не будет работать в космосе.
В космосе нет кислорода, и это вакуум, который высосет топливо до того, как оно сгорит, так что это не должно работать. Чего они не задают себе перед тем, как ответить на этот вопрос, так это «почему ракета работает в космосе, а ДВС не может?» Теперь, когда вы, вероятно, задали этот вопрос, мы можем правильно начать эту статью.
Сосать, хлюпать, хлопать, дуть в космос!
Мы обратились в Cal Poly, чтобы помочь нам с этим мысленным экспериментом по ДВС в космосе, и профессору машиностроения, Патрику Лемье, доктору философии, PE; и профессор аэрокосмической техники Дайан Дж. ДеТуррис, доктор философии, были рады помочь нам и изложить всю теорию и объяснения по этой теме. Мы были счастливы получить их помощь — эти двое изучают и едят машиностроение и аэрокосмическую технику для развлечения и в качестве карьеры.
Короткий ответ заключается в том, что ДВС можно запускать в космосе, несмотря на холод (до определенной степени — без каламбура) и вакуум в окружающей среде. Когда дело доходит до того, как работает сгорание, все то же самое для бензиновых и жидкостных ракет, это просто количество каждой жидкости, необходимое для достижения этого сгорания вместе с окислителем и событием воспламенения, чтобы все началось.
Для большинства ракетных двигателей, работающих на жидком топливе, воспламенение создается с помощью воспламенителя факела, но в других ракетных двигателях с кислородной смесью используется гиперголическое (самовоспламеняющееся) топливо, закачиваемое в камеры сгорания, свечи зажигания (да, такие, как в вашем автомобиле), или — в случае с ракетой «Союз» — «спички-переростки», сделанные из пиротехнических ракет, закрепленных на березовых шестах. После воспламенения топливо сгорает, расширяется и приводит в движение объект, к которому привязан двигатель. Двигатель внутреннего сгорания делает то же самое, за исключением того, что расширяющиеся газы толкают поршень вниз, создавая энергию вращения на коленчатом валу.
Ракета, ДВС, взрыв одинаковый
«Разница заключается в том, что вы делаете с произведенной энергией, — говорит профессор ДеТуррис. — Ракета использует энергию для создания тяги в сужающемся и расширяющемся сопле, но ICE использует энергию для создания вращения. Любая из этих вещей может быть выполнена в вакууме, — однако, — отмечает она, — вам просто нужно учитывать температуру окружающей среды при разработке вашего приложения, и это может легко повлиять на материалы, которые вы используете в своей работе. пространство.» Одна из таких проблем связана с отсутствием кислорода, металлы легко сваривать в холодном состоянии. Это явление, связанное с вакуумом, позволяет металлам соединяться без плавления и нагревания, что в прошлом было проблемой для астронавтов и спутников. Однако современные материалы и лучшее понимание этого явления привели нас к материалам, более подходящим для космоса и предотвращающим холодную сварку.
«Вы также можете почувствовать, как это влияет на вещи, — говорит профессор Лемье, — рассмотрев двигатели небольших винтовых самолетов авиации общего назначения». «Автомобили без наддува, конечно, видят резкое падение атмосферного давления, когда они стабильно набирают высоту, и это связано с падением производительности, и поэтому «плотная высота» является таким важным параметром как для двигателей, так и для самолетов». Вот почему эти двигатели ограничены по высоте без добавления турбокомпрессора или нагнетателя, чтобы нагнетать больше воздуха, как в высокомощном автомобильном двигателе. Давление наддува означает, что при сжигании бензина нужно использовать больше воздуха.
Получение кислорода
Профессор Лемье также объясняет, что, хотя может показаться, что двигатель вообще не работает в полном вакууме, это возможно, если вы можете поставить окислитель. «Тогда это, безусловно, так. Если бы вы полагались на окружающую среду в качестве источника окислителя, это бы не сработало», — добавляет он. Если бы вы разработали инжектор окислителя для работы с закрытой камерой, вы могли бы даже сохранить те же конструкции клапанного механизма, которые мы сейчас используем в двигателях. Или вы можете проявить новаторство и удалить всю систему впуска и порт, заменив их прямым инжектором жидкого кислорода.
Питание мощного ракетного двигателя
Использование инжектора окислителя похоже на то, как это делают жидкостные ракеты сейчас, просто инжектор ракеты обычно не работает так, как инжекторы в ДВС. Насосы для жидкого кислорода и жидкого топлива ракеты во многом похожи на турбокомпрессор и называются турбонасосами. Разница, как правило, заключается в том, что вместо использования выхлопных газов для привода турбины он использует гравитацию и тянет жидкое топливо вниз для привода турбины. Крыльчатка, прикрепленная к этой турбине, сжимает каждую жидкость перед отправкой ее в основную камеру сгорания ракеты.
Есть и другие, которые используют газогенератор для привода крыльчатки (работает точно так же, как турбокомпрессор), а недавно были предприняты попытки привести турбину в движение с помощью электродвигателя («электрическая ракета», о которой вы, возможно, слышали, при условии, что вы небрежно рыщете по достижениям ракетостроения). То, как это делается, просто зависит от производителя ракеты и даже от параметров конкретной миссии, которую выполняет ракета.
Топливо под давлением подается в главный клапан, который открывается и закрывается, контролируя подачу топлива к форсунке. То, что на самом деле распыляет топливо, представляет собой пластину (или пару или набор пластин), заполненную точно просверленными отверстиями, как вы видите на конце бензиновой топливной форсунки. За исключением того, что, в отличие от топливной форсунки вашего автомобиля, здесь нет штифта, который фактически контролировал бы количество топлива, поступающего в основную камеру сгорания. Все это управляется главными клапанами, которые управляют потоком, а не объемом.
Наконец, воспламеняется топливо, как мы упоминали ранее, и ракета отрывается от стартовой площадки или движется вперед в космосе. Чтобы поддерживать подачу топлива в гравитационные турбонасосы в космосе, без какого-либо отдельного механического или электрического насоса, ракета полагается на импульс, создаваемый ускорением для поддержания потока жидкого топлива и окислителя. Этот импульс создает своего рода искусственную гравитацию, которая выталкивает жидкости на дно резервуаров и постоянно питает турбонасосы. Многие из этих решений для подачи топлива и окислителя в ракетный двигатель могут быть применены к ДВС. Опять же, это просто вопрос того, что каждый двигатель делает с расширяющимися газами.
Проблема не в вакууме
Хотя вы можете подумать, что космический вакуум может создать проблемы, профессор Лемье объясняет, что поршневые кольца могут герметизироваться в вакууме. Имейте в виду, что эти кольца борются с огромной разницей давления расширяющегося газа по сравнению с атмосферным давлением, которое обычно испытывает двигатель. «То, что герметизируют поршневые кольца, — это не совсем абсолютное противодавление в картере, — объясняет профессор Лемье. содержимое СС по направлению к картеру».
Он также указывает, что даже когда двигатель работает на уровне моря, «между этими кольцами существует большая дельта P, которая постоянно изменяется в течение 4-тактного цикла», и они отлично герметизируют камеру на протяжении всего цикла. цикл. «Если тот же двигатель с турбонаддувом (или) с наддувом, — добавляет он, — дельта P может значительно увеличиться (скажем, более чем на 15 фунтов на квадратный дюйм), а кольца по-прежнему будут хорошо его герметизировать. Абсолютный 0 фунтов на квадратный дюйм в картере. , который является вашим сценарием, добавляет к этой дельте P не более 15 фунтов на квадратный дюйм. Так что здесь нет проблем».
Наилучший способ борьбы с обратным давлением
Эта вакуумная среда потенциально может быть преимуществом для ДВС. «Что касается механической стороны, — говорит профессор Лемье, — то здесь тоже все становится интереснее: отсутствие противодавления в выхлопных газах означает, что объемный КПД двигателя увеличится, поэтому характеристики двигателя, такие как среднее эффективное давление торможения (BMEP) и другие, увеличатся. подниматься.» Это также работает внутри картера, который, как он отмечает, «также упадет, а это означает, что перепад давления на поверхности поршня возрастет до одной атмосферы, что снова поднимет BMEP». Если вы видели девятый эпизод первого сезона «Мастеров двигателей», вы знаете, что двигатели всех типов нуждаются в уменьшении противодавления и что за счет его уменьшения можно получить мощность. Только представьте, какую мощность мог бы развить ваш двигатель при нулевом противодавлении в выхлопе или картере.
Все это говорит о том, что вакуум не является проблемой и что сгорание на самом деле не зависит от «сжатия». На самом деле это скорее хранилище энергии вращения, которая передается на трансмиссию через коленчатый вал. Однако это сжатие приводит к выделению тепла при сжатии газов, и вместе с искрой от свечи зажигания начинается преобразование бензина и кислорода в тепловое расширение этих газов.
Итак, что на самом деле делает такт сжатия?
Однако, если вы можете генерировать достаточно тепла от вашей искры или даже использовать предварительный воспламенитель, ваша камера сгорания не нуждается в сжатии и будет продолжать работать. Были даже проведены испытания двигателей, в которых используется отдельная камера сгорания, которая подает расширяющиеся газы в цилиндр, чтобы заставить поршень двигаться вниз. Опять же, ракетный двигатель делает то же самое и не имеет поршня для создания сжатия. Вы также можете поджечь бензин вне двигателя, особенно легко, когда он находится в газообразном состоянии (дым).
Компрессия в любом поршневом двигателе — это способ накопления потенциальной энергии, которая будет использоваться для генерации энергии вращения посредством коленчатого вала. Неважно, двух- или четырехтактный он; бензин, дизель или любой другой вид топлива. Если топливо достаточно горячее, чтобы достичь воспламенения со своим окислителем, оно будет воспламеняться и расширяться до тех пор, пока не столкнется с чем-то и не сдвинет этот объект или не остановится, потому что этот объект требует большей силы, чем это расширение создает.
Дело не в топливе и окислителе, дело в весе
Помимо экстремального холода, который прямо сейчас может быть объяснен материалами (части в космосе тоже должны вращаться), почему мы не видим генераторы с питанием от ДВС для космической станции, марсохода Perseverance и будущие луноходы? Когда дело доходит до освоения космоса, есть два важных момента: вес и долговечность. Конечно, у нас есть возможность впрыскивать жидкости в камеры сгорания, хотя кислород является криогенной жидкостью и требует очень низких температур, чтобы оставаться в жидком состоянии, и это не проблема, поскольку мы можем делать это в ракетных двигателях так же, как с много видов топлива.
Возникают проблемы с доставкой этого топлива и окислителя в космос и тем, как вы могли бы их восполнить. Одна из основных проблем при выходе в космос заключается в том, что вам нужна большая скорость, чтобы выйти на орбиту, и даже больше, когда вы хотите выйти из-под гравитационного влияния Земли и попасть на другую планету. Вот почему вы видите, как во многих орбитальных и межпланетных миссиях используются материалы, сделанные из вещей, о которых мечтают производители гоночных автомобилей, таких как титан, углеродное волокно и другие сверхлегкие материалы.
Именно поэтому многие космические и марсианские аппараты выглядят скелетонизированными, за исключением некоторых щитов из фольги для защиты термочувствительных частей. Если вам также нужно нести топливо и окислитель, вы должны учитывать эту массу в своей механике запуска и орбитальной механики, применяя больше энергии тяги для достижения космической скорости. Если вы имели дело с гоночным автомобилем, вы понимаете, к чему все идет. В противном случае большая тяга требует большей мощности, а это означает больше топлива и больше веса. Если бы вы могли дозаправиться на орбите — чего на момент написания этой статьи мы не могли — это не было бы проблемой. Поскольку мы не можем этого сделать, мы полагаемся на батареи, которые питаются от солнечной энергии для привода двигателей и силовой электроники наших космических кораблей и Международной космической станции (МКС).
Дополнительная заметка о марсоходе Perseverance
Нам пока неизвестны какие-либо ресурсы, которые позволили бы нам пополнить наше топливо или окислитель на Луне или Марсе. Именно этим Curiosity и Perseverance отличаются от других марсианских миссий: вместо того, чтобы полагаться только на солнечные панели для питания своих батарей, эти марсоходы размером с седан используют многоцелевой радиоизотопный термоэлектрический генератор (MMRTG), по сути, миниатюрную атомную электростанцию.
Основное различие между вашей местной атомной электростанцией и ММРТГ, помимо очевидной разницы в размерах, заключается в том, что вместо превращения воды в пар, который вращает турбину электрического генератора, используется эффект Зеебека. Самый простой способ описать эффект Зеебека состоит в том, что два непохожих, но электропроводящих материала создают электричество, применяя разницу температур на каждом конце этих материалов. По сути, это обратная сторона устройства Пельтье, используемого в охладителях сидений, где электрический ток проходит между этими двумя материалами и создает разницу температур в двух материалах, одна сторона горячее, а другая холоднее; это то, сколько автомобильных холодильников работают без фреона и компрессора. В общем, в ближайшее время мы не увидим марсоход с двигателем ICE или даже лунный багги.
Искры в местах, где живут астронавты
Некоторые из вас отмечают, что пожар в космосе — это плохо, вероятно, вспоминая Аполлон-1 и потерю Гаса Гриссома, Эда Уайта и Роджера Чаффи, когда они еще находились на стартовой площадке. для репетиции запуска. Вы также, без сомнения, слышали о предупреждениях о наличии пламени рядом с чистым кислородом и фотографиях сгоревших комнат и того хуже. Но, конечно же, кислород при отсутствии какого-либо источника топлива не представляет опасности возгорания. Однако верно, что любое топливо будет гореть интенсивнее в атмосфере чистого кислорода, чем на воздухе. Это потому, что азот, который составляет примерно 80 процентов воздуха, которым мы дышим, не является окислителем.
В современных космических кораблях и будущих космических станциях атмосфера такая же, как у нас на Земле: 20 процентов кислорода, 80 процентов азота. В переводе это означает, что пожароопасность на МКС такая же, как и здесь, на Земле, только очень-очень далеко от ближайшей пожарной части.
А как насчет побочного продукта сжигания топлива?
Если бы мы сохранили использование бензина и кислорода в качестве внутреннего источника топлива для ДВС, то выхлоп был бы проблемой в изолированной среде. Углекислый газ, оксид азота, несгоревшие углеводороды и другие твердые частицы должны быть отфильтрованы, чтобы создать безопасную среду, в которой человек мог бы работать. Было бы идеально, если бы все эти газы можно было просто выпустить в космос, но это было бы сложной задачей, а это означает, что более реалистичным вариантом использования генератора с питанием от ДВС был бы тот, который подвергается воздействию космической среды, просто как ракетный двигатель.
Если бы мы использовали альтернативное топливо, то его побочные продукты тоже нужно было бы фильтровать. Например, если бы мы использовали жидкий водород, побочным продуктом была бы вода со следами перекиси водорода и озона, поэтому пить ее прямо из выхлопной трубы было бы не очень приятно, но лучше, чем бензин. ДВС потребуется такая же защита от перепадов температур при прохождении между Солнцем и планетой, но это можно легко решить с помощью обогревателей и тепловых покрытий.
Мы могли бы запустить ДВС в космосе, но…
Хотя двигатель внутреннего сгорания можно запустить в вакууме и в холодной космической среде, реальность такова, что это просто невозможно. Вес переноски топлива и окислителя является основным бременем, за которым следует проблема пополнения их запасов вне Земли. Это означает, что аккумуляторные, солнечные и ядерные источники энергии и генерация являются единственными надежными и устойчивыми источниками для космических станций и транспортных средств, которые нуждаются в энергии для приборов и даже для движения.
902:80 За исключением ракет, мы никогда не увидим аппарат для исследования планет с двигателем внутреннего сгорания. Подумай о своих мечтах о сладком лунном багги, работающем на бензине, который превратился бы в кристаллы льда, которые превратились бы в твои слезы в холодном космосе, по крайней мере до тех пор, пока они не испарятся, встретившись с солнечным светом. Мрачно, да? Тем не менее, это вряд ли означает, что космический корабль должен быть скучным. Представьте себе полноприводный луноход мощностью 1000 л.с. с диким рулевым управлением, основанный на технологии Ultium от Hummer EV. Это, безусловно, было бы выполнимо.