Рубрики
Разное

Дизель мотор: Дизельные двигатели — цена на 150 моделей от 3,5 до 30 лс

Самый большой дизельный двигатель в мире

14.01.2020

  • Сегодня дизельные двигатели используются повсеместно: на тепловозах и грузовиках, судах и тракторах, легковых автомобилях и дизельных электростанциях.

    Дизельный двигатель основан на воспламенении в цилиндре распыленного топлива (воспламенение происходит от воздуха, нагретого при сжатии). Дизельный двигатель может использовать низкосортное топливо, выдает высокий вращающий момент при низких оборотах и имеет высокий КПД (40-45%), что делает его экономичнее бензиновых двигателей, где около 70% топлива сгорает, не преобразовываясь в механическую энергию.

    Дизельный двигатели могут быть очень большими. Наиболее крупные размеры имеет судовые агрегаты, установленные на больших судах. Но среди этих гигантов выделяется одна модель, которая по праву занимает почетное звание самого большого дизельного двигателя в мире.

    Компания Wartsila хорошо известна всем специалистам. Она специализируется на производстве судовых энергетических установок. Одна из них – RTA-96C. Это и есть линейка двигателей, поражающих воображения обывателя.

    Технически RTA-96C представляет собой двухтактный турбокомпрессорный двигатель, число цилиндров может варьироваться от 6 до 14. Версия с 14 цилиндрами является крупнейшим поршневым ДВС и устанавливается на крупнотоннажные контейнеровозы. Высота этого двигателя превышает 13 метров, длина – 27 метров, вес – свыше 2,3 тыс. тонн.

    Максимальная мощность, которую способен развить этот гигант, равна почти 109 тыс. лошадиных сил. Первым судном, получившим такой двигатель, стала знаменитая «Emma Maersk», которая с вместимостью 11 тыс. TEU совсем недавно была самым большим контейнеровозом в мире.

    Диаметр каждого цилиндра составляет почти метр (960 мм) при ходе поршня в 2500 мм. Объем цилиндров равен 25,5 тыс. литров.

    Максимальное количество оборотов традиционно небольшое – 102, но крутящий момент при этом развивается свыше 7,5 млн Нм. Удельный расход топлива составляет 3,8 л/с, в час же агрегат «съедает» 13 тыс. литров бункера при максимальной мощности.

    КПД этого двигателя-гиганта является самым высоким среди всех произведенных когда-либо дизельных двигателей – более 50%.

    Некоторые сравнения, чтобы оценить мощность двигателя: он может обеспечить электроэнергией небольшой город. При 102 оборотов в минуту он производит 80 млн Ватт электроэнергии. Если средняя бытовая электролампа потребляет 60 Вт, 80 миллионов Ватт вполне достаточно для 1,3 млн ламп. Если в среднестатистической квартире одновременно горит 6 осветительных ламп, двигатель будет производить достаточное количество электроэнергии, чтобы осветить 220 тыс. домовладений. Этого достаточно для обеспечения электроэнергией города с 500 тыс. населения.

    Коленчатый вал

    Стоимость работы двигателя

    Двигатель Wartsila-Sulzer RTA96 потребляет 13 тыс. литров топлива в час. Если в барреле нефти 158,76 литра, самый большой двигатель в мире потребляется 81,1 баррелей нефти в час. Если цена на нефть составляет $67/баррель на мировых рынках нефти, то стоимость 1 часа работы двигателя с точки зрения расхода топлива будет составлять $5,4 тыс. в час.

    Поршни

  • Новости по теме

    28.01.2020

    Cosco возобновляет перевозки нефти

    Cosco Shipping Energy Transportation (CSET ), танкерный оператор в составе китайской корпорации Cosco, возобновляетперевозки в Атлантическом бассейне. […]

    20.01.2020

    Первый в мире буксир-толкач на СПГ

    Rolls-Royce и канадское конструкторское бюро Robert Allan завершили разработку первого в мире буксира-толкача на […]

    07.05.2020

    Какие бывают двигатели и что они едят

    На сегодняшний день наиболее распространённым двигателем является поршневой двигатель внутреннего сгорания с искровым зажиганием, […]

  • Помните: для этого контента требуется JavaScript.

  • Войти

    Запомнить меня

  • Помните: для этого контента требуется JavaScript.

  • Помните: для этого контента требуется JavaScript.

  • Дизельный двигатель В-2

    А. Протасов, рисунок А. Краснова

    Прославленный танковый дизель был создан на Харьковском паровозостроительном заводе (ХПЗ) имени Коминтерна в 1939 г. Мотор, получивший обозначение В-2, устанавливался перед войной на советских лёгких быстроходных колёсно-гусеничных танках БТ-7М, средних танках Т-34 и тяжелых КВ-1 и КВ-2, а также на тяжелом гусеничном артиллерийском тягаче «Ворошиловец». В военное время его ставили на средние танки Т-34, тяжелые KB и ИС, а также на самоходные артиллерийские установки (САУ) на их базе. В послевоенные годы этот двигатель модернизировался, и современные танковые моторы являются его прямыми потомками.

    Технические особенности В-2 наглядно демонстрируют пути, которыми развивалась техническая мысль в целом и моторостроение в частности в преддверии Второй мировой войны.

    Проектировать этот двигатель начали в дизельном отделе ХПЗ в 1931 г. под руководством начальника отдела К.Ф. Челпана. Активное творческое участие в работе принимали А.К. Башкин, И.С. Бер, Я.Е. Вихман и др. Поскольку опыта разработки танкового быстроходного дизеля не было, они начали его проектирование широким фронтом: прорабатывались три схемы расположения цилиндров – одно- и двухрядного (V-образного), а также звездообразного. Послеобсуждения и оценки каждой схемы отдали предпочтение 12-цилиндровой V-образной конструкции. При этом проектируемый двигатель, получивший первоначальное обозначение БД (быстроходный дизель), был схож с авиационными карбюраторными двигателями М5 и М17Т, устанавливавшимися на лёгких колёсно-гусеничных танках БТ. Это закономерно: предполагалось, что мотор будет выпускаться в танковом и авиационном вариантах.

    Разработка велась поэтапно. Сначала создали одноцилиндровый двигатель и проверяли его в работе, а затем изготовили двухцилиндровую секцию, имевшую главный и прицепной шатуны. В 1932 г., добившись её устойчивой работы, приступили к разработке и испытаниям 12-цилиндрового образца, получившего обозначение БД-2 (быстроходный дизель второй), которые были закончены в 1933 г. Осенью 1933 г. БД-2 выдержал первые государственные стендовые испытания и был установлен на лёгком колёсно-гусеничном танке БТ-5. Ходовые испытания дизелей БД-2 на БТ-5 начались в 1934 г. Одновременно продолжалось совершенствование двигателя и устранение обнаруженных недостатков. В марте 1935 г. члены ЦК компартии и правительства ознакомились в Кремле с двумя танками БТ-5 с дизелями БД-2. В том же месяце последовало решение правительства о строительстве при ХПЗ цехов для их изготовления.

    Для оказания технической помощи в Харьков были направлены из Москвы инженеры из Центрального института авиационных моторов (ЦИАМ) М.П. Поддубный, Т.П. Чупахин и другие, имевшие опыт проектирования авиационных дизелей, а также начальник кафедры двигателей Военной академии механизации и моторизации Красной Армии проф. Ю.А. Степанов и его сотрудники.

    Руководство подготовкой серийного производства доверили И.Я. Трашутину и Т.П. Чупахину. К концу 1937 г. на испытательный стенд был установлен новый доведённый дизель, получивший к тому времени обозначение В-2. Проведённые в апреле-мае 1938 г. государственные испытания показали, что можно начинать его мелкосерийное производство, которым стал руководить С.Н. Махонин. В 1938 г. на ХПЗ изготовили 50 двигателей В-2, а в январе 1939 г. дизельные цеха ХПЗ отделились и образовали самостоятельный моторостроительный за вод, получивший позднее № 75. Чупахин стал главным конструктором этого завода, а Трашутин – начальником конструкторского бюро. 19 декабря 1939 г. начался крупносерийный выпуск отечественных быстроходных танковых дизелей В-2, принятых в производство распоряжением Комитета обороны вместе с танками Т-34 и КВ.

    За разработку двигателя В-2 Т.П. Чупахину была присуждена Сталинская премия, а осенью 1941 г. завод № 75 награжден Орденом Ленина. В то время этот завод был эвакуирован в Челябинск и слился с челябинским Кировским заводом (ЧКЗ). Главным конструктором ЧКЗ по дизельным двигателям назначили И.Я. Трашутина.

    Необходимо упомянуть и об авиационном варианте В-2А, судьба которого сложилась драматически. К началу серийного производства основной модели самолёт-разведчик, на котором предполагалось устанавливать В-2А, устарел, а переделывать основную модель В-2 в чисто танковую было нецелесообразно. Это потребовало бы дополнительного времени, которого у наших моторостроителей не было: надвигалась Вторая мировая война, и Красной Армии требовались – срочно и в большом количестве – новые танки с противоснарядной бронёй и мощными дизелями.

    В-2 так и пошел «на поток» с алюминиевым картером и блоками цилиндров, с длинным носком коленчатого вала и упорным шарикоподшипником, способным передавать усилие от воздушного винта картеру двигателя. Уместно заметить, что самолёт-разведчик Р-5 успешно летал с двигателем В-2А.

    Существовала и другая модификация этого двигателя – В-2К, отличавшаяся повышенной до 442 кВт (600 л. с.) мощностью. Увеличение мощности достигалось за счёт повышения степени сжатия на 0,6–1 ед., увеличения частоты вращения коленчатого вала на 200 мин–1 (до 2 000 мин–1) и подачи топлива. Модификация первоначально предназначалась для установки на тяжелых танках KB и изготавливалась на ленинградском Кировском заводе (ЛКЗ) по документации ХПЗ. Массогабаритные показатели по сравнению с базовой моделью не изменились.

    В предвоенное время на заводе № 75 были созданы и другие модификации этого двигателя – В-4, В-5, В-6 и другие, максимальная мощность которых находилась в довольно широких пределах – от 221 до 625 кВт (300–850 л.с.), которые предназначались для установки на лёгких, средних и тяжелых танках.

    Перед Великой Отечественной войной танковые дизели изготавливались заводом № 75 в Харькове и ЛКЗ в Ленинграде. С началом войны их стал изготавливать Сталинградский тракторный, завод № 76 в Свердловске и ЧКЗ (Челябинск). Однако танковых дизелей не хватало, и в конце 1942 г. в Барнауле срочно построили завод № 77. Всего же эти заводы в 1942 г. изготовили 17 211 шт., в 1943 г. – 22 974 и в 1944 г. – 28 136 дизельных двигателей.

    В-2 относился к быстроходным 4-тактным бескомпрессорным, с непосредственным впрыском топлива 12-цилиндровым тепловым машинам жидкостного охлаждения, имеющим Vобразное расположение цилиндров с углом развала 60°.

    Картер состоял из верхней и нижней половин, отлитых из силумина, с плоскостью разъёма по оси коленчатого вала. В нижней половине картера имелись два углубления (передний и задний маслозаборники) и передача к масляному и водяному насосам и топливоподкачивающей помпе, крепящихся снаружи картера. К верхней половине картера крепились на анкерных шпильках левый и правый блоки цилиндров вместе с их головками. В корпусе рубашки каждого блока цилиндров, изготовленного из силумина, устанавливались по шесть стальных азотированных мокрых гильз.

    В каждой головке цилиндров были два распредвала и по два впускных и выпускных клапана (т. е. по четыре!) на каждый цилиндр. Кулачки распределительных валов действовали на тарелки толкателей, установленных непосредственно на клапанах. Сами валы были полыми, по внутренним сверлениям подводилось масло к их опорам и к тарелкам клапанов. Выпускные клапаны не имели специального охлаждения. Для привода распредвалов использовали вертикальные валы, каждый из которых работал с двумя парами конических шестерён.

    Коленчатый вал изготавливался из хромоникельвольфрамовой стали и имел восемь коренных и шесть шатунных пустотелых шеек, располагавшихся попарно в трёх плоскостях под углом 120°. Коленчатый вал имел центральный подвод смазки, при котором масло подводилось в полость первой коренной шейки и по двум сверлениям в щеках проходило во все шейки. Развальцованные в выходных отверстиях шатунных шеек медные трубки, выходившие к центру шейки, обеспечивали поступление на трущиеся поверхности центрифугированного масла. Коренные шейки работали в толстостенных стальных вкладышах, залитых тонким слоем свинцовистой бронзы. От осевых перемещений коленвал удерживался упорным шарикоподшипником, установленным между седьмой и восьмой шейками.

    Поршни – штампованные из дюралюминия. На каждом установлены пять чугунных поршневых колец: два верхних компрессионных и три нижних маслосбрасывающих. Поршневые пальцы – стальные, полые, плавающего типа, удерживаемые от осевого перемещения дюралюминиевыми заглушками.

    Шатунный механизм состоял из главного и прицепного шатунов. Из-за кинематических особенностей этого механизма ход поршня прицепного шатуна был на 6,7 мм больше, чем у главного, что создавало небольшое (около 7%) различие в степени сжатия в левом и правом рядах цилиндров. Шатуны имели двутавровое сечение. Нижняя головка главного шатуна к верхней его части крепилась с помощью шести шпилек. Шатунные вкладыши были стальными тонкостенными, залитыми свинцовистой бронзой.

    Пуск двигателя был дублированным, состоявшим из двух, действующих независимо систем – электрического стартера мощностью 11 кВт (15 л. с.) и пуска сжатым воздухом из баллонов. На некоторых двигателях вместо обычных электростартеров устанавливали инерционные с ручным приводом из боевого отделения танка. Система пуска сжатым воздухом предусматривала наличие распределителя воздуха и пускового автоматического клапана на каждом цилиндре. Максимальное давление воздуха в баллонах составляло 15 МПа (150 кгс/см2), а поступавшего в распределитель – 9 МПа (90 кгс/см2) и минимальное – 3 МПа (30 кгс/см2).

    Для подкачки топлива под избыточным давлением 0,05–0,07 МПа (0,5–0,7 кгс/см2) в питающую полость насоса высокого давления использовалась помпа коловратного типа. Насос высокого давления НК-1 – рядный 12-плунжерный, с двухрежимным (позже всережимным) регулятором. Форсунки закрытого типа с давлением начала впрыска 20 МПа (200 кгс/см2). В системе топливоподачи имелись также фильтры грубой и тонкой очистки.

    Система охлаждения – закрытого типа, рассчитанная на работу под избыточным давлением 0,06–0,08 МПа (0,6–0,8 кгс/см2), при температуре кипения воды 105–107°С. В неё входили два радиатора, центробежный водяной насос, сливной кран, заливной тройник с паровоздушным клапаном, центробежный вентилятор, закрепленный на маховике двигателя, и трубопроводы.

    Система смазки – циркуляционная под давлением с сухим картером, состоявшая из трёхсекционного шестерённого насоса, масляного фильтра, двух масляных баков, ручного подкачивающего насоса, уравнительного бачка и трубопроводов. Масляный насос состоял из одной нагнетающей секции и двух откачивающих. Давление масла перед фильтром составляло 0,6–0,9 МПа (6–9 кгс/см2). Основной сорт масла – авиационное МК летом и МЗ зимой.

    Анализ параметров двигателей В-2 показывает , что они отличались от карбюраторных намного лучшей топливной экономичностью, большой габаритной длиной и сравнительно небольшой массой. Это объяснялось более совершенным термодинамическим циклом и «близким родством» с авиационными моторами, предусматривавшим длинный носок коленвала и изготовление большого числа деталей из алюминиевых сплавов.

    Технические характеристики двигателей В-2
    ДвигательВ-2В-2К
    Год выпуска1939
    ТипТанковый, быстроходный, бескомпрессорный, с непосредственным впрыском топлива
    Число цилиндров12
    Диаметр цилиндров, мм150
    Ход поршня, мм:

    • – основного шатуна
    • – прицепного шатуна
    180
    186,7
    Рабочий объём, л38,88
    Степень сжатия14 и 1515 и 15,6
    Мощность, кВт (л.с.), при мин–1368 (500) при 1 800442 (600) при 2 000
    Максимальный крутящий момент Нм (кгс·м) при 1 200 мин–11 960 (200)1 960 (200)
    Минимальный удельный расход топлива, г/кВт·ч, (г/л. с.·ч)218 (160)231 (170)
    Габариты, мм1 558х856х1 072
    Масса (сухая), кг750

    Следует сказать несколько слов о мировом приоритете. В отечественной военно-исторической литературе можно встретить мнение, что В-2 был первым в мире танковым дизелем. Это не совсем так. Он входит в «первую тройку» танковых дизелей. Его «соседями» были 6-цилиндровый двигатель жидкостного охлаждения «Заурер» мощностью 81 кВт (110 л.с.), устанавливавшийся с 1935 г. на польском лёгком танке 7ТР, и 6-цилиндровый дизель воздушного охлаждения «Мицубиси» АС 120 VD мощностью 88 кВт (120 л.с.), устанавливавшийся с 1936 г. на японском лёгком танке 2595 «Ха-го».

    От своих «соседей» В-2 отличался значительно большей мощностью. Некоторая задержка с началом его серийного производства объяснялась, в том числе и стремлением советских моторостроителей основательно испытать двигатель в войсках, чтобы уменьшить количество «детских болезней». И мотор пользовался заслуженным доверием у советских воинов.

    Please enable JavaScript to view the comments powered by Disqus.

    Как двигатель Rudolf Diesel изменил World

    • Опубликовано

    Источник изображения, Shutterstock

    от Tim Harford

    50 вещей, которые создали современную экономику, BBC World Service

    9 40004 50. Дизель умер при загадочных обстоятельствах, прежде чем смог извлечь выгоду из своего гениального изобретения.

    Было 22:00. Рудольф Дизель удалился в свою каюту на борту парохода «Дрезден», следовавшего из Бельгии через Ла-Манш. Его ночная рубашка была разложена на кровати, но Дизель в нее не переодевался.

    Изобретатель двигателя, носящего его имя, думал о своих больших долгах и выплатах по процентам, которые он не мог себе позволить. В его дневнике эта дата — 29 сентября 1913 года — отмечена зловещим крестиком.

    Перед поездкой Дизель собрал все наличные, какие смог, и сунул их в сумку вместе с документами, раскрывающими его финансовые затруднения. Он отдал сумку ничего не подозревающей жене с указанием не открывать ее, пока не пройдет неделя.

    Дизель вышел из своей каюты, снял пальто, аккуратно положил его на палубу корабля, посмотрел через перила и прыгнул.

    Или он? Теоретики заговора предполагают, что Дизелю помогли за борт. Но кто мог быть заинтересован в кончине нищего изобретателя? Были выявлены два возможных кандидата.

    Подробнее

    В книге «50 вещей, которые создали современную экономику» рассказывается об изобретениях, идеях и инновациях, которые помогли создать экономический мир, в котором мы живем.

    Транслируется Всемирной службой BBC. Вы можете слушать онлайн и найти информацию об источниках программы или подписаться на подкаст программы.

    Для контекста отмотайте на 40 лет назад, в 1872 год. Пар снабжал энергией поезда и фабрики, но городской транспорт зависел от лошадей. Той осенью конский грипп привел к застою в городах США. Полки продуктовых магазинов были пусты, а на улицах валялись груды мусора.

    В городе с полумиллионным населением может быть 100 000 лошадей. Каждый день обильно посыпал улицы 15 кг навоза и 4 литра мочи. Доступный, надежный, мелкосерийный двигатель, который мог бы заменить лошадь, был бы настоящей находкой.

    Одним из кандидатов был паровой двигатель: паровые машины неплохо развивались. Другим был двигатель внутреннего сгорания, ранние версии которого работали на бензине, газе или даже на порохе. Но когда Рудольф Дизель был студентом, оба типа двигателей были ужасно неэффективными, превращая лишь около 10% тепла в полезную работу.

    Жизнь молодого Дизеля изменила лекция по термодинамике в Королевском баварском политехническом институте в Мюнхене, где он узнал, что теоретически возможно создать двигатель внутреннего сгорания, преобразующий все тепло в работу.

    Источник изображения, Alamy

    Image caption,

    План двигателя внутреннего сгорания, изобретенного Рудольфом Дизелем в 1897 году

    Дизель поставил перед собой задачу воплотить теорию в жизнь. Он потерпел неудачу. Его первый работающий двигатель имел КПД чуть более 25%. Сегодня лучшие дизельные двигатели превышают 50%. Но даже при этом 25% были более чем в два раза лучше, чем у конкурентов.

    Двигатель Дизеля более эффективен отчасти из-за того, как он воспламеняет топливо. Бензиновые двигатели сжимают топливо и воздух вместе, а затем воспламеняют их свечой зажигания.

    Но слишком сильно сжать смесь, и она может самовоспламениться, что вызовет дестабилизирующий стук в двигателе. Изобретение Дизеля сжимает только воздух и делает его достаточно горячим, чтобы воспламенить топливо при его впрыске.

    И чем выше степень сжатия, тем меньше требуется топлива. Любой, кто исследовал вопрос о покупке автомобиля, знаком с основным недостатком дизельных двигателей — они, как правило, дороже при покупке, но более экономичны в эксплуатации.

    К несчастью для Рудольфа, в ранних версиях этот прирост эффективности перевешивался проблемами надежности. Он столкнулся с постоянным потоком требований о возврате средств от недовольных клиентов. Это загнало изобретателя в финансовую яму, из которой он уже не мог выбраться.

    Тем не менее, он продолжал работать над своим двигателем, и он продолжал улучшаться.

    Стали очевидны и другие преимущества. Дизельные двигатели могут использовать более тяжелое топливо, чем бензиновые двигатели, в частности, более тяжелое топливо, известное как «дизель». Помимо того, что дизельное топливо дешевле, чем бензин для очистки от сырой нефти, оно также выделяет меньше паров, поэтому вероятность взрыва меньше.

    Это делало его особенно привлекательным для военного транспорта. К 1904 году Дизель установил свои двигатели на французские подводные лодки.

    Источник изображения, Getty Images

    Подпись к изображению,

    Автомобили с дизельным двигателем дороже покупать, но дешевле эксплуатировать

    Это подводит нас к первой теории заговора вокруг смерти Рудольфа Дизеля. В 1913 году в Европе барабанный бой надвигающейся войны становился все громче, и безденежный немец направлялся в Лондон. Заголовок одной газеты зловеще размышлял: «Изобретатель брошен в море, чтобы остановить продажу патентов британскому правительству».

    Только после Первой мировой войны изобретение Дизеля начало реализовывать свой коммерческий потенциал. Первые грузовики с дизельным двигателем появились в 19 в.20-х, поезда 1930-х. К 1939 году четверть мировой морской торговли приходилось на дизельное топливо.

    После Второй мировой войны все более мощные и эффективные дизельные двигатели привели к созданию еще более огромных кораблей. Топливо составляет около 70% стоимости доставки товаров по всему миру. Ученый Вацлав Смил утверждает, что паровая глобализация росла бы гораздо медленнее, чем это позволяли дизельные двигатели.

    Экономист Брайан Артур не так уверен. Он описывает распространение двигателей внутреннего сгорания в прошлом столетии как «зависимость от пути»: самоусиливающийся цикл, в котором существующие инвестиции и инфраструктура означают, что мы продолжаем делать что-то определенным образом, даже если бы мы делали это по-другому, если бы только мы могли бы начать с нуля.

    Еще в 1914 году, утверждает Артур, пар был по крайней мере столь же жизнеспособным, как сырая нефть для приведения в движение автомобилей, но растущее влияние нефтяной промышленности привело к тому, что гораздо больше денег было потрачено на улучшение двигателя внутреннего сгорания, чем на паровой двигатель.

    При равных инвестициях в исследования и разработки, возможно, сегодня мы будем управлять паровыми автомобилями следующего поколения.

    Источник изображения, Getty Images

    Image caption,

    Работа Дизеля над арахисовым маслом предвосхитила растущую популярность современного биодизеля

    В качестве альтернативы, если бы Рудольф добился своего, возможно, мировая экономика работала бы на арахисе.

    Имя Дизеля стало синонимом производного сырой нефти, но он разработал свой двигатель для использования различных видов топлива, от угольной пыли до растительных масел. В 1900 году на Всемирной выставке в Париже он продемонстрировал модель на основе арахисового масла.

    Он стал чем-то вроде евангелиста, и в 1912 году — за год до своей смерти — Дизель предсказал, что растительные масла станут таким же важным источником топлива, как и нефтепродукты.

    Видение, более привлекательное для владельцев арахисовых ферм, чем для владельцев нефтяных месторождений, побуждение к его реализации в значительной степени рассеялось со смертью Дизеля. Отсюда и вторая теория заговора, ставшая поводом для спекулятивно-сенсационного заголовка в современной газете: «Убит агентами крупных нефтяных трестов».

    В последнее время наблюдается возрождение интереса к биодизелю. Это меньше загрязняет окружающую среду, чем мазут, но вызывает споры — оно конкурирует за землю с сельским хозяйством, что приводит к росту цен на продукты питания.

    Во времена Рудольфа это не вызывало особого беспокойства: население было намного меньше, а климат более предсказуем.

    Дизель был взволнован идеей, что его двигатель может помочь развитию бедных сельскохозяйственных экономик. Насколько другим мог бы выглядеть мир сегодня, если бы самой ценной землей за последние сто лет было не место, где можно бурить добычу нефти, а место, где можно выращивать арахис?

    Мы можем только догадываться, как никогда не узнаем наверняка, что случилось с Рудольфом Дизелем. К тому времени, когда его тело снова появилось 10 дней спустя, оно было слишком разложившимся для вскрытия или даже для того, чтобы команда вообще захотела взять его на борт.

    Бумажник, перочинный нож и футляр для очков Дизеля были найдены и позже опознаны его сыном. Его тело унесло волнами.

    Тим Харфорд, тайный экономист FT. «50 вещей, которые создали современную экономику» транслировались на Всемирной службе Би-би-си. Вы можете слушать онлайн и найти информацию об источниках программы или подписаться на подкаст программы.

    История дизельного двигателя — мощность вашего грузовика

     

    Дизельный двигатель — это рабочая лошадка вашего грузовика, двигатель, обеспечивающий судоходство и экономику США. Во время работы он издает чудесный грохот, а запах дизельного выхлопа для Jarrett Fleet Services подобен духам!

     

    Давайте рассмотрим историю дизельного двигателя и выясним, что делает его таким важным изобретением.

     

    Рудольф Дизель, известный как изобретатель двигателя, носящего его имя, родился в Париже, Франция, в 1858 году. С раннего возраста Дизелю было любопытно, как все устроено. Когда ему было всего 14 лет, он написал родителям письмо, в котором сообщил им, что хочет стать инженером. Изучив инженерное дело в нескольких различных школах, он получил стипендию от Королевского баварского политехнического института в Мюнхене.

     

    Когда он был студентом в Мюнхене, один из его профессоров позволил Дизелю помочь ему на заводе по производству льда и холодильников. Всего за год Дизель стал директором завода и помогал управлять исследованиями и разработками, где у него появился интерес к термодинамике. В этот момент он решил разработать двигатель внутреннего сгорания и работал над этой идеей несколько лет.

     

    В разгар промышленной революции пар был основным поставщиком энергии для заводов и поездов, и самые важные изобретения касались применения и использования энергии пара. Но паровые двигатели использовали много угля, были дорогими и крайне неэффективными.

     

    Дизель придумал двигатель, который будет очень эффективным и будет преобразовывать выделяемое им тепло в энергию, и начал проектировать то, что впоследствии стало дизельным двигателем. В 1885 году Дизель открыл свой первый магазин в Париже, чтобы работать над двигателем внутреннего сгорания с воспламенением от сжатия. Процесс шел медленно и длился 13 лет, за это время он получил несколько патентов на свое изобретение.

     

    Он представил прототип в 1893 году, а первая серийная модель была создана в 189 году.7. Дизель смог показать эффективность 26,2% с двигателем, который по сравнению с паровыми двигателями того времени был вдвое эффективнее. Двигатель имел немедленный успех. К 1898 году Дизель стал миллионером и провел следующие несколько лет, совершенствуя свои конструкции.

     

    Но проблема первых дизелей в том, что они были ненадежны. Было продано много двигателей, но многие из них были возвращены для возврата денег, что поставило Дизеля в финансовые проблемы, от которых он так и не оправился.

     

    Неприятности Дизеля привели к нервному срыву, и в 1913 году он таинственным образом исчез с корабля, направлявшегося в Англию. По мере того, как срок действия патентов Дизеля истекал, несколько человек взяли его изобретение и развили его дальше.

     

    В 1925 году Альфред Бюхи внедрил в дизельный двигатель технологию турбонаддува и повысил его эффективность более чем на 40 %. В 1927 году изобретатель и промышленник Роберт Бош усовершенствовал топливные насосы высокого давления, что помогло еще больше повысить топливную экономичность и эффективность дизельных двигателей. Современные дизельные двигатели до сих пор используют эти принципы и технологии.

     

    К 1960-м годам дизельные двигатели были основным источником энергии для коммерческих грузовых автомобилей, а с середины 2000-х годов дизельные двигатели были усовершенствованы, чтобы уменьшить выбросы и сделать их более экологичными.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *