Рубрики
Разное

Что такое двс в авто: Двигатель внутреннего сгорания (ДВС) это

Содержание

Что такое ДВС, как расшифровывается

Что такое ДВС, как расшифровывается

Поможем Вам с поиском нужной запчасти на иномарки!

Главная

Статьи
Устройство двигателя автомобиля или что такое ДВС?


Помимо слова двигатель и мотор, часто можно слышать абравиатуру ДВС.


Что это такое? Давайте разберемся в терминах!


Что такое ДВС?


На самом деле, слова: двигатель, мотор и ДВС – это все одно и тоже.



ДВС – это двигатель внутреннего сгорания. А двигатель – это сердце любой машины.


По сути, двигатель внутреннего сгорания — это тепловое пространство, в котором топливо сгорает. Особенностью является то, что данный процесс происходит именно внутри двигателя, а точнее во внутреннем отсеке.


Помощи из вне не требуется. Сгорание происходит благодаря эффекту расширения газов. Смесь во время сгорания воспламеняется, сильно увеличивается в объемах и в итоге энергия высвобождается.


Какие существуют виды ДВС?


Существуют разные виды двигателей внутреннего сгорания. 



Какие именно?


Классификация моторов:


  1. Бензиновый вариант


  2. Дизельный вариант


  3. Поршневый вариант


Именно эти виды чаще всего встречаются на легковых или грузовых авто, практически у всех популярных автопроизводителей. Теперь подробнее поговорим об устройстве двигателя.


Устройство двигателя внутреннего сгорания


Вариаций сборки ДВС множество, хотя на самом деле набор составляющих стандартный.


А именно в него входят:


  • Цилиндровый блок. Это цельная деталь, именно она на сегодняшний день чаще всего подвергается изменениям, авто конструкторы работают над объемом, а также формой блока.


  • КШМ. Данная аббревиатура сокращение от кривошипно – шатунного механизма. Данная система это – узел, состоящий из ряда компонентов, например, цилиндра, коленвала, ряда подшипников. Не так давно без него представить авто было невозможно, но современные технологии не стоят на месте, сейчас ведутся разработки инновационной системы – схемы кинематического отбора мощности, которая в последствии моет его заменить


  • Система питания. В этой части происходит подготовительный процесс, сюда поступает топливо, тут же оно очищается и хранится до момента подачи в ДВС.


  • Камера охлаждения. Данная часть двигателя крайне важна, именно она спасает мотор от перегрева.


  • Смазочная система. Данный компонент состоит из – фильтра, поддона для масла, трубки и т.д. Система предназначена для уменьшения температуры в узле, снижения силы трения между активными деталями двигателя. Так же смазочная система помогает мотору избавится от вредных частиц и нагара.


  • Система зажигания. Данная компонент имеет место быть только у бензиновых двигателей, данная система состоит из катушки и свечей.


  • Впрыскиваемая система. Именно благодаря ей топливо подается необходимым количеством.


Больше о двигателях и их особенностях смотрите на нашем сайте в разделе статьи.

Возврат к списку

Посмотрите так же:

Двигатель AKL, его преимущества и недостатки

Продолжаем знакомить вас с разными двигателями, в этот раз подробно расскажем вам о преимуществах и …

Вибрация двигателя при включении кондиционера, почему она появляется?

Вибрации двигателя, при включении кондиционера встречается на самых разных автомобилях. Почему …

Круиз-контроль, достоинства и недостатки этой опции

Круиз-контроль — это система, которая создает комфорт в процессе вождения. Какие у нее есть минусы и…

Температура двигателя внезапно опасно поднимается, что делать?


Если стрелка температуры двигателя внезапно начинает сильно повышаться, нужно действоват…

Как проверить Б/У двигатель при покупке

Имея даже базовые знания о том как проверить б/у двигатель, можно самому выбрать хороший агрегат….


Эволюция двигателя внутреннего сгорания

Как развивался ДВС: основные даты

 

Люди производят автомобили уже более века, и почти под каждым капотом стоит двигатель внутреннего сгорания. В течение последних 100 лет принцип его работы оставался неизменным: кислород и топливо поступают в цилиндры мотора, где происходит взрыв (воспламенение), в результате чего внутри силового агрегата образовывается сила, которая и двигает автомобиль вперед. Но с момента первого появления двигателя внутреннего сгорания (ДВС) каждый год инженеры оттачивают его, чтобы сделать быстрее, надежнее, экономичнее, эффективнее.

 

Благодаря этому сегодня все современные автомобили стали мощнее и экономичнее. Некоторые обычные автомобили сегодня имеют такую мощность, которая еще недавно была только в мощных дорогих суперкарах. Но без огромных прорывов в конструкции ДВС мы бы сегодня до сих пор владели маломощными прожорливыми автомобилями, на которых не уедешь далеко от заправки. К счастью, время от времени подобные прорывные технологии уже не раз открывали новый этап в развитии двигателей внутреннего сгорания. Мы решили вспомнить самые важные даты в эволюции развития ДВС. Вот они. 

 

1955 год: впрыск топлива

 

До появления системы впрыска процесс попадания топлива в камеру сгорания двигателя был неточным и плохо регулируемым, поскольку топливно-воздушная смесь подавалась с помощью карбюратора, который постоянно нуждался в очистке и периодической сложной механической регулировке. К сожалению, на эффективность работы карбюраторов влияли погодные условия, температура, давление воздуха в атмосфере и даже на какой высоте над уровнем моря находится автомобиль. С появлением же электронного впрыска топлива (инжектора) процесс подачи топлива стал более контролируемым. Также с появлением инжектора владельцы автомобилей избавились от необходимости вручную контролировать процесс прогрева двигателя, регулируя дроссельную заслонку с помощью «подсоса». Для тех, кто не знает, что такое подсос:

 

Подсос – это ручка управления пусковым устройством карбюратора, с помощью которой на карбюраторных машинах было необходимо регулировать обогащение топлива кислородом. Так, если вы запускаете холодный двигатель, то на карбюраторных машинах необходимо открыть «подсос», обогатив топливо кислородом больше, чем необходимо на прогретом моторе. По мере прогревания двигателя нужно постепенно закрывать ручку регулировки пускового устройства карбюратора, возвращая обогащение топлива кислородом к нормальным значениям.

 

Смотрите также: Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение

 

Сегодня подобная технология, естественно, выглядит допотопно. Но еще совсем недавно большинство автомобилей в мире оснащались карбюраторными системами подачи топлива. И это несмотря на то, что технология впрыска топлива с помощью инжектора пришла в мир в 1955 году, когда инжектор впервые был применен на автомобиле (ранее эта система подачи топлива использовалась в самолетах).

В этом году было проведено испытание инжектора на спорткаре Mercedes-Benz 300SLR, который смог проехать, не сломавшись, почти 1600 км. Это расстояние автомобиль преодолел за 10 часов 7 минут и 48 секунд. Испытание проходило в рамках очередной автогонки «Тысяча миль». Эта машина установила мировой рекорд.

 

Кстати, Mercedes-Benz 300SLR стал не только самым первым серийным автомобилем с инжекторным впрыском топлива, разработанным компанией Bosch, но и самым быстрым автомобилем в мире в те годы. 

 

Два года спустя компания Chevrolet представила спорткар Corvette с впрыском топлива (система Rochester Ramjet). В итоге этот автомобиль стал быстрее первооткрывателя Mercedes-Benz 300SLR.

 

Но, несмотря на успех Chevrolet Corvette с уникальной системой впрыска топлива Rochester Ramjet, именно электронные инжекторные системы Bosch (с электронным управлением) начали свое наступление по миру. В результате за короткое время впрыск топлива, разработанный компанией Bosch, начал появляться на многих европейских автомобилях. В 1980-е годы электронные системы впрыска топлива (инжектор) охватили весь мир. 

 

1962 год: турбонаддув

 

Турбокомпрессор является одним из самых драгоценных камней в двигателях внутреннего сгорания. Дело в том, что турбина, которая подает больше воздуха в цилиндры двигателя, когда-то позволяла

12-цилиндровым истребителям во время Второй мировой войны взлетать выше, лететь быстрее, дальше и меньше расходовать дорогое топливо.

 

В итоге, как и многие технологии, система турбин из авиатехники пришла в автопромышленность. Так, в 1962 году в мире были представлены первые серийные автомобили с турбокомпрессором. Ими стали BMW 2002, или Saab 99.

 

После чего компания General Motors попыталась развить дальше эту технологию турбирования двигателей внутреннего сгорания на легковых автомобилях. Так, на автомобиле Oldsmobile Jetfire появилась технология «Turbo Rocket Fluid», которая помимо турбины использовала резервуар с газом и дистиллированную воду для увеличения мощности двигателя. Это была настоящая фантастика. Но затем компания GM отказалась от этой сложной и дорогой, а также опасной технологии. Все дело в том, что уже к концу 1970-х годов такие компании, как MW, Saab и Porsche, заняв первые места во многих мировых автогонках, доказали ценность турбин в автоспорте. Сегодня же турбины пришли на обычные автомобили и в ближайшем будущем отправят обычные атмосферные моторы на пенсию. 

 

1964 год: роторный двигатель

 

Единственным двигателем, который по-настоящему смог сломать форму обычного двигателя внутреннего сгорания, стал роторный чудо-мотор инженера Феликса Ванкеля. Форма его ДВС ничего общего не имела с привычным нам двигателем. Роторный мотор представляет собой треугольник внутри овала, вращающийся с дьявольской силой. По своей конструкции роторный двигатель легче, менее сложный и более крутой, чем обычный двигатель внутреннего сгорания с поршнями и клапанами.

 

Первыми роторные двигатели на серийных авто начали использовать компания Mazda и ныне уже не существующий немецкий автопроизводитель NSU.

 

Самым же первым серийным автомобилем с роторным двигателем Ванкеля стал NSU Spider, который начал выпускаться в 1964 году.

 

Затем компания Mazda наладила производство своих автомобилей, оснащенных роторным мотором. Но в 2012 году она отказалась от использования роторных двигателей. Последней с роторным мотором стала модель RX-8. 

 

Но недавно, в 2015 году, Mazda на Токийском автосалоне представила концепт-кар RX-Vision-2016, который использует роторный мотор. В итоге в мире начали появляться слухи, что японцы планируют в ближайшие годы возродить роторные автомобили. Предполагается, что в настоящий момент специализированная группа инженеров Mazda где-то в Хиросиме сидит за закрытыми дверями и создает новое поколение роторных моторов, которые должны стать основными двигателями во всех будущих новых моделях Mazda, открыв новую эру возрождения компании. 

 

1981 год: технология дезактивации цилиндров двигателя

Идея проста. Чем меньше цилиндров работает в двигателе, тем меньше расход топлива. Естественно, что двигатель V8 намного прожорливее, чем четырехцилиндровый. Также известно, что при эксплуатации автомобиля большую часть времени люди используют машину в городе. Логично, что если автомобиль оснащен 8- или 6-цилиндровыми моторами, то при поездках в городе все цилиндры в двигателе в принципе не нужны. Но как можно просто превратить 8-цилиндровый мотор в четырехцилиндровый, когда вам не требуется задействовать для мощности все цилиндры? На этот вопрос в 1981 году решила ответить компания Cadillac, которая представила двигатель с системой дезактивации цилиндров 8-6-4. Этот мотор использовал электромагнитные управляемые соленоиды для закрытия клапанов на двух или четырех цилиндрах двигателя.

 

Эта технология должна была повысить эффективность двигателя, например, при движении по шоссе. Но последующая ненадежность и неуклюжесть этого мотора с системой дезактивации цилиндров напугала всех автопроизводителей, которые в течение 20 лет боялись использовать эту систему в своих моторах. 

 

Но теперь эта система снова начинает завоевывать автомир. Сегодня уже несколько автопроизводителей используют эту систему на своих серийных автомобилях. Причем технология зарекомендовала себя очень и очень хорошо. Самое интересное, что эта система продолжает развиваться. Например, уже скоро эта технология может появиться на четырехцилиндровых и даже на трехцилиндровых моторах. Это фантастика!

 

2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия

 

Наука не стоит на месте. Если бы наука не развивалась, то сегодня мы бы до сих пор жили в Средневековье и верили в колдунов, гадалок и что земля плоская (хотя сегодня все равно есть немало людей, которые верят в подобную чушь).

 

Не стоит на месте наука и в автопромышленности. Так, в 2012 году в мире появилась очередная прорывная технология, которая, возможно, совсем скоро перевернет весь автомир.

 

Речь идет о двигателях с высокой степенью сжатия.

 

Мы знаем, что чем меньше сжимать воздух и топливо внутри двигателя внутреннего сгорания, тем меньше мы получим энергии в тот момент, когда топливная смесь воспламеняется (взрывается). Поэтому автопроизводители всегда старались делать двигатели с немаленькой степенью сжатия.

 

Но есть проблема: чем выше степень сжатия, тем больше риска самовоспламенения топливной смеси.

Поэтому, как правило, ДВС имеют определенные рамки в степени сжатия, которая на протяжении всей истории автопромышленности была неизменяемой. Да, каждый двигатель имеет свою степень сжатия. Но она не меняется. 

 

В 1970-х годах в мире был распространен неэтилированный бензин, который при сгорании дает огромное количество смога. Чтобы как-то справиться с ужасной экологичностью, автопроизводители начали использовать V8 моторы с низким коэффициентом сжатия. Это позволило снизить риск самовоспламенения топлива низкого качества в двигателях, а также повысить их надежность. Дело в том, что при самовоспламенении топлива двигатель может получить непоправимый урон. 

 

Смотрите также: По каким принципам работает двигатель Инфинити с изменяемой степенью сжатия, подробная информация

 

Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия.  Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива. 

 

Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога. 

 

Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.

 

Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X  будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.

 

Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.

 

И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.

 

Так что рано сбрасывать со счетов традиционные моторы. Может быть, электрокары – это временное явление? Скорее всего, это более вероятно.

Растущий импульс: глобальный обзор правительственных целей по поэтапному отказу от продаж новых автомобилей с двигателем внутреннего сгорания

Калифорния является последней юрисдикцией в мире, которая взяла на себя обязательство по поэтапному отказу от продаж новых автомобилей с двигателем внутреннего сгорания (ДВС). В указе, опубликованном в конце сентября, говорится, что к 2035 году все новые легковые автомобили и легкие грузовики, продаваемые в Калифорнии, должны иметь нулевой уровень выбросов. Это последовало за действиями Калифорнийского совета по воздушным ресурсам, принятыми в июне 2020 года, которые приняли Регламент Advanced Clean Trucks (ACT), требующий от производителей продавать грузовики с нулевым уровнем выбросов как увеличивающуюся долю их годовых продаж в Калифорнии с 2024 по 2035 год. С этими последними обязательствами Калифорния является частью мирового тренда.

Как отмечалось в предыдущих исследованиях (см. здесь и здесь), все большее число правительств страны, провинций и штатов установили временные рамки для поэтапного прекращения продаж новых автомобилей с ДВС или разрешения продавать только новые автомобили с электродвигателями. Некоторые расширили масштабы поэтапного отказа на дополнительные сегменты транспортных средств, включая фургоны, легкие коммерческие грузовики, а также автомобили средней и большой грузоподъемности, а некоторые стремятся постепенно отказаться от использования автомобилей с ДВС для определенных целей. Поскольку большинство целей сосредоточено на легковых автомобилях, мы используем карту ниже, чтобы сравнить целевые годы для разных юрисдикций.

Рисунок 1. Национальные правительства, правительства провинций и штатов с определенными целями по полному отказу от продаж новых автомобилей с ДВС.

На карте мира еще много белых пятен. Что касается легковых автомобилей, то на долю 17 правительств, установивших цели по поэтапному отказу от автомобилей с ДВС, в 2019 году приходилось лишь около 13% мировых продаж новых легковых автомобилей (обратите внимание, что мы используем регистрационные данные для указания продаж в некоторых юрисдикциях). В таблице в конце этого блога приведены цели правительства страны, провинции и штата по поэтапному отказу от автомобилей с ДВС, включая дополнительные сегменты транспортных средств, такие как фургоны, легкие коммерческие грузовики, а также автомобили средней и большой грузоподъемности; все эти цели установлены в любой точке мира по состоянию на начало ноября 2020 года. Мы сосредоточены на новых продажах, регистрациях и импорте, а не на целевых показателях запасов, которые применяются ко всем транспортным средствам на дорогах. На карте и в таблице показаны только цели, упомянутые в официальной политике или стратегических документах; те, которые объявлены политическими представителями, но не изложены в письменной форме, исключаются.

Из карты и таблицы видно, что европейские страны лидируют. Норвегия и Нидерланды взяли на себя самые жесткие сроки. Менее чем через 5 лет Норвегия хочет, чтобы все новые легковые автомобили, легкие коммерческие автомобили и городские автобусы были проданы с нулевым уровнем выбросов (автобусам будет разрешено использовать биогаз). Страна также стремится к тому, чтобы к 2030 году 75% новых автобусов дальнего следования и 50% новых грузовиков были проданы с нулевым уровнем выбросов. легковых автомобилей продано с 2030 года. Кроме того, страна намерена к 2025 году внедрить городскую логистику с нулевым уровнем выбросов. Другие европейские страны, которые обязались прекратить продажу или регистрацию новых легковых автомобилей с ДВС менее чем через 10 лет, включают Данию, Исландию, Ирландию, Словению и Швецию. . Шотландия хочет прекратить продажу новых автомобилей и фургонов с ДВС к 2032 году, а Великобритания, вероятно, сдвинет свою текущую цель с 2040 года на 2035 год и даже может передвинуть ее еще дальше, к 2030 году. автомобили и легкие коммерческие автомобили, работающие на ископаемом топливе, к 2040 г., а в Испании принят законопроект, разрешающий продажу автомобилей с нулевым уровнем выбросов только с 2040 г.

В Северной Америке Калифорния является наиболее амбициозной с точки зрения сроков и затронутых транспортных средств. Ожидается, что в соответствии с вышеупомянутым распоряжением будут разработаны положения, которые превратят цели в действия. Канадская провинция Британская Колумбия уже на шаг впереди этого и в июле 2020 года приняла обязывающее постановление, требующее от автопроизводителей постепенно увеличивать долю продаж новых легковых автомобилей с нулевым уровнем выбросов и легких коммерческих фургонов до 10% к 2025 году и 30% к 2025 году. 2030 г. и 100% к 2040 г. Провинция также устанавливает требования соответствия. На национальном уровне Канада установила такие же постепенные цели для тех же сегментов транспортных средств, но еще не приняла юридически обязательный регламент.

В Центральной и Южной Америке Коста-Рика и Колумбия являются единственными странами, в которых в официальных политических документах указаны цели поэтапного отказа от автомобилей с ДВС. В своем Национальном плане декарбонизации Коста-Рика предложила, чтобы не позднее 2050 года 100% продаж новых легковых автомобилей для перевозки людей и товаров были с нулевым уровнем выбросов. В Колумбии Закон о продвижении электромобилей гласит, что покупка электромобилей или автомобилей с нулевым уровнем выбросов в парке общественного транспорта должна быть увеличена как минимум с 10% в 2025 г. до 20% в 2027 г., 40% в 2029 г., 60% в 2031 г., 80% в 2033 г. и 100% в 2035 г.; тем не менее, нет никаких планов продаж для других сегментов транспортных средств.

Китайская провинция Хайнань поставила перед собой самые амбициозные цели в Азии по поэтапному отказу от продаж новых дизельных и бензиновых легковых автомобилей, легких коммерческих автомобилей, городских и междугородных автобусов к 2030 году. Существуют более ранние цели для определенных групп пользователей (например, государственных автопарков, операторов каршеринга). , а также почтовые и логистические услуги, у которых к 2020 году поставлена ​​цель 100% продаж электромобилей). Только для автомобилей, находящихся в частном пользовании, провинция нацелена на постепенное увеличение продаж электромобилей с 10% в 2019 году.до 40% в 2020 году, 80% в 2025 году и 100% в 2030 году. Правительство Израиля также планирует к 2030 году постепенно увеличивать долю электромобилей в продажах новых частных автомобилей: 5% в 2022 году, 23% в 2025 году, 61% в 2028 г. и 100% в 2030 г.; обратите внимание, что это охватывает только часть сегмента легковых автомобилей.

Островное государство Кабо-Верде, расположенное у северо-западного побережья Африки, является единственным африканским государством, обязавшимся в установленные сроки отказаться от автомобилей с ДВС. Как указано в Хартии национальной политики в области электромобильности, цель страны — запретить импорт автомобилей с ДВС не позднее 2035 года; сюда входят легковые автомобили, легкие коммерческие автомобили, автобусы, средние и тяжелые грузовики, а также двухколесные транспортные средства.

Упомянутые выше национальные правительства, правительства провинций и штатов имеют несколько общих черт. Все они установили определенную цель и сроки, установили свои амбиции на 100% поэтапный отказ от ДВС или новые продажи исключительно электрических автомобилей или автомобилей с нулевым уровнем выбросов и опубликовали свои цели в официальных политических документах.

Помимо этих усилий, несколько инициатив обязались прекратить продажу новых автомобилей с ДВС. 18 стран, штатов и провинций, присоединившихся к Международному альянсу транспортных средств с нулевым уровнем выбросов (IZEVA), договорились о том, чтобы к 2050 году продажи всех новых легковых автомобилей были нулевыми. Кроме того, как указано выше, семь членов IZEVA — Британская Колумбия, Калифорния, Канада, Нидерланды, Норвегия, Великобритания и Квебек (Канада) — официально взяли на себя более ранние цели по отказу от легковых автомобилей с ДВС на 100%. Что касается автомобилей средней и большой грузоподъемности, то в июле этого года 15 штатов США и округ Колумбия подписали меморандум о взаимопонимании, в котором они обязались обеспечить к 2050 году новые продажи автомобилей средней и большой грузоподъемности со 100% нулевым уровнем выбросов9. 0003

Дополнительные страны, регионы и штаты обязались прекратить продажу автомобилей с ДВС, но пока без каких-либо официальных политических документов или законов. Например, всего через несколько дней после заявления Калифорнии Нью-Йорк и Нью-Джерси призвали к 2035 году обеспечить продажи новых легковых автомобилей и легких грузовиков в штатах на 100 % с нулевым уровнем выбросов; в отличие от Калифорнии, это не было частью распоряжения. В сентябре правительство Бельгии также предложило запретить продажу новых автомобилей с ДВС к 2026 году, но это касается только служебных автомобилей. Другие страны, объявившие о поэтапном отказе от продажи автомобилей с ДВС, включают Египет, Португалию, Шри-Ланку и Тайвань.

Важно отметить, что ведущие рынки транспортных средств, такие как США, Китай и Германия, не имеют обязательных долгосрочных обязательств по полному отказу от автомобилей с ДВС. В Соединенных Штатах Закон об автомобилях с нулевым уровнем выбросов, который устанавливает цель продаж автомобилей с нулевым уровнем выбросов к 2040 году, не был принят. А в Китае, хотя соответствующее регулирующее агентство начало расследование запрета ICE в 2017 году, центральное правительство не объявило официальных целей. Тем не менее, Китай уже довольно далеко продвинулся в плане электрификации своего автобусного парка. Уже крупнейший в мире рынок электромобилей, продажи новых автобусов в Китае составили 96% электрических автобусов в 2019 году, и это без объявления каких-либо национальных целей по акциям электрических автобусов. В случае Германии, став членом IZEVA, страна косвенно согласилась отказаться от автомобилей с двигателями внутреннего сгорания не позднее 2050 года; однако это обязательство еще не отражено в национальном плане защиты климата. Тем не менее, приверженность Калифорнии стала катализатором новых политических дискуссий в Германии об установлении официальной национальной цели поэтапного отказа.

Мы подчеркиваем, что обязательства по поэтапному отказу относятся к продаже новых автомобилей, а не к автомобилям, уже находящимся в эксплуатации. Кроме того, только Британская Колумбия приняла обязательные правила, и большинство целей поэтапного отказа от автомобилей с ДВС не включают подключаемые гибридные электромобили (PHEV). Недавний анализ показал, что PHEV потребляют в среднем в два-четыре раза больше топлива, чем это отражено в значениях одобрения типа.

Тем не менее, недавние объявления и обязательства являются важным сигналом. Похоже, они придали новый импульс дискуссиям о целях поэтапного отказа от автомобилей с ДВС и о полном переходе на автомобили с нулевым уровнем выбросов. Возможно, это всколыхнет страны, которые до сих пор не решались взять на себя обязательства по достижению определенной цели поэтапного отказа.

Правительство Год Категория транспортного средства* Целевые типы транспортных средств*  Политический документ**
ЕВРОПА
Норвегия 2025 Легковые автомобили, легкие коммерческие автомобили, городское использование Продажа новых автомобилей со 100% нулевым уровнем выбросов Национальный транспортный план на 2018–2029 годы(2017)
Нидерланды 2025 Городские автобусы Покупка нового автомобиля со 100% нулевым уровнем выбросов Миссия Ноль (2019)
2030 Легковые автомобили Продажа новых автомобилей со 100% нулевым уровнем выбросов
Дания 2030 Легковые автомобили Нет продаж новых автомобилей с бензиновым или дизельным двигателем План климата и воздуха (2018)
2035 Нет продаж новых бензиновых, дизельных или подключаемых гибридных автомобилей
Исландия 2030 Легковые автомобили Отсутствие регистрации новых автомобилей с бензиновым или дизельным двигателем План действий Исландии по борьбе с изменением климата на 2018–2030 годы (2018 г. )
Ирландия 2030 Легковые автомобили Отсутствие продаж новых автомобилей, работающих на ископаемом топливе План действий по изменению климата 2019 (2019)
Словения 2030 Легковые автомобили, легкие коммерческие автомобили Нет новых регистраций транспортных средств с CO 2 Выбросы выше 50 г/км Стратегия развития рынка для создания надлежащей инфраструктуры альтернативных видов топлива в транспортном секторе Республики Словении (2017 г.)
Швеция 2030 Легковые автомобили Нет продаж новых автомобилей с бензиновым или дизельным двигателем План действий по климатической политике (2019 г.))
Шотландия (Великобритания) 2032 Легковые автомобили, легкие коммерческие автомобили Нет продаж новых автомобилей с бензиновым или дизельным двигателем План изменения климата (2018 г. )
Соединенное Королевство 2035 Легковые автомобили, легкие коммерческие автомобили Нет продаж новых бензиновых, дизельных или гибридных автомобилей Консультации по прекращению продажи новых бензиновых, дизельных и гибридных автомобилей и фургонов (2020)
Франция 2040 Легковые автомобили, легкие коммерческие автомобили Отсутствие продаж новых автомобилей, работающих на ископаемом топливе Закон о правилах мобильности (2019 г.)
Испания 2040 Легковые автомобили, легкие коммерческие автомобили Продажа новых автомобилей со 100% нулевым уровнем выбросов Проект Закона об изменении климата и энергопереходе (2020 г.)
Германия, Баден-Вюртемберг (Германия) 2050 Легковые автомобили Продажа новых автомобилей со 100% нулевым уровнем выбросов Обязательство IZEVA (2015 г. ), еще не отраженное в национальном плане защиты климата
СЕВЕРНАЯ, ЦЕНТРАЛЬНАЯ И ЮЖНАЯ АМЕРИКА
Калифорния (США) 2035 Легковые автомобили, легкие грузовики Продажа новых автомобилей со 100% нулевым уровнем выбросов Исполнительный указ (2020)
Колумбия 2035 Общественный транспорт Новые покупки 100% электрические или с нулевым уровнем выбросов Закон о продвижении электромобилей в Колумбии (2019 г.)
Британская Колумбия (Канада) 2040 Автомобили малой грузоподъемности (легковые автомобили, легкие коммерческие автомобили) Продажа и аренда новых автомобилей 100 % с нулевым уровнем выбросов Закон об автомобилях с нулевым уровнем выбросов (2020 г.)
Канада 2040 Автомобили малой грузоподъемности (легковые автомобили, легкие коммерческие автомобили) Продажа новых автомобилей со 100% нулевым уровнем выбросов Федеральный бюджет Канады (2019 г. )
Коста-Рика 2050 Легковые автомобили (легковые автомобили, легкие коммерческие автомобили) Продажа новых автомобилей со 100% нулевым уровнем выбросов Национальный план декарбонизации (2019 г.)
Коннектикут, Мэриленд, Массачусетс, Нью-Джерси, Нью-Йорк, Орегон, Род-Айленд, Вермонт, Вашингтон (США) 2050 Легковые автомобили Продажа новых автомобилей со 100% нулевым уровнем выбросов Обязательство IZEVA (2015 г.), еще не отраженное в официальных стратегических документах государственного или провинциального уровня
Калифорния, Коннектикут, Колорадо, Гавайи, Мэн, Мэриленд, Массачусетс, Нью-Джерси, Нью-Йорк, Северная Каролина, Орегон, Пенсильвания, Род-Айленд, Вермонт, Вашингтон, округ Колумбия (США) 2050 Автомобили средней и большой грузоподъемности Продажа новых автомобилей со 100% нулевым уровнем выбросов Меморандум о взаимопонимании (2020 г. ), еще не отраженный в официальных стратегических документах
АЗИЯ
Хайнань (Китай) 2020 Государственные и каршеринговые автомобили, легкие грузовики Продажа новых автомобилей, полностью электрических План развития экологически чистых транспортных средств (2019 г.)
  2020 Автобусы, пассажирские транспортные средства Нет продаж новых автомобилей с бензиновым или дизельным двигателем
  2025 Туристические автобусы, прокат автомобилей Нет продаж новых автомобилей с бензиновым или дизельным двигателем
  2030 Частные автомобили Продажа новых автомобилей, полностью электрических
Израиль 2030 Частные автомобили Продажа новых автомобилей, полностью электрических Задачи в области энергетики на 2030 год (2018 год)
АФРИКА
Кабо-Верде 2035 Легковые автомобили, легкие коммерческие автомобили, автобусы, средние и тяжелые грузовики, двухколесные транспортные средства Запрещен импорт транспортных средств с двигателем внутреннего сгорания, работающих на ископаемом топливе (бензин или дизельное топливо) Хартия политики в области электромобильности (2019 г. )
*Терминология, используемая в официальных политических документах
**Дата публикации

Таблица 1. Цели правительства страны, провинции и штата по поэтапному отказу от продаж новых автомобилей с ДВС или установлению целей по 100-процентной доле электромобилей в новых продажах, регистрациях или импорте до 2050 г. (по состоянию на начало ноября 2020 г.) .

Эволюция двигателя внутреннего сгорания

Редакторы, одержимые Gear, выбирают каждый продукт, который мы рассматриваем. Мы можем заработать комиссию, если вы покупаете по ссылке. Почему стоит доверять нам?

Люди производят автомобили уже более века, и почти под каждым капотом стоит двигатель внутреннего сгорания. Вот уже 100 лет его принцип остается прежним: поступает воздух и топливо, в цилиндрах происходит взрыв, и сила толкает вас вперед. Но каждый год инженеры оттачивают двигатель внутреннего сгорания, чтобы он двигался быстрее и дальше, делая его более эффективным, чем прежде, и производя мощность, которую вы раньше видели только на суперкарах. Состояние двигателя внутреннего сгорания никогда бы не зашло так далеко без этих значительных скачков. Вот как мы дошли до этого момента.


1955

Впрыск топлива

До впрыска топлива подача бензина в камеру сгорания была неточным и привередливым процессом. Карбюраторы часто нуждались в очистке и ремонте, и на них влияли погодные условия, температура и высота над уровнем моря. Для сравнения, впрыск топлива был простым: он помогал двигателю работать более плавно, устойчиво на холостом ходу, работать более эффективно и устранял надоедливую рутинную регулировку воздушной заслонки каждый раз, когда вы ее запускали. Произведенный из самолетов военного времени, он впервые попал в автомобиль в 1955. В том же году Стирлинг Мосс и Денис Дженкинсон проехали на гоночном автомобиле Mercedes-Benz 300SLR изнурительную гонку Mille Miglia протяженностью 992 мили в Италии, выиграв рекорд, который так и не был побит: 10 часов, 7 минут и 48 секунд.

Британский автогонщик Стирлинг Мосс на пути к победе в итальянской гонке Mille Miglia и установлению нового рекорда.

Keystone//Getty Images

Дорожная версия Benz стала не только первым серийным автомобилем с системой впрыска топлива, разработанной Bosch, но и самым быстрым автомобилем в мире. Два года спустя Chevrolet поставила на Corvette двигатель «Fuelie» с системой впрыска топлива Rochester Ramjet, которая смогла разогнать 300SL. Тем не менее, именно системы с электронным управлением Bosch нашли свое применение почти у каждого автопроизводителя в Европе, и к 80-м годам система впрыска топлива завоевала мир.


1962

Турбокомпрессор

Турбокомпрессор — одна из жемчужин усовершенствования двигателя. Турбина в форме улитки, нагнетающая больше воздуха в цилиндр, когда-то позволяла 12-цилиндровым истребителям времен Второй мировой войны взлетать выше, быстрее и дальше. Угадай, что? То же самое происходит и на земле. Когда в 1962 году дебютировал первый автомобиль с турбонаддувом, он не был найден под капотом легкого европейского малолитражного автомобиля, вашего BMW 2002 или Saab 99, а принадлежал мозговому тресту General Motors, полному денег и желающему опробовать новые технологии.

Предоставлено Hagerty

В то время для Oldsmobile Jetfire требовалось — почти при каждой заправке топливного бака — добавление «Turbo Rocket Fluid», причудливое название Jetsons для дистиллированной воды и метанола. GM отказалась от этой концепции в середине десятилетия. Но к концу 1970-х такие компании, как BMW, Saab и Porsche, взяли на себя мантию, доказали свою ценность в автоспорте, и теперь каждый автомобиль имеет турбокомпрессор. Почти.

Турбокомпрессор пошел от грязной ходовой уловки в вашем 930 Turbo для выполнения семейных обязанностей в вашей Mazda CX-9, чей 2,5-литровый двигатель был оснащен первой в своем роде системой Dynamic Pressure Turbo в 2016 году. Это принцип «большой палец над садовым шлангом» в действии: поток ускоряет выпуск выхлопных газов в турбину, улучшая реакцию на низких оборотах и ​​уменьшая турбо-задержку. Кроме того, с более строгими стандартами выбросов и эффективности, это необходимый компонент для выжимания мощности большого двигателя из самых маленьких и легких двигателей. И крутящий момент! Вам больше не нужно сбивать какие-либо «мессершмитты», чтобы почувствовать себя запихнутым в кресло.


1964

Роторный двигатель

Единственным двигателем, по-настоящему сломавшим шаблон — единственным, который был запущен в производство, — было роторное чудо инженера Феликса Ванкеля, треугольник внутри овала, вращающийся как демон. По самой своей конструкции роторный двигатель легче, менее сложен и имеет более высокие обороты, чем обычная поршневая коробка. Mazda и несуществующий немецкий производитель автомобилей NSU были первыми, кто подписал контракт; в 1964 году NSU Spider стал первым серийным автомобилем с Ванкелем.

Mazda, однако, была единственной компанией, которая действительно работала с ним — первой Mazda с роторным двигателем был Cosmo 1967 года, предок длинной линейки спортивных автомобилей, седанов и даже пикапа, вплоть до последний RX-8 сошел с конвейера в 2012 году. Концепт RX-Vision 2016 года, представленный на Токийском автосалоне в 2015 году, подтвердил непристойный слух о том, что группа преданных своему делу инженеров, которым нечего терять, все еще разрабатывает следующий великий роторный двигатель. двигатель, где-то в скунсворке Хиросимы.

Вверху слева: Mazda Cosmo Sport 110S 1967 г. ; справа и слева внизу: роторный двигатель Mazda RENESIS

Предоставлено Mazda


1981

Деактивация цилиндров

Идея проста. Чем меньше цилиндров работает, тем лучше пробег. Как превратить V8 в четырехцилиндровый? Если бы вы были Cadillac примерно в 1981 году, вы представили двигатель с метким названием 8-6-4, в котором использовались соленоиды с электронным управлением для закрытия клапанов на двух или четырех цилиндрах. Это должно было повысить эффективность, скажем, при движении по шоссе. Но последовавшая за этим ненадежность и неуклюжесть были настолько печально известны, что никто не осмеливался повторить это в течение двадцати лет.

Теперь, у нескольких производителей, эта идея наконец-то работает, и она перекочевала на двигатели меньшего размера.


2012

Степень сжатия

Наука работает следующим образом: чем меньше в цилиндре двигателя вы можете сжать воздух и топливо, тем больше энергии вы получите, когда он взорвется. Объем, который может сжать поршень, и есть степень сжатия. Но производители не могут завышать степень сжатия слишком высоко, иначе смесь воспламенится сама по себе; последующий «стук» разорвет двигатель на части.

В самый разгар 1970-х годов, задыхаясь от правил смога и вынуждены бороться с неэтилированным бензином, производители построили массивные двигатели V8, которые хрипели. Этих больших парней сдерживала мучительно низкая степень сжатия — свинец, который когда-то был в бензине, предотвращал детонацию. Благодаря электронному управлению подачей топлива и лучшему пониманию контроля выбросов двигатели стали производить больше мощности при уменьшении рабочего объема.

Двигатель Mazda SKYACTIV-G 2018 года с отключением цилиндров развивает мощность 187 лошадиных сил и крутящий момент 186 Нм.

Предоставлено Mazda

В 2012 году в производство был запущен двигатель Mazda SKYACTIV-G с самой высокой степенью сжатия для серийного двигателя, поразительной 14:1 (в Америке 13:1), позволяющей извлекать энергию практически из любой капля бензина без кучи смогового оборудования. Следующее новшество Mazda подняло высокую степень сжатия на новый уровень. SKYACTIV-X использует искровое воспламенение от сжатия (SPCCI) для воспламенения воздушно-топливных смесей с минимальным количеством бензина, сочетая крутящий момент дизельного двигателя с высокими оборотами бензинового двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *