Содержание
Что убивает кальциевые аккумуляторы, и убивает ли? / Хабр
В Сети полно негативных отзывов на кальциевые аккумуляторы, которые служат недолго, не заряжаются, не держат заряд, замерзает электролит. Популярны мифы о том, что они боятся «кипячения» при 16 и более вольтах, а ещё боятся разрядов, стремительно теряя ёмкость с каждым из них, будто бы, вследствие формирования слоя гипса — нерастворимого сульфата кальция, и вообще, стартерный аккумулятор, в отличие от тягового, для разряда не предназначен, разве только секунду покрутить стартер. Что, если взять реальный аккумулятор и проверить?
Будут видео и опыты с показаниями приборов. Попутно выясним, что такое мнимый или поверхностный заряд. И возможно, мы уже не раз сдавали в утиль хороший исправный аккумулятор. Что же с ним можно было сделать?
Подача слишком высоких токов и напряжений при заряде свинцово-кислотных автомобильных аккумуляторных батарей, они же просто АКБ, чревата целым спектром опасных последствий, главными из которых являются выделение пожаровзрывоопасного водорода, токсичного сероводорода, разбрызгивание едкой кислоты, потеря воды из электролита, перегрев аккумулятора, вплоть до коробления пластин и короткого замыкания.
В отличие от популярной страшилки, будто пузырьки газов разрывают активную массу, (что не соответствует действительности, но чёрно-коричневую муть оплывшей активной массы положительных пластин они в электролит действительно поднимают, когда она уже оторвалась по иным причинам), перечисленное в предыдущем абзаце действительно опасно и для здоровья живых существ, и для сохранности окружающих аккумулятор ценностей, в первую очередь, самого автомобиля. Потому производители и продавцы аккумуляторных батарей публикуют легко запоминающиеся инструкции по максимально безопасным способам их подзаряда.
Да, именно подзаряда, то есть, частичного восполнения уровня заряженности, снизившегося в результате хронических, (например, езда в городском формате), или острых, (забыли выключить фары, пользовались лебёдкой, предпринимали попытки пуска не совсем исправного двигателя) причин.
▍Рекомендации предельно просты: заряжать током 10% ёмкости (6 А для 60 А*ч) до напряжения 14.4 вольта, (в разных версиях может варьироваться. ) Легко запомнить и осуществить.
Это первая стадия заряда аккумулятора, основной заряд. А чтобы зарядить кальциевый аккумулятор полностью, необходимы ещё и последующие этапы заряда, которых в профиле может быть несколько. Эти этапы уже требуют знаний, оборудования и предосторожностей, потому о них краткие инструкции для широкого круга автомобилистов умалчивают.
Зачем нужен полный заряд аккумулятора, как его произвести, и чем чревато его отсутствие, мы сегодня установим экспериментальным путём.
Подопытный аккумулятор Bosch S4 005 2015 года выпуска, три с половиной года в эксплуатации. НРЦ — напряжение разомкнутой цепи, оно же ЭДС без нагрузки, 12.57 вольт.
Ток холодной прокрутки по стандарту EN 521 из 540 А, здоровье 96 %, внутреннее сопротивление 5.96 мОм.
Просадка под нагрузочной вилкой 200 А до 10.25 В. На холоде падало до 9.9.
Перед зарядом аккумулятор не забываем отогреть, помыть, зачистить клеммы. Устанавливаем следующие параметры заряда.
Этап основного заряда: максимальное напряжение 14.4 В, напряжение начала снижения тока 14.2 В, максимальный ток 6 А.
Окончание заряда по снижению тока до 50 мА, максимальное время заряда 48 часов.
Этап дозаряда: напряжение до 14.4 В, максимальный ток 2А, продолжительность 5 часов.
Такие настройки программируемого зарядного устройства (ЗУ) будут действовать следующим образом:
▍На клеммы подаётся ток 6 ампер до достижения 14.2 вольт. Это этап CC — constant current — постоянного тока
▍Далее напряжение стабилизируется на уровне 14.2, ток снижается. Это называется этапом CV — constant voltage — заряд снижающимся током при постоянном напряжении
▍Когда ток доходит до 50 мА, ЗУ без паузы переходит в дозаряд током 2А, который, скорее всего, пролетит очень быстро, до достижения напряжения 14.4 В
▍И далее продолжится при этом напряжении без ограничения минимального тока. Общее время дозаряда 5 часов.
Таким образом, имеем профиль, который можно назвать: либо двухэтапным — (основной заряд 6 А, 14.2 В, до 50 мА или 48 ч, и дозаряд 2 А, 14.4 В, 5 ч), либо четырёхэтапным — (1 — СС 6 А до 14.2 В, 2 — СV 14.2 В до 50 мА, общее время 1 и 2 не более 48 часов, 3 — CC 2A до 14.4В, 4 — CV 14.4 В, общее время 3 и 4 ровно 5 часов).
Когда аккумуляторщикам приходилось по показаниям приборов вручную переключать обмотки трансформаторов и двигать ползунки реостатов, логично было называть такой профиль 4-этапным, потому что роль стабилизатора напряжения и тока выполнял человек, который должен был знать, на каком этапе каких положений стрелок добиваться. Сейчас время автоматических стабилизаторов тока и напряжения, выполняющих обе функции в одном устройстве, потому логично назвать заряд двухэтапным. Пока есть, куда расти напряжению, ток стабилен, работает обратная связь по току. Когда напряжение достигло уставки, ток снижается, действует ОС по напряжению.
Если в распоряжении нет программируемого ЗУ с таймером и отслеживанием минимального тока или ЗУ-автомата, реализующего более сложные алгоритмы с паузами и реверсом в реальном времени, а есть регулируемый стабилизированный блок питания или ЗУ на основе такого блока, устанавливаем напряжение и ток регуляторами, за временем следим по часам, а за током по амперметру.
Разряжать будем до напряжения под нагрузкой 12 В, током 2.4 А, всего проведём 4 таких цикла. Как известно, контрольно-тренировочный цикл улучшает состояние аккумулятора, если производится адекватно.
Прошло чуть более 4 суток, идёт заряд после четвёртого разряда. Наблюдаем монотонное снижение отдаваемой ёмкости с каждым циклом. Получается, что сейчас мы либо подтвердили на опыте расхожий тезис о том, что разряд даже до 12 вольт под нагрузкой вредит кальциевым аккумуляторам, (зачем только они тогда производятся, ведь именно при разряде химический источник тока приносит пользу, для этого он предназначен), либо попалась плохая (изношенная, умирающая, неудачная, поддельная) батарея, (почему тогда тестер и вилка показали хорошее здоровье?), либо заряд производился неадекватно.
Сурьмянистый аккумулятор, кальциевый аккумулятор, — это всё тот же свинцово-кислотный аккумулятор. Раньше для прочности в свинцовый сплав пластин добавляли сурьму, и газовыделение начиналось при низком напряжении, что вело к потере воды и необходимости её доливать несколько раз в год. После долива дистиллированной воды следовало заряжать АКБ, что обременяло и огорчало автолюбителей. Зато газовыделение способствовало перемешиванию электролита.
В целях снижения расхода воды при эксплуатации аккумулятора, чтобы он меньше нуждался в обслуживании, производители стали переходить на кальциевую технологию. Добавка кальция в сплав не только повышает прочность пластин, но и снижает саморазряд, позволяет повысить пусковые характеристики, уменьшает газовыделение, так как разложение воды из электролита на кислород и водород происходит при более высоком напряжении, чем в сурьмянистом аккумуляторе.
В результате, при эксплуатации расходуется меньше воды, её приходится доливать реже. Пробки можно закрыть этикеткой, либо вообще запаять крышку, упразднив доступ к электролиту, если расход воды настолько мал, что её заводской заправки хватает на весь срок службы батареи. Для отвода газов в обоих случаях делается лабиринт в крышке.
Но снижение газовыделения означает ухудшение перемешивания электролита. Насколько это важно, и к чему ведёт?
Прошёл час с момента завершения заряда после четвёртого цикла. Напряжение разомкнутой цепи 13.45 В.
Снимем так называемый поверхностный заряд вилкой 200 ампер. ЭДС просела до 10.6 В. Это лучший результат, чем в начале, но ёмкость АКБ, тем не менее, упала.
С момента прекращения заряда прошло 18 часов. НРЦ 13.3 В. Как видим, оно завышенное.
Просадка под вилкой до 10.55.
Прошло больше часа. НРЦ 13.25. Запомним это напряжение после циклов с максимальным напряжением заряда 14.4 В. Далее произведём выравнивающий восстановительный цикл по методике аккумуляторщика Виктора, и сравним два значения НРЦ.
Первый этап заряда — до падения тока ниже 100 мА при напряжении 14.7 В.
Второй этап — до 16.2 В током 1/30 номинальной ёмкости (для 60 А*ч это 2 ампера) до неснижения тока в течение 2 часов.
В таком режиме отдано всего 5.1 ампер*часов, потому продолжим дозаряд до 16. 5 В для качественного перемешивания электролита.
За 5 часов батарее сообщено почти 10 А*ч. Это оказалось необходимым вследствие сульфатации и расслоения электролита.
Ночью процесс дозаряда не завершился, остановим и возобновим с утра. Показания тока в районе 1.2 А держатся в течение часа. Понаблюдаем ещё час.
Час почти прошёл, ток не снижается. Останавливаем заряд.
Обратим внимание на НРЦ. Прошло более полутора часов, напряжение 13.25 В.
ЭДС под нагрузкой 200 А просела до 10.65, затем поднялась до 10.7 В. Результат лучше всех предыдущих в этом эксперименте.
Прошло 18 часов, НРЦ 13.06 В.
Итак, после нескольких часов «кипячения» при 16.5 вольтах мы получили напряжение разомкнутой цепи ниже, чем после заряда до 14.4. Получается, аккумуляторная батарея теперь заряжена хуже, и правы те, кто утверждает: «кипятить» не нужно и вообще вредно?
В напряжение разомкнутой цепи и ЭДС под малой нагрузкой делает свой вклад не только термодинамическая ЭДС активных масс, несущих полезный заряд, но и целое множество других факторов.
Во-первых, пузырьки газов в порах активных масс имеют свою электродвижущую силу. На этом эффекте основан топливный элемент, в котором электролиз идёт наоборот: происходит синтез воды из подаваемых водорода и кислорода с выработкой электрической энергии. Потому НРЦ свинцово-кислотной ячейки, или вообще любой пары электродов в каком-нибудь электролите с пузырьками выше, чем без них.
Во-вторых, потенциал той или иной точки в электрическом поле зависит от расстояний между носителями заряда в пространстве. В банке аккумулятора носителями заряда являются ионы, главным образом, сульфат-ион и гидроксоний, или попросту протон H+, ядро атома водорода.
В школьном опыте мы берём какой-нибудь материал, трём его о ткань или бумагу, подносим к шару электроскопа, и ничего не происходит. Стрелка не отклоняется, искр не видно и не слышно, не пахнет озоном. Всё потому, что заряженные тела не разнесли в пространстве.
Оторвав предмет от бумаги или ткани, мы своей мускульной силой преодолеваем электростатическое притяжение, а работа этой силы преобразуется в электрическую энергию. Получаем заряд, отклоняющий стрелку электроскопа, и энергию, способную, например, зажечь неоновую или ртутную лампу, произвести коронный или искровой разряд с выделением теплоты, света, звука, преобразованием кислорода в озон, и так далее.
Для получения разности потенциалов и энергии потребовалось не просто соприкосновение материалов с разными свойствами, но разнести носители заряда в пространстве. В современном свинцовом аккумуляторе имеется губчатая структура активных масс и плотные сепараторы. Всё это мешает дрейфу ионов, в виде которых находится серная кислота в жидком водном растворе, и эти ионы в пространстве создают электрическое поле, то есть, градиент потенциала, влияющий на разность потенциалов электродов.
Наконец, термодинамическая ЭДС свинцово-кислотной электрохимической ячейки зависит от концентрации кислоты, а она тяжелее воды и стремится вниз. При расслоении даже недозаряженные участки активных масс внизу банок дают НРЦ как у заряженных и даже выше.
Потому уровень заряженности одним только вольтметром не определить. Чем выше НРЦ — не факт, что лучше. Более того, завышенное НРЦ чаще всего свидетельствует о расслоении электролита и недозаряде. Адекватные тестеры аккумуляторных батарей при НРЦ сверх нормы рекомендуют снять поверхностный заряд, фарами, и повторить тест.
Все вышеописанные паразитные перенапряжения имеют общее свойство: «мнимый» заряд не способен давать значительный ток, в отличие от «честного» заряда активных масс. Потому под адекватной нагрузкой ЭДС проседает до уровня, адекватного истинному уровню заряженности. Разрядный ток снимает поляризацию, но не устраняет расслоение электролита. В этом различие расслоения и поверхностного заряда — поляризации. То и другое часто называют «мнимым зарядом».
Мнимый заряд — явление, при котором напряжение разомкнутой цепи свинцово-кислотного аккумулятора не соответствует реальному уровню заряженности при данной температуре и концентрации электролита. Составляющими мнимого заряда являются расслоение (стратификация) электролита, перенапряжение от которого восстанавливается после снятия нагрузки, и поверхностный заряд — совокупность явлений поляризации, создаваемое которыми перенапряжение не возвращается после отключения разрядного тока.
Нагрузочная вилка 200 А после заряда по методу Виктора через 20 часов показывает точно такую же просадку с 13.10 до 10.65 и подъём до 10.70 В, как и 18 часов назад. Это очень хороший результат.
Тестер показывает ток холодной прокрутки 605 из 540 А по EN, внутреннее сопротивление 5.13 мОм, здоровье АКБ и уровень заряженности 100%. Сделав выравнивающий восстановительный заряд, мы вернули аккумулятору былую молодость.
В процессе разряда кислота по всему объёму и всей высоте банок АКБ уходит на химическую реакцию Гладстона-Трайба. В процессе заряда кислота по всему объёму и всей высоте выходит из сульфатов и возвращается в электролит. Но законы природы не обмануть. Чистая серная кислота имеет плотность 1.84 грамма на кубический сантиметр, что почти вдвое тяжелее воды. Выделяясь, она стремится уйти вниз и выталкивает воду наверх. При 14.4 В на клеммах газообразование в банках кальциевого аккумулятора отсутствует или пренебрежимо мало, потому не происходит перемешивания электролита. Губчатая структура активных масс и плотные сепараторы усугубляют проблему.
Для осуществления реакции в направлении заряда необходима вода, потому в нижней части банок и глубине активных масс заряд прекращается раньше времени, тогда как в верхней части и на поверхности средней части пластин он ещё идёт. Потому низ пластин и глубина активных масс испытывают прогрессирующую сульфатацию: всё больше активных масс выходят из полезной работы. Взглянем ещё раз на таблицу контрольно-тренировочных циклов до 14.4В, где хорошо видна эта плохая динамика.
При заряде по методу Виктора с активным перемешиванием электролита по всей высоте и всему объёму, в нижней части пластин концентрация кислоты снизилась, поступила вода, и пошёл процесс заряда. Сульфат стал постепенно растворяться, и после восстановительного заряда ранее сульфатированные активные массы вернулись в работу.
Прошёл ещё час с момента теста нагрузочной вилкой. НРЦ по вольтметру Кулона-912 12.98, по вольтметру вилки НВ-03 13. 00. Запускаем разряд.
Спустя 12 минут разряда, под нагрузкой 2.4 А ЭДС 12.66 В.
Ёмкость разряда до 12 вольт под этим током составила 29.11 А*ч. Ставим на заряд.
Основной заряд длился 6 часов 20 минут, батарее сообщено 27.28 А*ч. Обратим внимание: это ниже 29.11, отданных при разряде. Потому без дозаряда прогрессирует недозаряд, (на что слово дозаряд прозрачно намекает).
Прошло 8 часов дозаряда, показания тока не менялись 2 часа. Пора завершать.
13 вольт — нормальное НРЦ здорового заряженного аккумулятора.
Показания тестера ещё немного улучшились: EN 607 A, 5.11 мОм. Два заряда с «кипячением» при 16.5 В улучшили все характеристики аккумуляторной батареи, тогда как при ограничении до 14.4 наблюдали падение ёмкости, (зато аномальный рост НРЦ вследствие прогрессирующего расслоения электролита).
Существуют таблицы для определения степени заряженности АКБ по напряжению разомкнутой цепи, но они не учитывают поляризации — поверхностного заряда, а также аномального завышения НРЦ вследствие расслоения электролита. Потому применительно к современным кальциевым аккумуляторам такие таблицы, а также реализующие их индикаторы уровня заряда на базе простейшего вольтметра, не дают адекватных показаний.
Отсутствие адекватного дозаряда в первых циклах нашего опыта привело к деградации параметров АКБ, но эта деградация не стала необратимой, а была исправлена путём адекватного выравнивающего восстановительного дозаряда с десульфатацией и перемешиванием электролита. Генератор автомобиля и зарядные устройства, не реализующие перемешивание и десульфатацию при повышенном напряжении, осуществить такой дозаряд не могут.
Потому очень многие сдают в утиль исправный, работоспособный аккумулятор, параметры которого можно восстановить путём адекватного дозаряда, что и произошло в описанном эксперименте.
Напоследок отметим, что этапы дозаряда при 16 и более вольтах актуальны не только для кальциевых АКБ с жидким электролитом, но входят в рекомендации таких производителей, как Chaowei (Chilwee) и Tianneng для… гелевых кальциевых тяговых АКБ с углеродными добавками в активные массы! Ещё один шах и мат страшилкам и мифам. Разумеется, фирменная документация содержит параметры каждого этапа, включая временные рамки, их очерёдность и условия, при которых запускать тот или иной этап, либо пропустить и перейти к следующему.
Встречается и вульгарная версия «кипячения» в один этап током 10% ёмкости, напряжением 16 вольт. Такой заряд аккумулятору и всему вокруг него действительно навредит, поскольку не учитывает кинетики физических и химических процессов в аккумуляторной батарее, в соответствии с которой разработаны многоступенчатые профили заряда. Большим током можно производить основной заряд до невысокого напряжения, и переходить к этапам высоковольтного дозаряда только после того, как ток основного заряда снизился до заданной величины. Существуют умные ЗУ со сложными алгоритмами, использующие токи и напряжения выше стандартных профилей для повышения эффективности этапов, но там реализованы обратная связь в реальном времени и микропроцессорный контроль.
Вульгарное одноэтапное «кипячение» как раз и породило миф о губительности 16 и даже 15 вольт, тогда как неспособность более низкого напряжения обратить вспять прогрессирующие недозаряд и сульфатацию мифы о мнимых недостатках кальциевых аккумуляторов. Разумеется, при недозаряде ёмкость и токоотдача будут падать, пластины разбухать от сульфатов вплоть до коробления и короткого замыкания, активная масса отвалится, а электролит замёрзнет. Но виной тому не заговор или недобросовестность производителей, а игнорирование особенностей современных аккумуляторов при их эксплуатации.
Статья составлена в сотрудничестве с автором видео, осуществившим описанный эксперимент.
какие параметры аккумуляторных батарей нужно проверять и как это сделать?
При использовании аккумуляторных батарей на любых объектах, особенно в системах бесперебойного питания, за их состоянием нужно следить и регулярно проводить проверки. В этом материале мы рассмотрим основные параметры АКБ, а также рассмотрим, какими приборами и как можно провести их контроль и проверку!
Основная задача при проверке состояния любой аккумуляторной батареи – выяснить, обладает ли она достаточной емкостью, может ли обеспечить заявленные производителем характеристики в течение необходимого времени. Однако непосредственно средствами измерения определяются только несколько основных параметров – напряжение, сила тока. В обслуживаемых аккумуляторах можно также замерить плотность электролита. Измерения можно проводить неоднократно, фиксируя изменение значений с течением времени. Все остальные параметры и характеристики не измеряются напрямую, а выводятся по разработанной изготовителем методике, причем она зависит и от типа АКБ, и от рекомендаций производителя, и от вида подключенной нагрузки. При этом необходимо учитывать, что многие зависимости, характеризующие работу АКБ, носят нелинейный характер. Могут сказываться и другие факторы, например, влияние температуры.
При выполнении краткосрочных измерений при использовании даже самых совершенных методик тестирование носит не точный количественный, а качественный характер. Единственный достоверный способ измерения емкости АКБ – его полная разрядка в течение многих часов с тщательной фиксацией параметров в ходе всего процесса. Но использовать столь продолжительную процедуру на практике можно далеко не всегда, особенно если батарей много. Тем не менее, и краткосрочных оценочных измерений достаточно для того, чтобы отличить работоспособный аккумулятор от изношенного, утратившего емкость, и вовремя произвести замену АКБ.
Способы проверки АКБ
1. Подключение нагрузки
К АКБ на некоторое время подключается рабочая или второстепенная нагрузка той или иной величины. Вольтметром или мультиметром измеряется падение напряжения. Если процедура выполняется несколько раз, между измерениями выжидается определенное время, чтобы батарея восстановилась. Полученные данные сопоставляются с параметрами, заявленными производителем АКБ для данного типа батареи и данной величины нагрузки.
2. Измерения при помощи нагрузочной вилки
Строение простейшей нагрузочной вилки показано на схеме:
Устройство оснащено вольтметром, параллельно которому установлен большой по мощности нагрузочный резистор, и имеет два щупа. В старых моделях вольтметры аналоговые; новые модели, как правило, оснащены ЖК-дисплеем и цифровым вольтметром. Существуют нагрузочные вилки с усложненной схемой, использующие несколько нагрузочных спиралей (сменных сопротивлений), рассчитанные на разные диапазоны измерения напряжений, предназначенные для тестирования кислотных либо щелочных аккумуляторов. Есть даже вилки, которыми тестируют отдельные банки аккумуляторов. В состав продвинутых устройств помимо вольтметра может входить амперметр.
Получаемые при измерениях данные также необходимо сопоставлять с параметрами, заявленными производителями для данного типа батарей и данного сопротивления.
3. Измерения при помощи специальных устройств, тестеров анализаторов АКБ
Приборы Кулон
Принципиальным развитием идеи нагрузочной вилки можно считать семейство цифровых приборов-тестеров Кулон (Кулон-12/6f, Кулон-12m, Кулон-12n и другие) для проверки состояния свинцовых кислотных аккумуляторов, а также другие подобные устройства. Они позволяют проводить быстрые замеры напряжения, приближенно определять емкость АКБ без контрольного разряда и сохранять в памяти несколько сотен, а иногда и тысяч измерений.
Приборы Кулон питаются от аккумулятора, на котором проводятся измерения. Входящие в комплект провода с разъемами «крокодил» имеют части, изолированные друг от друга, что обеспечивает четырехзажимное подключение к аккумулятору и устраняет влияние на показания прибора сопротивления в точках подключения зажимов. По заявлению разработчика, прибор анализирует отклик аккумулятора на тестовый сигнал специальной формы, при этом измеряемый параметр примерно пропорционален площади активной поверхности пластин аккумулятора и, таким образом, характеризует его емкость. Фактически, точность показаний зависит от достоверности методики, разработанной производителем.
Емкость аккумулятора – электрический заряд, отдаваемый полностью заряженным аккумулятором – измеряется в ампер-часах и представляет собой произведение тока разряда на время. Для точного определения емкости необходимо произвести разряд батареи (процесс длительный, многочасовой), постоянно фиксируя величину заряда, отдаваемого батареей. При этом относительная емкость АКБ в зависимости от времени изменяется нелинейно. Например, для аккумуляторной батареи типа LCL-12V33AP относительная емкость меняется со временем следующим образом:
Время разряда, часы | Относительная емкость, % |
0,1 | 37 |
1,3 | 48 |
0,7 | 53 |
1,9 | 76 |
4,2 | 84 |
9,2 | 92 |
20 | 100 |
Прибор Кулон при помощи быстрого измерения ориентировочно определяет емкость полностью заряженного аккумулятора. Он не предназначен для оценки степени заряженности АКБ, все измерения необходимо проводить на полностью заряженной батарее. Устройство кратковременно подает тестовый сигнал, регистрирует отклик от батареи и через несколько секунд выдает ориентировочную емкость АКБ в ампер-часах. Одновременно на экран выводится измеренное напряжение. Полученные значения можно сохранять в памяти прибора.
Производитель подчеркивает, что устройство не является прецизионным измерителем, но позволяет оценочно определять емкость свинцовой кислотной батареи, особенно если пользователь самостоятельно откалибровал прибор при помощи аккумулятора такого же типа, что и тестируемый, но с известной емкостью. Процедура калибровки подробно изложена в инструкции к прибору.
Тестеры PITE
Следующая разновидность устройств для тестирования АКБ – тестеры PITE (Kongter): модель Kongter BT-3915 для измерения внутреннего сопротивления батарей.
Управление осуществляется при помощи цветного сенсорного экрана, но основные управляющие кнопки вынесены на клавиатуру в нижней части корпуса. Прибором можно тестировать батареи емкостью от 5 до 6000 А·ч, с элементами аккумулятора 1.2 В, 2 В, 6 В и 12 В. Диапазон измерения напряжения – от 0.000 В до 16 В, сопротивления – от 0. 00 до 100 мОм. Прибор позволяет задать тип проверяемых батарей, выполнить измерение напряжения и сопротивления (модель 3915) или напряжения и проводимости (модель 3918), и на их основании судить о том, соответствует емкость батареи заявленной производителем или нет. При этом параметр Capacity (емкость батареи) выводится в процентах.
Интерфейс прибора позволяет проводить как одиночные измерения, так и последовательные (до 254 измерений в каждой последовательности, совокупное количество результатов более 3000), что удобно при проверке большого количества однотипных АКБ (в последнем случае результаты сохраняются автоматически, помимо данных в них фиксируется также порядковый номер измерения). В зависимости от настроек прибор может использовать для выдачи результата (статуса Good, Pass, Warning или Failed) собственные критерии либо значения, заданные пользователем. Результаты тестирования через порт USB могут быть перенесены на компьютер для просмотра и последующей подготовки отчетов.
Анализаторы Fluke
Более глубокое развитие той же идеи – приборы Fluke Battery Analyzer серии 500 (BT 510, BT 520, BT 521), которые позволяют измерять и сохранять в памяти напряжение, внутреннее сопротивление стационарной батареи, температуру минусовой клеммы, напряжение при разрядке. При наличии дополнительных аксессуаров можно измерять и сохранять в памяти и другие параметры. Тесты можно проводить как в режиме отдельных измерений, так и в последовательном режиме; используя настраиваемые профили. Есть возможность задать пороговые значения для различных параметров. Встроенный порт USB позволяет передавать собранные записи (до 999 записей каждого типа) на компьютер для подготовки отчетов с помощью программного обеспечения Analyze Software, входящего в комплект поставки.
Щупы прибора имеют специальную конструкцию: внутренний подпружиненный контакт предназначен для измерения тока, внешний – для измерения напряжения. Если на щуп надавить, внутренний наконечник смещается внутрь таким образом, что оба контакта каждого щупа касаются поверхности одновременно. В результате одни и те же щупы позволяют организовать как 2-проводное, так и 4-проводное подключение к полюсам батареи (последнее необходимо для измерения Кельвина).
-
Прибор позволяет измерять следующие параметры:
-
Внутреннее сопротивление батареи (измерение занимает менее 3 с).
-
Напряжение батареи (производится одновременно с измерением внутреннего сопротивления)
-
Температура минусовой клеммы (рядом с черным наконечником на щупе BTL21 Interactive Test Probe предусмотрен ИК-датчик)
-
Напряжение при разрядке (определяется несколько раз в ходе разрядки или во время теста на нагрузку)
Также возможно измерение пульсирующего напряжения, измерение переменного и постоянного тока (при наличии токовых клещей и адаптера), выполнение функций мультиметра. С анализаторами Fluke можно использовать интерактивный тестовый щуп BTL21 Interactive Test Probe со встроенным датчиком температуры. С приборами совместимо большое разнообразие дополнительных аксессуаров (токовые клещи, удлинители разного размера, съемный фонарик и т. п.).
Хотя прибор обладает богатым функционалом, ключевым этапом в определении состояния АКБ остается сопоставление измеренных показателей с расчетными или заданными изготовителем для данного конкретного типа батарей. Устройства Fluke Battery Analyzer серии 500 удобны для массовой инспекции состояния батарей. Последовательный режим и система профилей позволяют выполнять необходимые измерения одно за другим, результаты запоминаются прибором и хранятся в упорядоченной форме, последовательно пронумерованные и разбитые на группы. Но прибор не имеет функции прямого или косвенного измерения емкости АКБ в ампер-часах – хотя бы потому, что для батарей разного типа на сегодняшний день вряд ли возможно разработать единую точную методику такого определения.
Все перечисленные выше устройства, хоть и отличаются друг от друга по размеру, относятся к классу портативных. В отдельную группу можно выделить стационарные комплексы для проверки АКБ, которые могут проводить быстрые испытания с определением внутреннего сопротивления, контролировать все параметры, включая активную и реактивную составляющие сопротивления, управлять процессом разряда/заряда и т. п. Подобные комплексы адресованы скорее исследовательским лабораториям, промышленным производителям АКБ и разработчикам нового оборудования, чем конечным пользователям.
4. Полная разрядка/зарядка
На сегодняшний день полная разрядка и зарядка – это единственный прямой и максимально достоверный способ определения емкости АКБ. Специализированные устройства контроля разряда/заряда батареи (УКРЗ) позволяют выполнить глубокую разрядку и последующую полную зарядку батареи с постоянным контролем емкости. Однако эта процедура занимает очень много времени: 15-17-20-24 часа, иногда и более суток, в зависимости от емкости и текущего состояния батареи. Хотя метод дает наиболее точные результаты, из-за временных затрат его применение ограничено.
5. Измерение плотности электролита
В обслуживаемых аккумуляторах для определения их состояния можно измерять плотность электролита, поскольку между этим параметром и емкостью АКБ существует непосредственная зависимость. Плотность электролита может меняться в силу разных причин, которые вдобавок взаимосвязаны (частый глубокий разряд батареи, сульфатация, неоптимальная плотность электролита, испарение и утечка раствора и т. д.). Аккумулятор начинает быстрее разряжаться, отдает меньше заряд. При этом необходимо понимать, что плотность электролита даже в исправном аккумуляторе, находящемся в идеальном состоянии – не константа, она меняется с температурой и степенью зарядки аккумулятора. Более того, для разных регионов рекомендованная плотность электролита отличается в зависимости от типовых климатических условий.
Результаты измерения плотности ареометром можно сопоставить со следующей диаграммой для кислотных аккумуляторов.
В зависимости от того, больше или меньше плотность электролита, чем требуемая (а для батареи вредно отклонение и в ту, и в другую сторону), можно частично или полностью заменить электролит, залить дистиллированную воду или раствор необходимой концентрации, обязательно обеспечив перемешивание. Как и при использовании всех ранее описанных способов проверки состояния АКБ ключевым является сопоставление измеренных значений с рекомендациями производителя батареи и следование всем предусмотренным процедурам обслуживания.
Выводы
Каждый способ определения текущего состояния аккумуляторной батареи имеет свои преимущества и недостатки. Каким из них пользоваться – зависит от ваших задач и возможностей. Сориентироваться вам поможет эта сводная таблица.
Способ определения состояния АКБ | Преимущества | Недостатки |
Подкл ючение нагрузки | Достаточно реалистичные результаты без использования специализированного оборудования | Времязатратность при многократных измерениях Измеренные параметры документируются вручную |
Нагрузочная вилка, специализированные анализаторы и тестеры |
Портативность устройств
Простота использования
Быстрое проведение измерений, особенно многократных
Некоторые модели способны проводить измерения без выведения АКБ из режима эксплуатации
Специализированные модели позволяют сохранять результаты и переносить их на компьютер для подготовки отчетов
| Часть параметров АКБ определяется по косвенным методикам Оценочная точность измерений |
Полный разряд/заряд | Единственный достоверный способ оценки емкости АКБ | Очень продолжительная процедура – многие часы, иногда сутки |
Измерение плотности электролита ρ | Непосредственное определение состояния батареи по концентрации электролита | Способ применяется только для обслуживаемых батарей |
См.
также
- Цены на приборы для проверки аккумуляторных батарей
Анализаторы и тестеры аккумуляторных батарей
Блоки нагрузки для аккумуляторных батарей
Кулон – тестеры / индикаторы емкости свинцовых аккумуляторов
Локализатор повреждения в системах постоянного тока
Материал подготовлен
техническими специалистами компании “СвязКомплект”.
Подпишитесь на рассылку новых материалов!
Имя
E-mail *
Согласие на отправку персональных данных *
* — Обязательное для заполнения
См. также:
Аккумуляторы
— аккумулятор SLA под нагрузкой: является ли абсолютное напряжение или состояние заряда первичным для предотвращения износа?
Вы получите столько же отзывов, сколько мнений.
Самый безопасный: обратитесь к производителю.
С практической точки зрения ограничение напряжения — отстой, потому что оно обязательно запрещает высокие токи при низком уровне SoC — однако вам может понадобиться это для ИБП, запуска двигателя и т. д. Обратите внимание, что внутреннее сопротивление Ri увеличивается при разрядке, поскольку хорошо.
Но, возможно, такая операция изнашивает аккумулятор, поэтому лучше ее избегать.
Что касается химии, учтите, что электроды сделаны из губчатого материала, что значительно увеличивает площадь поверхности и, следовательно, емкость, но также значительно увеличивает расстояние, которое необходимо пройти ионам через электролит, чтобы достичь любой заданной точки на этой поверхности. . Это означает гораздо большее падение напряжения через эти поры (при высокой плотности тока), и поэтому они всегда будут отставать от SoC внешних / прямых поверхностей.
Возможно, оба ответа, потому что внешние поверхности могут быть полностью истощены (0% SoC), в то время как поры еще только просыпаются. Таким образом, износ протекает неравномерно по всей поверхности электрода, в результате чего емкость падает.
Потеря емкости происходит (насколько мне известно) в первую очередь из-за образования изолирующих кристаллов PbSO4, а также механически из-за отпадания чешуек/сегментов или иной потери электрического контакта (который может быть нарушен при образовании таких кристаллов или коррозия металла; обратите внимание, что материал не возвращается на место идеально, с некоторой деформацией, происходящей при циклировании, и это также ограничивает срок службы батареи даже при самом бережном использовании).
Пористая структура также определяет кривую разряда/разряда во времени; ионная диффузия уже является значительным эффектом (давая кривую импеданса ~sqrt(f)), но распределение размеров/длин пор также дает эквивалентный диффузионный эффект, и оба эффекта суммируются, чтобы дать довольно большие постоянные времени — следовательно, часы или время цикла четных дней, например, для цикла подзарядки с длинным хвостом тока, который медленно падает при фиксированном напряжении.
Что касается ссылок, давайте посмотрим, что сегодня предлагает Google…
Вы можете подыгрывать, критически оценивая достоверность этих ссылок.
https://www.progressivedyn.com/service/battery-basics/#:~:text=Do%20I%20need%20to%20completely,10.5%20volts%20can%20damage%20it.
Предлагает условие И, т. е. ограничивает как напряжение, так и SoC. Кажется, пользователь. На первый взгляд, ссылки не связаны. Это первоисточник? Возможно нет.
https://www.scubaengineer.com/documents/lead_acid_battery_charging_graphs. pdf
Удивительно знакомый сюжет… но без цитат. С другой стороны, кажется, что Ричард был умным парнем: http://www.omagdigital.com/publication/?i=394240&article_id=2743496, к сожалению, мы не можем знать, из каких источников он брался.
12-вольтовая герметичная свинцово-кислотная батарея с датчиком уровня заряда
Ссылки на техническое описание — первичные данные производителя — хотя это не включает срок службы, который должен давать указанная точка отсечки. Не обращая внимания на отсутствие данных о сроке службы, это дает отсечку в зависимости от тока, что примерно соответствует информации о внутреннем сопротивлении: очевидно, около 0,6 В / 20 А = 0,03 Ом (взяв максимальный ток из каждого диапазона).
Как устранить проблемы с батареями глубокого цикла
- Домашняя страница
- Блог
- Как устранить проблемы с батареями глубокого цикла
Обслуживание батарей глубокого цикла необходимо для обеспечения максимального срока службы и предотвращения повреждений. Таким образом, важно обнаруживать проблемы с аккумулятором на ранней стадии. Устранение неполадок с аккумулятором глубокого разряда довольно легко выполнить самостоятельно с помощью мультиметра, вольтметра или ваттметра.
Проверка аккумулятора глубокого разряда
Снаружи аккумуляторы глубокого разряда могут проявлять ранние признаки отказа. Таким образом, устранение проблем с аккумулятором можно начать с простого осмотра. Убедитесь, что верхняя часть аккумулятора чистая и сухая. Когда батарея покрыта пылью и грязью, она может разрядиться через грязь. Кроме того, осмотрите аккумулятор на наличие сломанных или ослабленных клемм; они опасны, так как могут привести к короткому замыканию. Залитые аккумуляторы глубокого разряда необходимо проверить на наличие утечек и повреждений корпусов аккумуляторов, которые могли быть вызваны перезарядкой или перегревом. Эта проблема не возникает с батареями глубокого цикла AGM, поскольку они разработаны с использованием технологии стекломата, предотвращающей утечку даже при повреждении. Как правило, трещины и отверстия не препятствуют работе батарей глубокого цикла, но они могут быть небезопасными. В связи с этим рекомендуется выбрасывать любые аккумуляторы с достаточно поврежденными корпусами.
Перед проверкой аккумулятора глубокого разряда
Рекомендуется проверить срок службы аккумулятора, когда он полностью заряжен. Если вы оказались в ситуации, когда вы не можете зарядить аккумулятор, дайте ему постоять примерно один час перед тестированием. В результате зарядки или разрядки на поверхности пластин может возникнуть неравномерная смесь кислоты и воды. Это явление называется «поверхностным зарядом», и его необходимо устранить до начала тестирования, поскольку оно может повлиять на ваши данные. Поверхностный заряд может заставить плохой аккумулятор выглядеть хорошо, и наоборот. Чтобы снять поверхностный заряд, вы можете просто оставить полностью заряженную батарею глубокого цикла не менее чем на четыре часа. Кроме того, убедитесь, что ваша батарея не подключена к каким-либо приборам или зарядному устройству, так как это повлияет на данные.
Примечание: , если у вас есть несколько аккумуляторов, соединенных вместе, каждый аккумулятор следует отсоединить и зарядить/проверить отдельно.
Проверка напряжения батареи глубокого разряда
Уровень заряда батареи глубокого разряда можно проверить несколькими способами. В наиболее распространенных методах используется мультиметр, вольтметр или ваттметр. Когда вы решите проверить с помощью вольтметра, мы рекомендуем использовать цифровой измеритель, а не аналоговый измеритель, так как он будет более точным при измерении разницы в милливольтах. Подробное руководство о том, как проверить напряжение батареи глубокого разряда, вы можете посмотреть в нашем видео «Как проверить уровень заряда батареи и устранить неполадки».
Анализ данных испытаний
После того, как вы проверили напряжение батареи глубокого цикла, вы можете проанализировать ее состояние заряда. Просто сравните измеренное напряжение с таблицей состояния заряда, чтобы определить предполагаемый уровень заряда вашей батареи. Например, если ваша батарея глубокого цикла AGM рассчитана на 12,30 В, она находится в состоянии заряда 70%, как показано на нашем графике состояния заряда. Этот график заряда относится к батареям глубокого цикла AGM 12 В, но его также можно использовать в качестве общего руководства для других типов батарей, хотя имейте в виду, что могут быть небольшие различия в номинальном напряжении.
Как правило, полностью заряженная батарея глубокого разряда имеет напряжение более 12,8–13 В. Ниже приведены несколько распространенных проблем с батареями, которые можно определить по измерениям напряжения.
Если напряжение полностью заряженного аккумулятора AGM более чем на 20 % ниже уровня полностью заряженного аккумулятора, вероятно, его следует заменить. Обычно это является признаком старения аккумулятора, повреждения из-за чрезмерной или недостаточной зарядки или сульфатации. Иногда вы можете улучшить аккумулятор в этом состоянии, используя устройство десульфатации, в противном случае вам придется жить с низкой емкостью или заменить аккумулятор.
Если ваша батарея показывает хорошее напряжение, когда она полностью заряжена, но быстро падает до 11 В или ниже при использовании питания, это обычно означает, что батарея имеет неисправный элемент и нуждается в замене. Это может быть вызвано чрезмерной вибрацией, например, при движении по гофрам без надлежащей амортизации аккумулятора, или производственным дефектом. Неисправные элементы трудно и, как правило, нецелесообразно ремонтировать, поэтому вам необходимо заменить аккумулятор.
Когда батарея глубокого разряда полностью разряжена (полностью разряжена), ее показания должны составлять примерно 10,5 В. Если ваш тест показывает, что это напряжение ниже 10 В, это обычно означает, что батарея слишком долго находилась на хранении без зарядки или оставалась с работающей на ней нагрузкой, которая не имеет автоматического отключения. Если напряжение батареи ниже 10 В, ее трудно восстановить, так как большинство зарядных устройств не распознают ее как батарею из-за очень низкого напряжения. Иногда вы можете восстановить аккумулятор, используя старое зарядное устройство без интеллектуальных функций (которое вы просто включаете, и оно начинает отключаться без стадий или обнаружения батареи), но это обычно зависит от того, сколько времени осталось батареи. при этом низком напряжении.
Некоторые заключительные предложения
Хотя вы можете легко устранить любую другую проблему с аккумулятором самостоятельно, для точного тестирования емкости аккумулятора глубокого разряда требуется тест на «глубокий разряд». Этот вид испытаний может быть выполнен только с помощью специальных машин для испытаний на разряд, которые можно найти в надежных магазинах аккумуляторов.
При устранении неполадок в блоке батарей с последовательной или параллельной схемой, когда одна из батарей неисправна, все остальные батареи будут отключены. Например, если напряжение одной из ваших батарей упало до 8 В, вы можете заметить, что другие батареи в этом банке также будут иметь низкое номинальное напряжение. Чтобы устранить эту проблему, вам необходимо отключить и выполнить полную проверку каждой батареи по отдельности. Аккумулятор с наименьшим номиналом будет неисправным аккумулятором, который необходимо заменить.
4 марта 2015 г. |
Австралийские батареи |
Комментарии
Австралийские батареи и солнечные батареи с доставкой по всей Австралии
Австралийские батареи и солнечные батареи с гордостью представляют собой австралийскую компанию, специализирующуюся на батареях для всех областей применения и комплексных системах батарей. Мы поставляем самые выносливые и наиболее подходящие аккумуляторы, созданные для того, чтобы наилучшим образом выдерживать суровые условия окружающей среды Австралии. Aussie Batteries и Solar имеют в наличии качественную продукцию, которая прослужит вам долгие годы, и подкрепит их превосходными гарантиями. Нужен совет специалиста. Позвоните бесплатно нашим экспертам по аккумуляторам по 1800 853 315 или по электронной почте
.