Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

Ремонт и сервисное обслуживание легковых автомобилей. Трансформатор акпп


Устройство гидротрансформатора

Под термином трансмиссия понимают все механизмы, установленные между маховиком двигателя и ведущими колесами. Обычно трансмиссия с автоматической коробкой передач включает в себя: гидротрансформатор, коробку передач, шрусы или карданную передачу, раздаточную коробку, главную передачу, дифференциал и полуоси. Как правило, картер трансформатора прикручивается к картеру коробки или они имеют единый общий картер. Гидротрансформатор осуществляет связь двигателя с коробкой передач, и частично его функции схожи с функциями сцепления. В случае использования автоматической коробки передач решение о переключении, а также его качество, принимается и обеспечивается системой управления. Это в значительной мере облегчает процесс управления транспортным средством, делает его менее трудоемким, особенно, в условиях плотных городских потоков. Гидродинамическая передача В настоящее время имеются два типа гидродинамических передач: гидромуфта и гидротрансформатор. Гидромуфта - самый простой элемент гидропривода. Ее отличительная особенность заключается в том, что крутящий момент на ведущем валу гидромуфты всегда равен моменту на выходном валу. Конструкция гидромуфты очень проста. Она состоит из насосного и турбинного колес примерно одинаковой конструкции, находящихся в заполненном маслом картере (рис 1а и 1б).

При вращении насосного колеса масло под воздействием центробежной силы начинает двигаться по направляющим лопаткам к периферии, приобретая при этом кинетическую энергию. Из насосного колеса оно попадает в турбинное колесо, где при соприкосновении с лопатками турбины отдает ему часть своей энергии, приводя его, тем самым, во вращение. При быстром вращении насосного колеса масло совершает сложное движение, состоящее из переносного и относительного движений. Первое возникает за счет вращения масла вместе с насосным колесом. Второе определяется перемещением масла вдоль насосного колеса к периферии. Относительное движение вызвано действием центробежных сил, возникающих в масле в результате вращения вместе с насосным колесом (рис 2).

В результате на выходе из насосного колеса абсолютная скорость потока масла определяется векторной суммой скоростей переносного и относительного движений (рис 3).

Часть энергии потока масла, определяемая его переносной скоростью отдается через лопатки турбинному колесу. Гидротрансформатор. Принцип действия гидротрансформатора (трансформатора) такой же, как и гидромуфты. Те же самые относительное и переносное движения масла. Но для увеличения крутящего момента на выходном валу трансформатора введен дополнительный элемент – реакторное колесо (реактор, иногда статор). Реактор устанавливается между выходом из турбины и входом в насосное колесо (рис 4),

и предназначен для направления потока масла, выходящего из турбинного колеса, таким образом, чтобы его скорость совпадала с направлением вращения насосного колеса. В этом случае неизрасходованная в турбинном колесе энергия масла используется для дополнительного увеличения частоты вращения насосного колеса, что соответствующем образом увеличивает кинетическую энергию масла. Следствием этого является увеличение крутящего момента на валу турбинного колеса, по сравнению с моментом, подводимым к насосному колесу от двигателя. Следует отметить, что соотношение моментов на насосном и турбинном колесах определяется отношением угловых скоростей этих элементов. Максимальное увеличение крутящего момента происходит при полностью остановленной турбине. Такой режим работы трансформатора называется стоповым. Современные трансформаторы имеют коэффициент трансформации момента на стоповом режиме 2,0-2,5. Под термином “коэффициент трансформации" понимается отношение момента, развиваемого турбинным колесом, к моменту на насосном колесе. Затем, в процессе увеличения частоты вращения турбинного колеса, происходит снижение эффективности работы реактора, и крутящий момент на валу турбинного колеса уменьшается. Это вполне объяснимо, поскольку, чем выше частота вращения турбинного колеса, тем меньше влияние переносной скорости потока масла на лопатки этого колеса. В момент, когда частота вращения турбины составит приблизительно 85% частоты вращения насосного колеса, реакторное колесо, благодаря муфте свободного хода, теряет связь с картером трансмиссии и начинает свободно вращается вместе с потоком, не воздействуя на него. В результате этого трансформатор переходит в режим работы гидромуфты, коэффициент трансформации которой равен 1. Трансформатор обладает несколькими благоприятными свойствами. Его установка приводит к плавному изменению крутящего момента, нагружающего трансмиссию, что увеличивает долговечность агрегатов трансмиссии и снижает затраты на ее ремонт. Плавное изменение крутящего момента самым благоприятным образом сказывается при движении по слабонесущим грунтам и скользкой дороге (лед, снег), поскольку в этом случае снижается вероятность срыва грунта и буксования ведущих колес. Кроме того, трансформатор является превосходным демпфером крутильных колебаний двигателя, которые гасятся маслом и не пропускаются в механическую часть трансмиссии. Природа любой гидродинамической передачи такова, что в нем всегда имеет место скольжение, т.е. угловая скорость турбинного колеса никогда не равна угловой скорости насосного колеса. Естественно, что это приводит к снижению топливной экономичности автомобиля. Поэтому для улучшения топливно-экономичных характеристик автомобиля в автоматических трансмиссиях предусматривается блокировка трансформатора. Методы блокировки трансформатора. Блокировочная муфта позволяет обойти гидротрансформатор и напрямую соединить двигатель с входным валом коробки передач. Таким образом, устраняется скольжение между насосным и турбинным колесом, что приводит к повышению топливной экономичности автомобиля. Типичная конструкция блокировочной муфты трансформатора показана на рисунке 5.

Ступица нажимного диска (рис 6)шлицами соединяется со ступицей турбинного колеса. Между нажимным диском и ступицей расположены пружины, выполняющие роль демпфера крутильных колебаний (рис 6). В процессе блокировки поршень совершает колебания относительно ступицы, деформируя пружины, которые поглощают крутильные колебания, возбуждаемые двигателем. Механическая энергия проходит через пружинный демпфер и попадает на выходной вал трансформатора.

Для улучшения работы блокировочной муфты к внутренней поверхности кожуха трансформатора или нажимного диска прикрепляется фрикционная накладка (рис 7).

Блокировочные муфты всех трансформаторов имеют однотипные конструкции нажимного диска, и для их управления обычно используются одинаковые гидравлические схемы. На рисунках 8 и 9

упрощенно показан один из вариантов управления муфтой трансформатора. В выключенном состоянии масло подается между картером и нажимным диском. Это предохраняет муфту от самопроизвольного включения. Масло, перед тем, как попасть в трансформатор, проходит между диском и кожухом, и далее из трансформатора поступает в систему охлаждения. Для блокировки трансформатора клапан управления переключает контур, и давление подается к поршню с другой стороны. Масло, находящееся ранее между поршнем и кожухом трансформатора сливается через вал турбины, что обеспечивает плавность включения муфты. Турбинное колесо теперь соединено с валом двигателя и трансформатор заблокирован. Иногда управление блокировкой трансформатора осуществляет через коробку передач. Четырехскоростная автоматическая коробка передач AOD (Ford) имеет вспо,/могательный входной вал, который напрямую, через пружинный демпфер, связан с двигателем (рис 10).

На третьей и четвертой передачах этот вал через блокировочную муфту включения повышающей передачи соединяется с планетарной коробкой передач. На третьей передаче 60% мощности двигателя передается механически и 40% через трансформатор. На четвертой передаче все 100% мощности двигателя передаются механически через этот вал. На первой, второй и передаче заднего хода весь поток мощности проходит через гидротрансформатор. Что может выйти из строя в трансформаторе? В первую очередь муфта свободного хода реактора. Здесь возможны два варианта: ролики муфты из-за износа начинают проскальзывать, и муфта не может в этом случае полностью передавать на картер момент, воспринимаемый реактором; ролики могут заклиниться, и в муфте будет отсутствовать режим свободного хода, что не позволит трансформатору переходить на режим работы гидромуфты. Иногда выходит из строя блокировочная муфта. Чаще всего это происходит из-за значительного износа фрикционной накладки. Во всех отмеченных выше случаях ремонт трансформатора возможен только в специализированных сервисных центрах. Редко, но бывает, в трансформаторе оказываются поврежденными лопатки насосного, турбинного или реакторного колес. В этом случае замена трансформатора неизбежна.

www.akpp03.ru

Возможен ли ремонт гидротрансформатора АКПП собственными руками?

Ремонт гидротрансформатора автоматической коробки передач осуществляется с применением специального оборудования. Основная сложность ремонтных работ заключается в необходимости срезать корпус ГТ, затем заваривать или заменить его и отбалансировать. В домашних условиях выполнить указанные процедуры возможно, но сложно.

Общие характеристики

remont gidrotransformatora svoimi rukamiГидродинамический трансформатор

Гидродинамический трансформатор представляет собой узел герметично заваренный. Он передает вращательный момент от привода к коробке. Очевидно: гидротрансформатор заменяет сцепление. Давайте ознакомимся с принципом работы ГТ.

Коленчатый вал привода взаимодействует с насосным колесом, задача которого разогнать смесь, затем направить ее на турбину. Автоматическая коробка взаимодействует с турбиной. Поступившую жидкость нагнетает турбина, затем возвращает на насос. Перед насосом смесь поступает на лопасти реактора, задачей которых есть ускорение потока смеси и направление ее в сторону вращения.

По указанному циклу смесь ускоряется пока скорости вращения колес насоса и турбины не сравняются, после этого гидравлический трансформатор перестает преобразовывать крутящий момент, а реактор вращается свободно, не препятствуя потоку жидкости.

Разница в скоростях вращения насосного и турбинного колес определяет ускорение рабочей смеси, которая вращаясь, начинает нагреваться, уменьшается КПД гидродинамического трансформатора — большое количество энергии расходуется на нагревание. Во время выравнивания скоростей вращения колес нет необходимости передавать крутящий момент с помощью жидкости из-за больших потерь. Поэтому к конструкции ГТ инженерами было принято решение внедрить блокировку ГД (элементы, работа которых основывается на действии силы трения), соединяющую входной и выходной валы, чтоб крутящий момент передавался напрямую. На современных машинах блокировка имеет электронное управление, управляется отдельным клапаном. Конструкций блокировок множество, но смысл в них один — соединение валов для временного исключения из цепочки передачи крутящего момента трансмиссионной смеси.

Контроль работы гидротрансформатора осуществляется с использованием специального блока управления, который представляет собой автоматизированную систему, к ней поступают данные из датчиков, размещенных на гидравлическом трансформаторе и АКПП. В момент обнаружения неисправностей в работе указанных агрегатов электроника сигнализирует об ошибке. На отдельных моделях авто может полностью блокироваться работа гидротрансформатора — это приводит к отключению мотора при изменениях в работе АКПП. Множество поломок ГТ происходит со стороны механических элементов, поэтому при проведении диагностики затруднительно определить место возникновения неисправности, нужно разбирать поврежденный агрегат и выполнять визуальный осмотр, чтоб понять, почему ГТ перестал работать.

Рекомендуем посмотреть видео о ремонте ГТ автоматической коробки передач:

Основные поломки

remont gidrotransformatora svoimi rukamiПризнаки при которых необходим ремонт гидротрансформатора АКПП:

  1. Во время переключения передач издается легкий механический звук, исчезающий с увеличением оборотов. Возможно, сломаны опорные подшипники ГТ, нужно разбирать агрегат для оценки его состояния.
  2. При диапазоне скоростей 60 — 90 км/ час ощущается легкая вибрация коробки. Возможно, нужна замена трансмиссионной смеси, загрязненная жидкость забивает масляной фильтр. Неисправность устраняется заменой масляного фильтра и расходной смеси ГТ. Одновременно выполняется замена смазочного материала в двигателе и коробке.
  3. Возникают проблемы с динамикой машины — это симптом неисправности обгонной муфты. Нужно вскрывать ГТ и заменять поврежденную муфту.
  4. Автомобиль остановился, нет возможности продолжить движение. Нужна замена турбинного колеса или его шлицов.
  5. При заведенной машине слышно характерный шум. Возможно, сломан подшипник, расположенный между турбинным или реакторным колесом и крышкой ГТ. Стоимость ремонтных работ в такой ситуации не очень большая, но требует своевременного обращения на СТО.
  6. В момент переключения передач слышно громкий стук металла. Необходима проверка лопаток гидротрансформатора. Ремонт подразумевает замену износившегося колеса.
  7. Появление алюминиевой пудры в масле, взятом со щупа АКПП, свидетельствует об износе торцевой шайбы, нужно также проверить муфту свободного хода.
  8. Возникновение неприятного запаха плавящейся пластмассы, в районе коробки автомат — перегрев гидротрансформатора. Причины поломки: падение уровня трансмиссионной смеси, нарушение в работе системы охлаждения коробки. Устранит неисправность замена смазочного материала и проверка работоспособности системы охлаждения.
  9. Глохнет привод при переключении передач. Возможно, вышел из стоя блок управления гидротрансформатора.

Конкретно указать из-за чего сломался гидротрансформатор возможно после его вскрытия. Но есть неисправности, которые устраняются заменой смазочного материала, на них указывают соответствующие признаки поломок.

Ремонтные работы

remont gidrotransformatora svoimi rukamiОсуществить ремонт гидротрансформатора АКПП можно самостоятельно. Для этого понадобится специальный ремкомплект для снятия ГТ с коробки автомат. Проверить состояние указанного узла можно, разрезав его корпус. При проведении ремонта заменяются не только уплотняющие кольца, сальники, но и корпус агрегата. Возможно сваривание корпуса гидротрансформатора в отдельных случаях для достижения полной герметичности. Закончив ремонтные работы, установите ГТ на коробку автомат и проведите балансировочные мероприятия.

Очевидно: для проведения ремонта указанного агрегата, устранения неисправностей, замены некоторых его запчастей нужно иметь соответствующее оборудование, опыт, а также возможность связаться с поставщиком для заказа недостающих деталей. Просчитайте выгодно ли вам с финансовой стороны отдавать агрегат в ремонт или лучше заменить его целиком.

pro-zamenu.ru

Ремонт гидротрансформатора АКПП, цена

Едва ли найдётся такой автомобилист, которому нужно объяснять что такое сцепление. Тем не менее уровень понимания конструкции автоматической коробки передач и механической, для большинства водителей, как Северный и Южный полюсы. АКПП — это табула раса, неизведанная и сложная конструкция, куда лучше своими руками не соваться. С одной стороны, верно.

АКПП —  довольно технологичный агрегат, но и понимать его принципы работы и неисправности нужно хотя бы для того, чтобы этих неисправностей избежать. А чаще всего беспокоит гидротрансформатор, аналог сцепления в автоматической КПП.

Так как я живу в Казани, то я за ремонтом обращаюсь в центр автоматических трансмиссий. И только туда. Потому что там действительно толковые мастера, с опытом работы по коробкам, а не студенты-стажеры как в некоторых других мастерских.

Зачем в АКПП гидротрансформатор

Схема работы гидротрансформатора АКПП

Если поинтересоваться в любом справочнике устройством простейшего гидротрансформатора, то может сложиться впечатление, что это довольно простое устройство. Так и есть. Грубо — это две турбины, заключённые в корпус, который заполнен жидкостью. Турбины не связаны между собой жёстко, но ведущая передаёт на ведомую крутящий момент посредством жидкости, в которой они вращаются. Собственно, все. Просто.

Коробка «автомат» в разрезе

А теперь представим, что вместо сцепления в автомобиле с обычной механической КПП установили гидротрансформатор. Что-то не вяжется. Ведь управлять потоком жидкости мы не сможем, поскольку в конструкции всего два вращающихся элемента — ведущая и ведомая турбина. Поэтому конструкцию придётся усложнить, добавив промежуточное колесо-турбину, при помощи которого можно корректировать передаваемый крутящий момент с коленвала мотора на вал КПП, направляя поток жидкости и изменяя крутящий момент. Это третье колесо назовём реактором.

Фрикционы ГТ

Как работает гидротрансформатор

гидротрансформатор ZF

Чем выше угловая скорость вращения ведущей турбины, тем сильнее нагревается жидкость и тем больше тепла приходится отводить от корпуса. Допустим, что турбины раскрутились до одинаковой угловой скорости, но жидкость вращается, температура растёт и КПД устройства падает, а когда угловые скорости равны, зачем перегружать жидкость и поднимать температуру, если можно ввести в конструкцию ещё один элемент, фрикционный. Он сможет вполне прилично передавать крутящий момент от одной турбины другой по принципу стандартного сцепления.

Фрикционы АКПП

Осталось придумать, как управлять этим блокирующим устройством, фрикционным элементом, чтобы заставить жидкость работать минимальное время, не нагреваясь. Самые первые коробки-автоматы, точнее их гидротрансформаторы, могли блокироваться в автоматическом режиме, жидкость создавала определённое давление, фрикционы смыкались. Как только давление падало, жидкость снова брала на себя функцию фрикциона.

Схема смазки ГТ

Но особенной гибкостью настроек и регулировок такая конструкция не отличалась, поэтому с приходом в автомобиль электроники появилась возможность установить электронно регулируемый клапан, который и будет следить за давлением в гидротрансформаторе и при этом контролировать момент полной блокировки. Грубо говоря, так и работают все гидротрансформаторы в классической АКПП.

Неисправности гидротрансформатора

Восстановленный ГТ

Ремонт гидротрансформатора АКПП цена которого может крепко зависеть от модели и степени износа коробки, развёрнуто представлена в таблице.

Стоимость ремонта АКПП

А ломаться в гидротрансформаторе есть чему. Достаточно высокая цена ремонта диктуется не так сложностью агрегата, как массой работы, связанной с его демонтажем, дефектовкой, сборкой и настройкой. Вот причины и последствия неисправностей гидротрансформатора:

  1. Засорение жидкости и всего устройства продуктами износа фрикционов. Достаточно распространённая проблема, особенно в тех коробках, в которых фрикционы срабатывают на каждой передаче.

  2. Повреждение реактора. В этом случае динамика автомобиля падает, переключения передач происходят по некорректному алгоритму.

  3. Срез шлицов реактора чреват полной остановкой автомобиля.

  4. Посторонние шумы в коробке могут говорить о повреждении подшипников, а стук и скрежет скажут о повреждённых или разрушенных лопастях турбин или реактора.

  5. Перегрев АКПП также довольно частое явление, а он может стать следствием забитого радиатора или низкого уровня трансмиссионной жидкости. О перегреве будет напоминать запах плавящейся пластмассы, а причиной может быть банальная течь сальника гидротрансформатора АКПП.

  6. Отказ электронной системы управления.

Дефектовка ГТ

Ремонт и установка АКПП, почему так дорого

Ведущая турбина и реактор

Возникла проблема — надо решать как снять, как отремонтировать и как поставить узел, если в этом есть смысл. Новый гидротрансформатор может стоить сумасшедших денег. Для Шкоды или Фольксвагена его цена в пределах 60-65 тысяч рублей, а для БМВ пятой серии — около 125-135 тысяч. Мы говорим о фирменных агрегатах. Чтобы просто почистить узел, необходимо снять коробку, вынуть трансформатор, разрезать его на токарном станке на планшайбе, очистить, произвести дефектовку и внимательнейший осмотр, заменить вышедшие из строя детали, заварить корпус, отбалансировать узел в сборе, собрать и установить АКПП.

Разгерметизация гидротрансформатора

Поэтому сервисы, как правило, специализирующиеся на автоматах, просят такие деньги за ремонт. Узел редко выходит из строя полностью, для этого надо постараться, в большинстве случаев его удаётся отремонтировать. Но чтобы избежать дорогого ремонта и вынужденного простоя, проще всего вовремя менять масло и фильтр, следить за уровнем жидкости и не перегружать автомат. Крепких всем трансформаторов и хороших путешествий!

Читайте также:

avtoshef.com

Ремонтируем гидротрансформатор АКПП - Технический центр "АКПП-Сервис"

акпп устройство, ремонт автоматических коробок передач, акпп устройство

Из написанных ранее статей об устройстве гидротрансформатора и из интервью с Андреем уже можно сделать вывод о серьезности этого блока и о его “вкладе” в развал коробки. Мы еще не раз будет вспоминать этот бублик, чтобы ясность в отношении него была полная.

 

О необходимости ремонта трансформатора мы поняли еще лет десять назад и предприняли шаги к организации ремонта. В Ростове-на-Дону и сегодня не осуществляется ремонт трансформаторов. Но об этом чуть позже. Итак, решать задачу ремонта трансформатору было нужно, но кто ремонтировать будет и где, было неясно. В связи с появлением задачи стали появляться исследователи, которые пытались разрезать трансформаторы и выявлять дефекты с попыткой их исправить.

Ремонтируем гидротрансформатор АКПП

Дефекты гидротрансформатора АКПП

 

Однако вскоре выяснилось, что для вскрытия необходим особо точный токарный станок с возможностью аккуратно зажимать бублик. Мы пытались найти умельца в Ростове-на-Дону, но, в итоге, так и не нашли. Дело в том, что работа должна была быть весьма квалифицированной, а значит хорошо оплачиваемой, но на тот момент еще не было твердого понимания важности ремонта трансформатора и деньги платить мало кто хотел. Кое-как, разрезав пару трансформаторов, мы выяснили, что необходимо откуда-то брать запасные части для замены внутренностей, а затем качественно заваривать разрезанный бублик. Задача оказалась неподъемной на тот момент.

 

В итоге длительных поисков была найдена польская компания САМКО, которая привезла из США, где ремонтные технологии для трансформаторов были уже освоены, комплект оборудования и создала ремонтную базу. В тот же период времени мы, с помощью одного человека по имени Алексей (по прозвищу “рыжий” – если кому встретится в Москве, не поддавайтесь на предложения – кинет!), который ездил каждую неделю в Польшу получали бу запчасти с польских разборок. Вот мы и поставили задачу Алексею найти эту фирму. На самом деле найти ее не составило труда, и мы стали с ними сотрудничать. Надо отдать должное, судя по фотографиям

Ремонтируем гидротрансформатор АКПП

Повреждение лопастей гидротрансформатора АКПП

и видеороликам, которые Алексей оттуда привозил, фирма твердо стоял на правильном пути. Порядок на ухоженной территории, идеальный порядок на складе и в производственном цехе! С ним было приятно работать.

 

Алексей грузил десяток трансформаторов и ехал в Польшу. Ремонт по времени с переездами занимал 7 – 10 дней. На тот момент нас это устраивало. Да и альтернативы не было. Качество ремонта было на высоте. Что же мы увидели, когда начали набирать статистику по дефектам в трансформаторах?  Как правило, это были смятые лопасти крыльчаток и дефектные от перегрева крышки самого трансформатора. Естественно эти дефекты не давали возможности трансформатору выполнять свою основную функцию. И по этой причине акпп выходили из строя.

 

Ремонтируем гидротрансформатор АКПП

Ремонт трансформатора АКПП

Итак, как было уже сказано, для ремонта трансформатора необходимы высокоточный токарный станок, сварочный полуавтомат, много специальных приспособлений, а также возможность получать запчасти. После ремонта требуется хорошая балансировка, поскольку разбалансированный трансформатор немедленно «разлетится на кусочки». Конечно же, московские ремонтники тоже нашли поляков, поскольку поляки активно рекламировались в России в надежде надолго удержать первенство в ремонте трансформаторов. И в Москве нашлись последователи поляков, которые захотели быть первыми в Москве. История умалчивает о том, кто был первым, однако на сегодня ремонтом трансформаторов занимается достаточно много компаний. Другой вопрос, что большинство клиентов, да и мастеров-ремонтников не понимают сути необходимости ремонта и чаще не хотят загружать клиента дополнительными платежами надеясь на авось.

 

На наш взгляд, учитывая статистику отказов акпп по причине дефектного трансформатора, нужно было бы практически каждый трансформатор ревизовать, т.е. осуществлять профилактический ремонт. Стоимость

Ремонтируем гидротрансформатор АКПП

Сварка разрезанного бублика АКПП

ремонта не очень высока, поэтому проще его сделать, чтобы затем требовать гарантию и быть уверенным, что по вине бублика коробка из строя не выйдет. Здесь следует учитывать также, что с каждым новым поколением акпп устройство трансформатора усложняется.

 

Учитывая, что стоимость создания участка по ремонту гидротрансформаторов достаточно высока, а понимания важности ремонта нет, создание подобного участка в регионах абсолютно бесперспективная задача. Отбиваться вложенные деньги будут бесконечно долго. Поэтому ремонтируют трансформаторы пока только в Москве. Можно отправлять на ремонт бублик и самостоятельно. Решать вам. А можно поручить мастерам, тем более что связи с Москвой давние и хорошо налаженные.

 

Удачи вам всем и безремонтной езды!

akpp61.ru

Виды преобразователей АКПП

________________________________________________________________________________________

________________________________________________________________________________________

Виды преобразователей АКПП

Преобразователь вращения

Принцип функционирования преобразователя вращения

Одним из основных узлов гидромеханической передачи является преобразователь вращения (гидротрансформатор), который служит для автоматического и бесступенчатого (плавного) изменения крутящего момента двигателя (аналог сцепления в механической трансмиссии).

Внутри гидротрансформатора АКПП находится три лопастных колеса: насос (ротор), турбина и реактор.

Во время работы двигателя он полностью заполняется маслом под давлением, которое совершает сложное движение, передавая крутящий момент двигателя от насосного колеса на турбину.

В процессе своей работы любой гидротрансформатор коробки-автомат может находиться одном из двух состояний: функционирования в режиме редуктора и функционирования в режиме жидкостной муфты сцепления.

Характерным отличием первой фазы является большая скорость вращения насоса (ротора) по сравнению с турбиной, когда преобразователь вращения выступает в роли редукторного блока.

В механических редукторах для привода шестерни большего размера используется шестерня меньшего размера, причем вал большей шестерни вращается медленнее, развивая при этом больший крутящий момент (за счет увеличения плеча).

В преобразователе вращения, когда насос вращается быстрее турбины, основная энергия затрачивается на раскручивание рабочей жидкости.

Благодаря специфичности формы лопаток центр давления смещается к наружной стороне колеса турбины, которое на данном этапе может быть уподоблено большей шестерне механического редуктора.

До определенного предела, чем больше составляет разница скоростей вращения турбины и насоса, тем сильнее проявляется редукторный эффект.

Кроме того, реактор, удерживаясь от вращения обгонной муфтой, обеспечивает возврат большей части неиспользуемого турбиной потока назад к насосу, дополнительно усиливая эффективность передачи крутящего момента.

При полном открывании дроссельной заслонки и нераскрученной турбине насос обеспечивает максимальный подъем давления рабочей жидкости с концентрацией центра давления на наружных концах турбинных лопаток (максимальное плечо).

Предельный, развиваемый преобразователем вращения крутящий момент иногда называют также моментом пробуксовки гидротрансформатора.

Максимальное передаточное отношение, обеспечиваемое преобразователями вращения, в большинстве АКПП составляет 2:1 - 2.5:1, что определяется не пределом возможностей преобразователя вращения, а компромиссом, достигаемым с учетом таких отрицательных эффектов, сопровождающих дальнейший рост усиления, как повышение температуры и увеличение расхода топлива.

Когда турбинное колесо раскручивается, давление вращающейся жидкости на его лопатки, естественно, падает, что приводит к автоматическому снижению обеспечиваемого преобразователем передаточного отношения.

В момент, когда скорости вращения турбины и насоса максимально сближаются, преобразователь вращения превращается из подобия редуктора в обычную жидкостную муфту сцепления.

Следует заметить, что полного выравнивания скоростей насоса и турбины достигнуть не возможно ввиду неизбежности естественных потерь энергии.

Обычно турбина разгоняется не более чем до 90% от скорости насоса. На этом этапе необходимость в реакторе отпадает и происходит его отпускание за счет переключения обгонной муфты.

В процессе движения транспортного средства, в зависимости от изменения нагрузки (степени выжимания педали газа), преобразователь вращения может непрерывно переходить из состояния редуктора в состояние сцепления и обратно.

Преобразователи неблокируемого типа

Преобразователь вращения помещается в купол AКПП, приворачивается к приводному диску коленчатого вала двигателя и обеспечивает передачу крутящего момента первичному (входному) валу трансмиссии.

Типичный преобразователь коробки-автомат состоит из трех главных компонентов: насоса, иногда называемого также ротором, турбины и реактора.

Насос встроен в корпус преобразователя, жестко соединенный с приводным диском. Вращение насоса приводит к раскручиванию находящейся внутри преобразователя жидкости, которая, в свою очередь, передает крутящий момент турбине, посредством шлицов соединенной с первичным валом трансмиссии.

Насос и турбина АКПП в совокупности формируют жидкостную муфту сцепления. Соответствующим образом просчитанная форма лопаток обоих элементов обеспечивает максимальную эффективность передачи крутящего момента от двигателя трансмиссии.

Следует заметить, что наибольший крутящий момент развивается двигателем на холостых оборотах и при его величине приблизительно 23 Нм даже самая эффективная жидкостная муфта сцепления способна обеспечить достаточную приемистость автомобилю, масса которого составляет около тонны, только за счет полного открывания дроссельной заслонки на оптимальных оборотах.

Использование реактора в автоматических коробках передач позволяет значительно повысить эффективность функционирования жидкостной муфты в полном диапазоне изменения эксплуатационных параметров двигателя (обороты и нагрузка).

Реактор призван обеспечивать максимальное повышение эффективности передачи крутящего момента от насоса к турбине.

Реактор коробки автомат представляет собой установленное в центр сборки преобразователя вращения турбинное колесо, лопатки которого обеспечивают перенаправление возвращающегося к насосу вихревого потока, который теперь начинает уже не препятствовать, а содействовать вращению коленчатого вала.

В ступичную часть реактора устанавливается роликовая обгонная муфта, вал которой жестко соединен с корпусом сборки.

Муфта обеспечивает возможность вращения ректора лишь в одном направлении, полностью блокируя противоположное.

Когда скорости вращения насоса и турбины максимально сближаются, что обычно происходит при движении автомобиля с крейсерской скоростью или во время деселерации, реактор отпускается и начинает свободно вращаться на роликах подшипника муфты.

При превышении относительной скоростью насоса некоторого определенного значения происходит блокировка обгонной муфты за счет воздействия на лопатки реактора гидравлического давления, что приводит к включению механизма перенаправления потока.

В некоторых преобразователях, когда требуется максимальное повышение эффективности передачи крутящего момента двигателя используются два реактора, - первичный развернут в сторону насоса, вторичный в сторону турбины.

При повышенных нагрузках на двигатель оба реактора блокируются своими обгонными муфтами и к насосу перенаправляется большая часть вихревого потока.

По мере разгона турбины нагрузка постепенно падает и вторичный реактора отпускается, сокращая передачу крутящего момента, одновременно ограничивая проскальзывание, что обеспечивает повышение эффективности отдачи сборки.

Преобразователи блокируемого типа

Главной задачей, которую призвана решать жидкостная муфта коробки-автомат является обеспечение ограниченного проскальзывания между ведущим и ведомым элементами автоматической коробки передач.

Проскальзывание не только обеспечивает безударность ввода компонентов в зацепление, но также позволяет избежать развития вибраций, вызываемых крутильными колебаниями.

Однако любое инженерное решение основано на компромиссах, и в данном случае платой за преимущества, выигранные благодаря использованию жидкостной муфты вместо механического или фрикционного зацепления, становится снижение эффективности отдачи силового агрегата и повышение расхода топлива.

Даже в самых современных преобразователях автоматических коробок передач максимальная скорость вращения турбины не превышает 90% от скорости вращения насоса. Сказанное означает, что на каждые 10 оборотов насоса приходится лишь 9 оборотов турбины.

В настоящее время на большинстве АКПП легковых автомобилей и легких грузовиков используются преобразователи вращения блокируемого типа.

По конструкции блокируемые преобразователи отличаются от рассмотренных выше неблокируемых очень незначительно, добавляется лишь еще один узел, обеспечивающий механическое зацепление коленчатого вала двигателя с первичным валом коробки-автомат.

В настоящее время наиболее широкую популярность приобрели три основных типа блокируемых преобразователей, подробному описанию конструкций и принципа функционирования которых посвящен материал приведенных ниже подразделов.

Преобразователи оборудованные блокиратором поршневого типа с гидравлическим приводом

В данной простейшей схеме в качестве блокирующего элемента коробки-автомат обычно используется нажимной фрикционный диск с торсионными демпферными пружинами, аналогичный, применяемым в сцеплениях ручных коробок передач.

Посредством оборудованной шлицами ступицы диск жестко сочленяется с турбинным колесом преобразователя.

Фрикционной поверхностью диск развернут к приводному диску секции кожуха преобразователя. При включении сцепления диск прижимается к кожуху, обеспечивая восприятие турбиной крутящего момента непосредственно от коленчатого вала двигателя.

Активация блокиратора происходит за счет подачи гидравлического давления на всю заднюю поверхность нажимного диска коробки-автомат. Для вывода турбины из зацепления с кожухом преобразователя давление подается на противоположную сторону диска.

В подобной схеме нажимной диск работает как посаженный на шлицевой вал поршень, что собственно и определяет этимологию названия блокиратора.

В продуктах компании Chrysler, не смотря на некоторые конструктивные отличия, используется та же концепция.

Вместо оборудованной шлицами ступицы здесь используются торсионные демпферные пружины, равномерно распределенные по наружному периметру блокирующего поршня (диска сцепления) и обеспечивающие блокировку последнего с турбинным колесом преобразователя.

При подаче управляющего давления поршень (диск) прижимается к закрепленному на приводном диске кожуху преобразователя.

Преобразователи оборудованные блокиратором вязкостного типа

Данная схема широко используется в преобразователях вращения автоматических коробок передач разработки компании GM. Использование вязкостной муфты позволяет полностью устранить вероятность рывков при включении блокировки.

Несмотря на отсутствие возможности полного устранения проскальзывания преобразователя при движении автомобиля в крейсерском режиме, применение такого блокиратора позволяет все же заметно сократить расход топлива.

Основными конструктивными элементами муфты коробки-автомат являются корпус, ротор и заполняющая полость между ними специальная силиконовая жидкость. Ротор посредством шлицов соединен с турбинным колесом преобразователя.

При подъеме давления трансмиссионной жидкости наружная стенка корпуса муфты прогибается, в результате чего роторный диск под воздействием силиконового наполнителя плотно прижимается к крышке преобразователя.

В данной схеме силикон выполняет функцию демпферной пружины. Обеспечивая высокую инерционность зацепления, блокираторы вязкостного типа могут использоваться при движении транспортного средства практически на любой передаче, кроме первой.

Отсутствие возможности полного устранения проскальзывания, приводит к быстрому разогреву корпуса такого преобразователя при высоких нагрузках.

С целью устранения риска недопустимого перегрева компонентов в электронную систему управления оборудованных вязкостным блокиратором автоматической коробки передач обычно добавляется специальный контур, обеспечивающий автоматическое выключение сцепления по сигналу специального информационного датчика, считывающего температуру жидкости непосредственно с корпуса ротора.

Преобразователи, оборудованные механическим блокиратором прямого действия

Преобразователи с механической схемой включения блокировки используются в 4-ступенчатых АКПП AOD разработки компании Ford, а также в трансмиссиях ZF Chrysler.

Крышка преобразователя оборудована пружинным торсионным демпфером и встроенной шлицевой муфтой.

Внутрь полого первичного (входного) вала коробки-автомат помещен приводной вал прямого действия, один конец которого введен в зацепление со встроенной в корпус преобразователя шлицевой ступицей, а второй соединен с муфтой сцепления 3-й и 4-й передач внутри трансмиссионной сборки.

При движении на 3-й передаче 40% крутящего момента передается через преобразователь вращения и 60 - через приводной вал. На 4-й передаче весь крутящий момент передается непосредственно по валу, в обход преобразователя.

_________________________________________________________________________________________

_________________________________________________________________________________________

_________________________________________________________________________________________

_________________________________________________________________________________________

autozapchastiremont.ru

Устройство гидротрансформатора

Под термином трансмиссия понимают все механизмы, установленные между маховиком двигателя и ведущими колесами. Обычно трансмиссия с автоматической коробкой передач включает в себя: гидротрансформатор, коробку передач, шрусы или карданную передачу, раздаточную коробку, главную передачу, дифференциал и полуоси. Как правило, картер трансформатора прикручивается к картеру коробки или они имеют единый общий картер. Гидротрансформатор осуществляет связь двигателя с коробкой передач, и частично его функции схожи с функциями сцепления. В случае использования автоматической коробки передач решение о переключении, а также его качество, принимается и обеспечивается системой управления. Это в значительной мере облегчает процесс управления транспортным средством, делает его менее трудоемким, особенно, в условиях плотных городских потоков. 

Гидродинамическая передачаВ настоящее время имеются два типа гидродинамических передач: гидромуфта и гидротрансформатор. 

Гидромуфта - самый простой элемент гидропривода. Ее отличительная особенность заключается в том, что крутящий момент на ведущем валу гидромуфты всегда равен моменту на выходном валу. Конструкция гидромуфты очень проста. Она состоит из насосного и турбинного колес примерно одинаковой конструкции, находящихся в заполненном маслом картере (рис 1а и 1б).

При вращении насосного колеса масло под воздействием центробежной силы начинает двигаться по направляющим лопаткам к периферии, приобретая при этом кинетическую энергию. Из насосного колеса оно попадает в турбинное колесо, где при соприкосновении с лопатками турбины отдает ему часть своей энергии, приводя его, тем самым, во вращение. При быстром вращении насосного колеса масло совершает сложное движение, состоящее из переносного и относительного движений. Первое возникает за счет вращения масла вместе с насосным колесом. Второе определяется перемещением масла вдоль насосного колеса к периферии. Относительное движение вызвано действием центробежных сил, возникающих в масле в результате вращения вместе с насосным колесом (рис 2).

   В результате на выходе из насосного колеса абсолютная скорость потока масла определяется векторной суммой скоростей переносного и относительного движений (рис 3).

Часть энергии потока масла, определяемая его переносной скоростью отдается через лопатки турбинному колесу. Гидротрансформатор. Принцип действия гидротрансформатора (трансформатора) такой же, как и гидромуфты. Те же самые относительное и переносное движения масла. Но для увеличения крутящего момента на выходном валу трансформатора введен дополнительный элемент – реакторное колесо (реактор, иногда статор). Реактор устанавливается между выходом из турбины и входом в насосное колесо (рис 4),

и предназначен для направления потока масла, выходящего из турбинного колеса, таким образом, чтобы его скорость совпадала с направлением вращения насосного колеса. В этом случае неизрасходованная в турбинном колесе энергия масла используется для дополнительного увеличения частоты вращения насосного колеса, что соответствующем образом увеличивает кинетическую энергию масла. Следствием этого является увеличение крутящего момента на валу турбинного колеса, по сравнению с моментом, подводимым к насосному колесу от двигателя. Следует отметить, что соотношение моментов на насосном и турбинном колесах определяется отношением угловых скоростей этих элементов. Максимальное увеличение крутящего момента происходит при полностью остановленной турбине. Такой режим работы трансформатора называется стоповым. Современные трансформаторы имеют коэффициент трансформации момента на стоповом режиме 2,0-2,5. Под термином “коэффициент трансформации” понимается отношение момента, развиваемого турбинным колесом, к моменту на насосном колесе. Затем, в процессе увеличения частоты вращения турбинного колеса, происходит снижение эффективности работы реактора, и крутящий момент на валу турбинного колеса уменьшается. Это вполне объяснимо, поскольку, чем выше частота вращения турбинного колеса, тем меньше влияние переносной скорости потока масла на лопатки этого колеса. В момент, когда частота вращения турбины составит приблизительно 85% частоты вращения насосного колеса, реакторное колесо, благодаря муфте свободного хода, теряет связь с картером трансмиссии и начинает свободно вращается вместе с потоком, не воздействуя на него. В результате этого трансформатор переходит в режим работы гидромуфты, коэффициент трансформации которой равен 1. Трансформатор обладает несколькими благоприятными свойствами. Его установка приводит к плавному изменению крутящего момента, нагружающего трансмиссию, что увеличивает долговечность агрегатов трансмиссии и снижает затраты на ее ремонт. Плавное изменение крутящего момента самым благоприятным образом сказывается при движении по слабонесущим грунтам и скользкой дороге (лед, снег), поскольку в этом случае снижается вероятность срыва грунта и буксования ведущих колес. Кроме того, трансформатор является превосходным демпфером крутильных колебаний двигателя, которые гасятся маслом и не пропускаются в механическую часть трансмиссии. Природа любой гидродинамической передачи такова, что в нем всегда имеет место скольжение, т.е. угловая скорость турбинного колеса никогда не равна угловой скорости насосного колеса. Естественно, что это приводит к снижению топливной экономичности автомобиля. Поэтому для улучшения топливно-экономичных характеристик автомобиля в автоматических трансмиссиях предусматривается блокировка трансформатора. Методы блокировки трансформатора. Блокировочная муфта позволяет обойти гидротрансформатор и напрямую соединить двигатель с входным валом коробки передач. Таким образом, устраняется скольжение между насосным и турбинным колесом, что приводит к повышению топливной экономичности автомобиля. Типичная конструкция блокировочной муфты трансформатора показана на рисунке 5.

Ступица нажимного диска (рис 6) шлицами соединяется со ступицей турбинного колеса. Между нажимным диском и ступицей расположены пружины, выполняющие роль демпфера крутильных колебаний (рис 6). В процессе блокировки поршень совершает колебания относительно ступицы, деформируя пружины, которые поглощают крутильные колебания, возбуждаемые двигателем. Механическая энергия проходит через пружинный демпфер и попадает на выходной вал трансформатора.

 Для улучшения работы блокировочной муфты к внутренней поверхности кожуха трансформатора или нажимного диска прикрепляется фрикционная накладка (рис 7).

Блокировочные муфты всех трансформаторов имеют однотипные конструкции нажимного диска, и для их управления обычно используются одинаковые гидравлические схемы. На рисунках 8 и 9.

упрощенно показан один из вариантов управления муфтой трансформатора. В выключенном состоянии масло подается между картером и нажимным диском. Это предохраняет муфту от самопроизвольного включения. Масло, перед тем, как попасть в трансформатор, проходит между диском и кожухом, и далее из трансформатора поступает в систему охлаждения. Для блокировки трансформатора клапан управления переключает контур, и давление подается к поршню с другой стороны. Масло, находящееся ранее между поршнем и кожухом трансформатора сливается через вал турбины, что обеспечивает плавность включения муфты. Турбинное колесо теперь соединено с валом двигателя и трансформатор заблокирован. Иногда управление блокировкой трансформатора осуществляет через коробку передач. Четырехскоростная автоматическая коробка передач AOD (Ford) имеет вспомогательный входной вал, который напрямую, через пружинный демпфер, связан с двигателем (рис 10).

На третьей и четвертой передачах этот вал через блокировочную муфту включения повышающей передачи соединяется с планетарной коробкой передач. На третьей передаче 60% мощности двигателя передается механически и 40% через трансформатор. На четвертой передаче все 100% мощности двигателя передаются механически через этот вал. На первой, второй и передаче заднего хода весь поток мощности проходит через гидротрансформатор. 

Что может выйти из строя в трансформаторе? В первую очередь муфта свободного хода реактора. Здесь возможны два варианта: ролики муфты из-за износа начинают проскальзывать, и муфта не может в этом случае полностью передавать на картер момент, воспринимаемый реактором; ролики могут заклиниться, и в муфте будет отсутствовать режим свободного хода, что не позволит трансформатору переходить на режим работы гидромуфты. 

Иногда выходит из строя блокировочная муфта. Чаще всего это происходит из-за значительного износа фрикционной накладки. Во всех отмеченных выше случаях ремонт трансформатора возможен только в специализированных сервисных центрах. Редко, но бывает, в трансформаторе оказываются поврежденными лопатки насосного, турбинного или реакторного колес. В этом случае замена трансформатора неизбежна.

www.zfmaster.ru

Трансформатор акпп Мерседес | Mercedes

АКПП03: Замена гидротрансформаторна на Mercedes Benz ML500

Ремонт гидротрансформатора 722.6 ремонт бублика

Устройство АКПП - Гидротрансформатор ( Блокировка, неисправности)

Устройство АКПП - Гидротрансформатор (Устройство)

Ремонт гидротрансформатора АКПП / Automatic transmission torque converter repair

Замена разъема акпп мерседес 722.6

Причина толчков в АКПП и как их устранить

Устройство АКПП - Гидротрансформатор (Установка)

Замена масла в АКПП серии 722.6 Mercedes w210 Чистим блок управления, промываем гидроблок.

CLK R: Episode #4 (Первый запуск ДВС + Установка АКПП 722.6)

Также смотрите:

  • Допуск масла Мерседес w221
  • Двигатель от Мерседеса 605
  • Датчик давления в шинах Мерседес cla
  • Мерседес w212 350 4 matic отзывы
  • Регулировка света фар Мерседес актрос
  • Мерседес бенц е 300 турбодизель
  • Марка Мерседеса название
  • Мерседес w164 дергается при разгоне
  • Стучит тнвд Мерседес
  • Комбинация приборов Мерседес w211
  • Диски для Мерседес gle
  • 103 мотор Мерседес 124 схема
  • Значение Мерседес бенц
  • S500 Мерседес кабриолет
  • Болт колесный Мерседес w164
Главная » Видео » Трансформатор акпп Мерседес

star-mercedes.ru


Смотрите также

Станции

Районы

Округа

RoadPart | Все права защищены © 2018 | Карта сайта