Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

Газовая турбина. Турбина что это


турбина - это... Что такое турбина?

Ступень осевой турбины.

турби́на газотурбинного двигателя — узел ГТД, предназначенный для преобразования энергии газа в работу на валу, затрачиваемую на привод компрессора двигателя и в зависимости от назначения ГТД, других устройств (воздушный винт, несущий винт, вспомогательные агрегаты). Применяются в основном одно- и многоступенчатые осевые Т., реже радиальные или диагональные центростремительные Т. В осевой Т. газовый поток параллелен оси вращения, в радиальной Т. — направлен вдоль радиуса. Радиальные газовые Т. применяются при относительно малых расходах газа. Ступень Т. состоит из соплового аппарата, установленного в корпусе, рабочих лопаток, закреплённых на диске ротора, и уплотняющих элементов (см. рис.).

К Т. предъявляются высокие требования по эффективности, надёжности работы, габаритам и массе. Т. работает в широком диапазоне изменения параметров газа и частоты вращения ротора. Требуется сохранение высокой эффективности Т. при изменении режимов работы. Эффективность работы Т. характеризуется тремя кпд; изоэнтропическим, равным отношению действительного теплоперепада в турбине к располагаемому изоэнтропическому теплоперепаду; эффективным, или мощностным, равным отношению получаемой механической работы к тому же изоэнтропическому теплоперепаду; кпд в параметрах заторможенного потока, равным отношению получаемой работы к изоэнтропическому теплоперепаду, определённому по параметрам заторможенного потока за турбиной. В газодинамических расчётах Т. для оценки эффективности её работы чаще всего используется последний кпд. В охлаждаемых Т. кпд определяется с учётом энергии охлаждающего воздуха (см. Коэффициент полезного действия компрессора, турбины). Для получения высоких значений кпд должны быть оптимизированы кинематические параметры ступени (степень реактивности и соотношение между окружной скоростью ротора и скоростью газового потока) и газодинамические параметры лопаточных венцов, а также сведены к минимуму потери от перетеканий газа в радиальном зазоре между лопатками ротора и корпусом Т. Уменьшение потерь в радиальном зазоре достигается применением бандажных полок с лабиринтными гребешками на концах лопаток или уменьшением зазора до минимальных значений, при которых допускается касание лопаток о корпус на некоторых режимах работы Т. в случае применения истираемых вкладышей на внутренней поверхности корпуса. Бандажирование рабочего колеса обычно производится на лопатках с относительно большим удлинением (отношение длины лопатки к её хорде). Бандажные полки используются также для снижения вибрационных напряжений, уровень которых тем больше, чем длиннее лопатки. При относительно коротких лопатках (отношение диаметра Т. к длине лопатки больше 10) важное значение имеют уменьшение радиального зазора и его сохранение на минимальном уровне на всех режимах работы Т. Для этого применяется тепловое регулирование зазора путём программного изменения температуры корпуса и ротора Т. В современной Т. достигнут высокий уровень кпд в параметрах заторможенного потока (90 и 93% для одно- и многоступенчатых Т. соответственно).

Выбор числа ступеней Т. зависит от назначения двигателя, его кинематической схемы и параметров. Для привода компрессора газогенератора используются одно- и двухступенчатые Т., для привода вентилятора при большой степени двухконтурности двигателя или воздушного винта — многоступенчатые Т. (до шести ступеней). При относительно малой степени двухконтурности для привода применяются одно- или двухступенчатые Т. Важными показателями Т. являются удельные значения мощности и массы: мощности, получаемой от 1 кг расходуемого газа, и массы конструкции Т., отнесённой к вырабатываемой мощности. Повышение температуры газа, увеличение скорости газового потока и окружной скорости ротора приводят к увеличению удельной мощности Т. и снижению её удельной массы. Температура газа достигает 1600—1700 К, окружная скорость ротора — 500 м/с, скорости газового потока в высокоперепадных одноступенчатых Т. около- или сверхзвуковые.

Высокие температуры газа в Т. освоены благодаря применению жаропрочных и жаростойких литейных сплавов и интенсивного воздушного охлаждения омываемых газом поверхностей. Дальнейшее совершенствование Т. связано с повышением температур газа, применением более жаропрочных и жаростойких материалов, включая композиционные материалы, и теплозащитных покрытий, более совершенных схем охлаждения двигателей, основанных на применении прогрессивных технологических методов изготовления лопаток, корпусов и дисков. (См. также Радиальная турбина, Рабочее колесо турбины, Ротор турбины, Сопловой аппарат турбины, Ступень компрессора турбины).

Литература:Холщевников К. В., Теория и расчет авиационных лопаточных машин, М., 1970;Абианц В. Х., Теория газовых турбин реактивных двигателей, 3 изд., М., 1979.

К. М. Попов.

Ступень радиальной центростремительной турбины.

Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.

avia.academic.ru

ТУРБИНА - это... Что такое ТУРБИНА?

  • ТУРБИНА — (фр. turbine). В механике: колесо с вертикальной осью, приводимое в движение течением воды; горизонтальное водяное колесо. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТУРБИНА водяные двигатели, устраиваемые в… …   Словарь иностранных слов русского языка

  • ТУРБИНА — ТУРБИНА, турбины, жен. (от лат. turbo вертящийся предмет) (тех.). Двигатель с вращательным движением, в котором используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу. Гидравлическая турбина. Паровая турбина.… …   Толковый словарь Ушакова

  • турбина — турбинка, полукаплан Словарь русских синонимов. турбина сущ., кол во синонимов: 12 • газотурбина (1) • …   Словарь синонимов

  • ТУРБИНА — ТУРБИНА, вращающееся устройство, приводимое в движение потоком газа или жидкости. Турбины дают возможность преобразовать энергию ветра, воды, пара и других текучих сред в полезную работу. Простейший пример турбины ВОДЯНОЕ КОЛЕСО. В ранних… …   Научно-технический энциклопедический словарь

  • турбина — ы, ж. turbine f. < лат. turbo кружение, вращение. 1. Лопаточный двигатель, преобразующий энергию воды, пара, газа в механическую энергию. БАС 1. Машина, с лежащим водяным колесом. Даль. Тюрбины. Энц. Дельфина 1860 200. Турбины горизонтальныя… …   Исторический словарь галлицизмов русского языка

  • ТУРБИНА — ТУРБИНА, машина, с лежачим водяным колесом. Толковый словарь Даля. В.И. Даль. 1863 1866 …   Толковый словарь Даля

  • ТУРБИНА — (франц. turbine от лат. turbo вихрь, вращение с большой скоростью), первичный двигатель с вращательным движением рабочего органа ротора, преобразующий в механическую работу кинетическую энергию подводимого рабочего тела пара, газа, воды. Струя… …   Большой Энциклопедический словарь

  • Турбина — Turbine первичный двигатель с вращательным движением рабочего органа (ротора с лопатками), преобразующий кинетическую энергию рабочего тела (пара, газа, воды) в механическую работу. Термины атомной энергетики. Концерн Росэнергоатом, 2010 …   Термины атомной энергетики

  • Турбина — – двигатель с вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию в механическую работу при помощи подводимого рабочего тела – пара, газа, воды. Струя рабочего тела воздействует …   Нефтегазовая микроэнциклопедия

  • турбина — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN turbine A fluid acceleration machine for generating rotary mechanical power from the energy in a stream of fluid. (Source: MGH) [http://www.eionet.europa.eu/gemet/alphabetic?lan… …   Справочник технического переводчика

  • dic.academic.ru

    Паровая турбина - это... Что такое Паровая турбина?

            первичный паровой двигатель с вращательным движением рабочего органа — ротора и непрерывным рабочим процессом; служит для преобразования тепловой энергии пара водяного (См. Пар водяной) в механическую работу. Поток водяного пара поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и, воздействуя на них, приводит ротор во вращение. В отличие от поршневой паровой машины (См. Паровая машина), П. т. использует не потенциальную, а кинетическую энергию пара.          Попытки создать П. т. делались очень давно. Известно описание примитивной П. т., сделанное Героном Александрийским (1 в. до н. э.). Однако только в конце 19 в., когда термодинамика, машиностроение и металлургия достигли достаточного уровня, К. Г. П. Лаваль (Швеция) и Ч. А. Парсонс (Великобритания) независимо друг от друга в 1884—89 создали промышленно пригодные П. т. Лаваль применил расширение пара в конических неподвижных соплах в один приём от начального до конечного давления и полученную струю (со сверхзвуковой скоростью истечения) направил на один ряд рабочих лопаток, насаженных на диск. П. т., работающие по этому принципу, получили название активных П. т. Парсонс создал многоступенчатую реактивную П. т., в которой расширение пара осуществлялось в большом числе последовательно расположенных ступеней не только в каналах неподвижных (направляющих) лопаток, но и между подвижными (рабочими) лопатками.

             П. т. оказалась очень удобным двигателем для привода ротативных механизмов (генераторы электрического тока, насосы, воздуходувки) и судовых винтов; она была более быстроходной, компактной, лёгкой, экономичной и уравновешенной, чем поршневая паровая машина. Развитие П. т. шло чрезвычайно быстро как в направлении улучшения экономичности и повышения единичной мощности, так и по пути создания специализированных П. т. различного назначения.

             Невозможность получить большую агрегатную мощность и очень высокая частота вращения одноступенчатых П. т. Лаваля (до 30 000 об/мин у первых образцов) привели к тому, что они сохранили своё значение только для привода вспомогательных механизмов. Активные П. т. развивались в направлении создания многоступенчатых конструкций, в которых расширение пара осуществлялось в ряде последовательно расположенных ступеней. Это позволило значительно увеличить единичную мощность П. т., сохранив умеренную частоту вращения, необходимую для непосредственного соединения вала П. т. с вращаемым ею механизмом.

             Реактивная П. т. Парсонса некоторое время применялась (в основном на военных кораблях), но постепенно уступила место более компактным комбинированным активно-реактивным П. т., у которых реактивная часть высокого давления заменена одно- или двухвенчатым активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее.

             Классификация паровых турбин. В зависимости от характера теплового процесса П. т. обычно подразделяют на 3 основные группы: чисто конденсационные, теплофикационные и специального назначения.

             Чисто конденсационные П. т. служат для превращения максимально возможной части теплоты пара в механическую работу. Эти П. т. работают с выпуском отработавшего пара в Конденсатор, где поддерживается вакуум. Чисто конденсационные П. т. могут быть стационарными или транспортными. Стационарные П. т. в соединении с генераторами переменного электрического тока (Турбогенераторы)— основное оборудование конденсационных электростанций (См. Конденсационная электростанция). Чем больше мощность турбогенератора, тем он экономичнее и тем ниже стоимость 1 квт установленной мощности. Поэтому мощность П. т. растет из года в год и к 1974 достигла 1200 Мвт в агрегате [при давлении свежего пара до 35 Мн/м2 (1 нlm2 =10-5кгс/см2) и температуре до 650 °С]. Принятая в СССР частота электрического тока 50 гц требует, чтобы частота вращения П. т., непосредственно соединённой с двухполюсным генератором, равнялась 3000 об/мин. В зависимости от назначения П. т. для электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых П. т. требуется высокая экономичность на нагрузках, близких к полной (около 80%), от пиковых П. т.— возможность быстрого пуска и включения в работу, от П. т. собственных нужд — особая надёжность в работе. Все П. т. для электростанций рассчитываются на 100 тыс. ч работы (до капитального ремонта).          Транспортные П. т. используются в качестве главных и вспомогательных двигателей на кораблях и судах. Неоднократно делались попытки применить П. т. на Локомотивах, однако паротурбовозы распространения не получили. Для соединения быстроходных П. т. с гребными винтами, требующими невысокой (от 100 до 500 об/мин) частоты вращения, применяют зубчатые редукторы. В отличие от стационарных П. т. (кроме турбовоздуходувок), судовые П. т. работают с переменной частотой вращения, определяемой необходимой скоростью хода судна.

             Теплофикационные П. т. служат для одновременного получения электрической и тепловой энергии. К ним относятся П. т. с противодавлением, с регулируемым отбором пара, а также с отбором и противодавлением. У П. т. с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой П. т., зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной П. т. или электросетью, которые покрывают возникающий дефицит в электроэнергии. В П. т. с регулируемым отбором часть пара отводится из 1 или 2 промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования. Место отбора (ступень П. т.) выбирают в зависимости от нужных параметров пара. У П. т. с отбором и противодавлением часть пара отводится из 1 или 2 промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему. Давление пара П. т. для отопительных целей обычно составляет 0,12 Мн/м2, а для технологических нужд (сахарные, деревообрабатывающие, пищевые предприятия) 0,5—1,5 Мн/м2.

             П. т. специального назначения обычно работают на отбросном тепле металлургических, машиностроительных, и химических предприятий. К ним относятся П. т. мятого пара, двух давлений и предвключённые (форшальт). П. т. мятого пара используют отработавший пар поршневых машин, паровых молотов и прессов, имеющий давление немного выше атмосферного. П. т. двух давлений работают как на свежем, так и на отработавшем паре паровых механизмов, подводимом в одну из промежуточных ступеней. Предвключённые П. т. представляют собой турбины с высоким начальным давлением и высоким противодавлением; весь отработавший пар этих П. т. направляют в другие П. т. с более низким начальным давлением пара. Необходимость в предвключённых П. т. возникает при модернизации электростанций, связанной с установкой паровых котлов более высокого давления, на которое не рассчитаны ранее установленные на электростанции П. т.

             П. т. специального назначения не строят сериями, как конденсационные и теплофикационные П. т., а в большинстве случаев изготовляют по отдельным заказам.

             Все стационарные П. т. имеют нерегулируемые отборы пара из 2—5 ступеней давления для регенеративного подогрева питательной воды. В СССР установлено 4 ступени начальных параметров пара: давление 3,5 Мн/м2, температура 435 °С для П. т. мощностью до 12 Мвт; 9 Мн/м2, 535 °С для П. т. до 50 Мвт; 13 Мн/м2, 565 °С для П. т. до 100 Мвт и 24 Мн/м2, 565 °С для П. т. мощностью 200 и 300 Мвт. Давление отработавшего пара 3,5—5 кн/м2. Удельный расход тепла от 7,6 кдж/(вт․ч) у самых мощных П. т. до 13 кдж/(вт․ч) у небольших конденсационных турбин.

             Тепловой процесс паровых турбин. Кинетическая энергия, приобретённая паром при его расширении, эквивалентна уменьшению его энтальпии в процессе расширения. Работа пара (в кгс․м, 1 кгс․м = 10 дж) равна:

             W= 427(i0 - i1),

            а скорость истечения (в м /сек):

            

            ,

             где i0 — начальная, a i1 — конечная энтальпия пара. Мощность (в квт), которую можно получить от турбины при расходе пара D кг/ч, равна:

            

             а расход пара (в кг/ч) соответственно

            

            

             Если под i0 — i1 подразумевается адиабатическое изменение энтальпии, то вышесказанное справедливо только для идеальной П. т., работающей без потерь. Действительная мощность на валу реальной П. т. (в квт) равна:

            

             где ηое — относительно эффективный кпд, представляющий собой отношение действительной мощности, полученной на валу П. т., к мощности идеальной турбины.

            

            ',

             где de — расход пара в кг/(квт․ч). Для существующих П. т. удельный расход пара определяется экспериментально, а i0 — i1 находят по i—s диаграмме (см. Энтропия, Энтальпия). В активной П. т. свежий пар с давлением p0 и скоростью c0поступает в сопло и расширяется в нём до давления p1, при этом скорость пара возрастает до c1, с которой поток пара и входит на рабочие лопатки. Поток пара, оказывая давление на лопатки вследствие изменения направления в криволинейных междулопаточных каналах, заставляет диск и вал вращаться. На выходе с лопаток поток пара имеет скорость c2меньшую, чем c1, так как значительная часть кинетической энергии преобразовалась в механическую энергию вращения вала. Давление p1 на входе в канал равно давлению p2 на выходе из него, так как междулопаточные каналы имеют одинаковое сечение по длине и расширения пара в них не происходит (у реально существующих активных турбин сечения междулопаточных каналов выполняют несколько возрастающими по ходу пара для сохранения равенства давлений на входе и выходе, так как энтальпия пара при его протекании между лопатками увеличивается из-за трения и ударов о кромки лопаток). Однако в различных местах криволинейного канала давления неодинаковы: именно разность давлений на вогнутую и выпуклую сторону каждой лопатки создаёт момент, заставляющий ротор вращаться. Таким образом, в активной турбине падение давления пара происходит в сопле (или нескольких соплах), а давление пара при входе на лопатки и выходе с них одинаково.

             Кинетическая энергия будет полностью использована, если абсолютная скорость пара c2 при выходе с лопаток равна нулю. Это условие соблюдено, если c1 = 2u, где u — окружная скорость. Окружная скорость (в м/сек) равна:

                      где d — средний диаметр лопаточного венца в м, a n — частота вращения в мин. Следовательно, оптимальная окружная скорость лопаток должна быть          Очевидно, что в реальной турбине c2 не может быть равна 0, т.к. пар должен уходить с лопаток в конденсатор. Однако выходную скорость стремятся получить минимальной, т.к. кинетическая энергия уходящего потока пара представляет собой потерю полезной работы. Отступление от оптимального отношения м/сек. Поэтому одноступенчатые активные турбины применяют только для привода быстроходных вспомогательных механизмов, экономичность которых не имеет решающего значения. Хорошая экономичность П. т., работающей с умеренными окружными скоростями при большом теплопадении, достигается применением ступеней давления.

             Если разделить располагаемый перепад давления на несколько ступеней с равными перепадами тепла, то в этих ступенях скорость истечения (в м/сек) равна:

            

            ,

             где z — число ступеней. Следовательно, в каждой ступени скорость будет в раз меньше, чем в одноступенчатой П. т. Соответственно ниже будет и оптимальная окружная скорость u, то есть частота вращения ротора.

             Корпус П. т. с несколькими ступенями давления разделяют диафрагмами на отдельные камеры, в каждой из которых помещен один из дисков с рабочими лопатками (рис. 1). Пар может проникать из одной камеры в другую только через сопла, расположенные по окружности диафрагм. Давление пара снижается после каждой ступени, а скорости истечения пара c1 остаются примерно одинаковыми, что достигается выбором соответствующих размеров сопел. Число ступеней давления у мощных турбин с высокими начальными параметрами пара достигает 30—40. Поскольку объём пара по мере его расширения увеличивается, сечения сопел и высоты лопаток возрастают от первой ступени к последней. Последние ступени мощных П. т. обычно выполняют сдвоенными, а у самых больших П. т. — строенными и даже счетверёнными ввиду неприемлемо больших размеров лопаток последних ступеней, которые были бы необходимы для пропуска всего объёма пара через 1 ступень.

             В ступени давления возможно использовать кинетическую энергию не в одном, а в нескольких венцах лопаток, применив ступени скорости. Для этого на ободе диска размещают 2 (редко 3) венца рабочих лопаток, между которыми установлен венец неподвижных направляющих лопаток. Пар с давлением p0 подводится к соплам (рис. 2) и со скоростью c1 поступает на первый ряд рабочих лопаток, где его скоростной напор частично превращается в работу, а направление потока изменяется. Выйдя со скоростью c2 с первого ряда рабочих лопаток, пар проходит через направляющие лопатки и, снова изменив направление, входит во второй ряд лопаток со скоростью c’1, несколько меньшей, чем c2, вследствие потерь в направляющих лопатках. Второй ряд лопаток пар покидает с незначительной скоростью c’2.

             Теоретически при 2 ступенях скорости оптимальная окружная скорость u будет в 2 раза меньше, чем для одновенечной ступени, использующей тот же перепад энтальпии. Для z ступеней скорости оптимальная          Характерной особенностью реактивных П. т. является то, что расширение пара происходит у них в каналах неподвижных и подвижных лопаточных венцов, то есть как в соплах, так и на рабочих лопатках. Отношение приходящейся на долю рабочих лопаток части располагаемого адиабатического перепада энтальпии h3 к общему адиабатическому перепаду ступени h0 = h2 + h3 (где h2 — теплопадение в направляющих лопатках) называется степенью реактивности         Если

             Венцы рабочих лопаток реактивной П. т. устанавливают в пазах ротора барабанного типа. В промежутках между ними размещают венцы неподвижных направляющих лопаток, закрепленных в корпусе турбины и образующих сопловые каналы. Профили подвижных и неподвижных лопаток обычно одинаковы. Свежий пар поступает в кольцевую камеру (рис. 3), откуда идёт в первый ряд неподвижных лопаток. В междулопаточных каналах этого ряда пар расширяется, давление его несколько понижается, а скорость возрастает от c0 до c1. Затем пар попадает в первый ряд рабочих лопаток. Между ними пар также расширяется и его относительная скорость возрастает. Однако абсолютная скорость c2 на выходе с рабочих лопаток будет меньше c1, так как за счёт уменьшения кинетической энергии получена механическая работа. В последующих ступенях процесс повторяется. Для уменьшения утечек пара через зазоры между лопатками, ротором и корпусом П. т. располагаемый перепад давлений делят на большое число (до 100) ступеней, благодаря чему разность давлений между смежными ступенями получается небольшой.

             В СССР не строят стационарных реактивных П. т., но отдельные зарубежные фирмы традиционно продолжают выпускать П. т. с активной частью высокого давления и последующими реактивными ступенями.

             Конструкция паровых турбин. По направлению движения потока пара различают аксиальные П. т., у которых поток пара движется вдоль оси турбины, и радиальные П. т., направление потока пара в которых перпендикулярно, а рабочие лопатки расположены параллельно оси вращения. В СССР строят только аксиальные П. т. По числу корпусов (цилиндров) П. т. подразделяют на однокорпусные и 2—3-, редко 4-корпусные. Многокорпусная конструкция (рис. 4) позволяет использовать большие располагаемые перепады энтальпии, разместив большое число ступеней давления, применить высококачественные металлы в части высокого давления и раздвоение потока пара в части низкого давления; однако такая П. т. получается более дорогой, тяжёлой и сложной. По числу валов различают одновальные П. т., у которых валы всех корпусов находятся на одной оси, и 2-, редко 3-вальные, состоящие из 2 или 3 параллельно размещенных одновальных П. т., связанных общностью теплового процесса, а у судовых П. т.— также общей зубчатой передачей (редуктором).

             Неподвижную часть П. т. — корпус — выполняют разъёмной в горизонтальной плоскости для возможности монтажа ротора. В корпусе имеются выточки для установки диафрагм, разъём которых совпадает с плоскостью разъёма корпуса. По периферии диафрагм размещены сопловые каналы, образованные криволинейными лопатками, залитыми в тело диафрагм или приваренными к нему. В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения лабиринтового типа для предупреждения утечек пара наружу (со стороны высокого давления) и засасывания воздуха в корпус (со стороны низкого). Лабиринтовые уплотнения устанавливают в местах прохода ротора сквозь диафрагмы во избежание перетечек пара из ступени в ступень в обход сопел. На переднем конце вала устанавливают предельный регулятор (регулятор безопасности), автоматически останавливающий П. т. при увеличении частоты вращения на 10—12% сверх номинальной. Задний конец ротора снабжают валоповоротным устройством с электрическим приводом для медленного (4—6 об/мин) проворачивания ротора после останова П. т., что необходимо для равномерного его остывания.

             Лит.: Лосев С. М., Паровые турбины и конденсационные устройства. Теория, конструкции и эксплуатация, 10 изд., М. — Л., 1964; Щегляев А. В., Паровые турбины. Теория теплового процесса и конструкции турбин, 4 изд., М. — Л., 1967.

             С. М. Лосев.

            

            Рис. 4. Двухкорпусная паровая турбина (со снятыми крышками): 1 — корпус высокого давления; 2 — лабиринтовое уплотнение; 3 — колесо Кертиса; 4 — ротор высокого давления; 5 — соединительная муфта; 6 — ротор низкого давления; 7 — корпус низкого давления.

            

            Рис. 1. Схематический продольный разрез активной турбины с тремя ступенями давления: 1 — кольцевая камера свежего пара; 2 — сопла первой ступени; 3 — рабочие лопатки первой ступени; 4 — сопла второй ступени; 5 — рабочие лопатки второй ступени; 6 — сопла третьей ступени; 7 — рабочие лопатки третьей ступени.

            

            Рис. 2. Схематический разрез активной турбины с двумя ступенями скорости: 1 — вал; 2 — диск; 3 — первый ряд рабочих лопаток; 4 — сопло; 5 — корпус; 6 — второй ряд рабочих лопаток; 7 — направляющие лопатки.

            

            Рис. 3. Схематический разрез небольшой реактивной турбины: 1 — кольцевая камера свежего пара; 2 — разгрузочный поршень; 3 — соединительный паропровод; 4 — барабан ротора; 5, 8 — рабочие лопатки; 6, 9 — направляющие лопатки; 7 — корпус.

    Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

    • Паровая система земледелия
    • Пароводяная смесь

    Смотреть что такое "Паровая турбина" в других словарях:

    • ПАРОВАЯ ТУРБИНА — турбина, в к рой потенц. энергия пара превращается в кинетич., а затем в механич. работу вращающегося вала. П. т. осн. двигатель для привода электрогенераторов на ТЭС. Различают активные турбины и реактивные турбины. Габариты П. т. сравнительно… …   Большой энциклопедический политехнический словарь

    • Паровая турбина — Паровая турбина: машина, которая преобразует тепловую энергию в механическую работу. Примечание Паровая турбина состоит из одного или нескольких цилиндров, системы управления и необходимого вспомогательного оборудования... Источник:… …   Официальная терминология

    • ПАРОВАЯ ТУРБИНА — турбина, преобразующая тепловую энергию водяного пара в механическую работу. Подразделяются на стационарные (напр., на теплоэлектростанции) и транспортные (судовые). Выполняются одно и многокорпусными (обычно не более 4 корпусов), одновальными… …   Большой Энциклопедический словарь

    • ПАРОВАЯ ТУРБИНА — ПАРОВАЯ ТУРБИНА, ПАРОВОЙ ДВИГАТЕЛЬ, снабженный вращающимся ротором с лопатками, который служит для приведения в действие различных механизмов и для получения электроэнергии. см. также ТУРБИНА …   Научно-технический энциклопедический словарь

    • ПАРОВАЯ ТУРБИНА — ПАРОВАЯ ТУРБИНА, преобразует тепловую энергию водяного пара при его расширении в механическую работу. Различают стационарные (например, на тепловых электростанциях) и транспортные (судовые) паровые машины, однои многокорпусные (обычно не более 4) …   Современная энциклопедия

    • паровая турбина — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN vapor prime moversteam turbine …   Справочник технического переводчика

    • Паровая турбина — ПАРОВАЯ ТУРБИНА, преобразует тепловую энергию водяного пара при его расширении в механическую работу. Различают стационарные (например, на тепловых электростанциях) и транспортные (судовые) паровые машины, одно и многокорпусные (обычно не более… …   Иллюстрированный энциклопедический словарь

    • Паровая турбина — Монтаж ротора паровой турбины, производства компании Siemens, Германия …   Википедия

    • паровая турбина — турбина, преобразующая тепловую энергию водяного пара в механическую работу. Подразделяются на стационарные (например, на ТЭС) и транспортные (судовые). Выполняются одно и многокорпусными (обычно не более 4 корпусов), одновальными (валы всех… …   Энциклопедический словарь

    • паровая турбина — 3.16 паровая турбина: Машина, которая преобразует тепловую энергию в механическую работу. Примечание Паровая турбина состоит из одного или нескольких цилиндров, системы управления и необходимого вспомогательного оборудования. Источник: ГОСТ 30848 …   Словарь-справочник терминов нормативно-технической документации

    Книги

    • Книга юного конструктора. Том 1, Абрамов А.. В книге собраны описания различных моделей и приборов: летающие модели самолетов, фотоаппараты, фотоувеличители, кинопроекционный аппарат, электромоторы, паровыемашины, паровая турбина,… Подробнее  Купить за 1562 грн (только Украина)
    • Книга юного конструктора. Том 1, Абрамов А.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В книге собраны описания различных моделей и приборов: летающие модели самолетов, фотоаппараты,… Подробнее  Купить за 1246 руб
    • Самодельная паровая турбина, Е. Л. Букш. Воспроизведено в оригинальной авторской орфографии издания 1972 года (издательство`ДОСААФ`). В… Подробнее  Купить за 952 грн (только Украина)
    Другие книги по запросу «Паровая турбина» >>

    dic.academic.ru

    Турбина и турбонаддув это одно и то же?И что лучше турбина или турбокомпресор?

    Турбина - это механизм, а турбонаддув — один из методов агрегатного наддува, основанный на утилизации энергии отработавших газов (т. е. это процесс) . А вот турбина и турбокомпресор, в твоем понимании, это одно и тоже.

    Это одно итоже мой юный друг

    Турбина это приводная часть турбокомпресора ипользующая для вращения компресора выпускные газы. Наддув можно обеспечивать и механическим нагнетателем. Часто используют эти устройства в паре из за особенностей в выходных характеристиках.

    турбина и в самолёте есть а турбокомпрессор это агрегат турбина это деталь

    турбина лучше и смотря как она дует

    термином "компрессор" в современных легковушках называют электрический нагнетатель воздуха в двигатель. В противовес механической "турбине". "компрессор" проще, дешевле, надежнее, им легко управлять - значит лучше

    для тебя - турбина и турбокомпрессор - одно и тоже турбокомпрессор состоит из турбины (раскручивается выхлопными газами) , и компрессора (закачивает воздух в цилиндры) , турбина и компрессор - лопастные колеса, сидят на одной оси турбокомпрессора.. . а турбонаддув - один из способов подачи дополнительного воздуха в цилиндры это вкратце...

    Турбина-это двигатель внутреннего сгорания, работающий за счёт сгорания топлива в камере внутри которой вращается колесо турбины. А турбонагнетатель это механизм, сождающий повышенное давление воздуха для подачи в камеру сгорания.

    touch.otvet.mail.ru

    Газовая турбина - это... Что такое Газовая турбина?

    Промышленная газовая турбина в разобранном виде.

    Га́зовая турби́на (фр. turbine от лат. turbo вихрь, вращение) — это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу.[1][2] Горение топлива может происходить как вне турбины, так и в самой турбине.[источник не указан 404 дня] Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, выполненный в виде выравнивающего аппарата (направляющие лопатки, закреплённые в корпусе).

    Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

    История

    Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В 1872 году Франц Столц разработал газотурбинный двигатель.[источник не указан 404 дня] Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины.[3]

    Принцип работы

    В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 11 ноября 2011.

    Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

    Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

    Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

    Типы газовых турбин

    Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

    Промышленные газовые турбины для производства электричества

    Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

    Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД — до 60 % — при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения - ГВС и отопления, а также с использыванием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. Коэффициент использования топлива в тригенераторном режиме, в сравнении с когенераторным может достигать более 90 %.[источник не указан 404 дня]

    Турбины в больших промышленных газовых турбинах работают на синхронных с частотой переменного тока скоростях — 3000 или 3600 оборотов в минуту (об./мин.).[источник не указан 404 дня]

    Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток. Типичная турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %.[источник не указан 404 дня] Максимальные КПД турбин простого цикла достигает 41 %.[источник не указан 404 дня]

    Микротурбины

    Отчасти, успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

    Преимущества и недостатки газотурбинных двигателей

    В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 11 ноября 2011.

    Преимущества газотурбинных двигателей

    • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем;
    • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
    • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем
    • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
    • Меньшее количество движущихся частей, чем у поршневого двигателя.
    • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
    • Низкие эксплуатационные нагрузки.
    • Низкая стоимость и потребление смазочного масла.
    • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.

    Недостатки газотурбинных двигателей

    • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
    • Имеют меньший КПД при любом режиме работы, чем поршневые двигатели. (Официальные данные (стр.3) КПД на максимальной нагрузке 25-33%, при этом Официальные данные по поршневым двигателям - 41-42%)
    • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
    • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
    • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
    • Задержка отклика на изменения настроек мощности.
    • Медленный запуск и выход на режим
    • Существенное влияние пусков-остановов на ресурс

    Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности. А также то, почему в аэропортах при короткой стыковке двигатели самолета не останавливают - излишне потребленное топливо дешевле ремонта турбин из-за пусков-остановов.

    Примечания

    1. ↑ ГОСТ Р 51852-2001 Установки газотурбинные. Термины и определения  (рус.) (2003). — «Газовая турбина: компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу.»  Архивировано из первоисточника 25 июня 2012. Проверено 11 ноября 2011.
    2. ↑ Д. Н. Ушаков. Толковый словарь Ушакова. — 1940.
    3. ↑ Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0

    Литература

    • Дейч М. Е. Техническая газодинамика. — М.: Энергия, 1974.
    • Дейч М. Е. Газодинамика решёток турбомашин. — М.: Энергоатомиздат, 1996.

    См. также

    Ссылки

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 13 мая 2011.

    biograf.academic.ru

    Газовая турбина - это... Что такое Газовая турбина?

    Промышленная газовая турбина в разобранном виде.

    Га́зовая турби́на (фр. turbine от лат. turbo вихрь, вращение) — это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу.[1][2] Горение топлива может происходить как вне турбины, так и в самой турбине.[источник не указан 404 дня] Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, выполненный в виде выравнивающего аппарата (направляющие лопатки, закреплённые в корпусе).

    Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

    История

    Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В 1872 году Франц Столц разработал газотурбинный двигатель.[источник не указан 404 дня] Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины.[3]

    Принцип работы

    В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 11 ноября 2011.

    Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

    Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

    Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

    Типы газовых турбин

    Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

    Промышленные газовые турбины для производства электричества

    Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

    Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД — до 60 % — при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения - ГВС и отопления, а также с использыванием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. Коэффициент использования топлива в тригенераторном режиме, в сравнении с когенераторным может достигать более 90 %.[источник не указан 404 дня]

    Турбины в больших промышленных газовых турбинах работают на синхронных с частотой переменного тока скоростях — 3000 или 3600 оборотов в минуту (об./мин.).[источник не указан 404 дня]

    Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток. Типичная турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %.[источник не указан 404 дня] Максимальные КПД турбин простого цикла достигает 41 %.[источник не указан 404 дня]

    Микротурбины

    Отчасти, успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

    Преимущества и недостатки газотурбинных двигателей

    В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 11 ноября 2011.

    Преимущества газотурбинных двигателей

    • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем;
    • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
    • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем
    • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
    • Меньшее количество движущихся частей, чем у поршневого двигателя.
    • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
    • Низкие эксплуатационные нагрузки.
    • Низкая стоимость и потребление смазочного масла.
    • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.

    Недостатки газотурбинных двигателей

    • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
    • Имеют меньший КПД при любом режиме работы, чем поршневые двигатели. (Официальные данные (стр.3) КПД на максимальной нагрузке 25-33%, при этом Официальные данные по поршневым двигателям - 41-42%)
    • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
    • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
    • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
    • Задержка отклика на изменения настроек мощности.
    • Медленный запуск и выход на режим
    • Существенное влияние пусков-остановов на ресурс

    Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности. А также то, почему в аэропортах при короткой стыковке двигатели самолета не останавливают - излишне потребленное топливо дешевле ремонта турбин из-за пусков-остановов.

    Примечания

    1. ↑ ГОСТ Р 51852-2001 Установки газотурбинные. Термины и определения  (рус.) (2003). — «Газовая турбина: компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу.»  Архивировано из первоисточника 25 июня 2012. Проверено 11 ноября 2011.
    2. ↑ Д. Н. Ушаков. Толковый словарь Ушакова. — 1940.
    3. ↑ Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0

    Литература

    • Дейч М. Е. Техническая газодинамика. — М.: Энергия, 1974.
    • Дейч М. Е. Газодинамика решёток турбомашин. — М.: Энергоатомиздат, 1996.

    См. также

    Ссылки

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 13 мая 2011.

    dic.academic.ru

    Турбина Википедия

    Монтаж паровой турбины, произведённой Siemens, Германия.

    Турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в которой происходит преобразование [1]кинетической энергии и/или внутренней энергии рабочего тела (пара, газа, воды) в механическую работу на валу. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.

    Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, привода компрессора в газотурбинном двигателе, а также гидродинамической передачи, гидронасосах.

    Звук небольшой пневматической турбины, использовавшейся для привода генератора немецкой шахтёрской лампы 1940-х гг.

    История[ | код]

    Древнеримская турбинная мельница в Чемту, Тунис. Тангенциально направленный поток воды вращал погруженное в воду горизонтальное колесо на вертикальной оси

    Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. н. э.). По словам И. В. Линде[2], XIX век породил «массу проектов», которые остановились перед «материальными трудностями» их выполнения. Лишь в конце XIX века, когда развитие термодинамики (повышение КПД турбин до сравнимого с поршневой машиной), машиностроения и металлургии (увеличение прочности материалов и точности изготовления, необходимых для создания высокооборотных колёс), Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленности паровые турбины.[3]

    Хронология[ | код]

    ru-wiki.ru


    Станции

    Районы

    Округа

    RoadPart | Все права защищены © 2018 | Карта сайта