Рубрики
Разное

Такт работы двигателя: Такт работы двигателя

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит «перекладка» т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой «бьет» правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя — сжатие топливо-воздушной смеси.

Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого — в цилиндр, ни обратного — из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и «недозарядки» цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).
При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой — по нижним торцевым поверхностям колец и канавок.

Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый «насосный» эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего «насосный» эффект и прорыв газов быстро прогрессируют.
Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала «видимого» сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.
Поскольку горение смеси — химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и «растягивается» по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая — при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.
Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко — свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh — рабочий объем цилиндра (Vh = Fn.S), Fn — площадь поршня; S — ход поршня; VKc — объем камеры сгорания.
Степень сжатия — величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже — порядка 1,1-1 ,5 МПа.
При приближении поршня к ВМТ начинают «работать» так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы «вытесняется» в зону камеры сгорания, образуя потоки определенного направления.
Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу — турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.
При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.
При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.
Стойкую к износу пару трения «кольцо-цилиндр» образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.
При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше «перекладка», но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.
Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.
Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна — так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

Такт Работы Двигателя 5 Букв

Решение этого кроссворда состоит из 5 букв длиной и начинается с буквы В


Ниже вы найдете правильный ответ на Такт работы двигателя 5 букв, если вам нужна дополнительная помощь в завершении кроссворда, продолжайте навигацию и воспользуйтесь нашей функцией поиска.

ответ на кроссворд и сканворд

Четверг, 20 Февраля 2020 Г.



ВПУСК

предыдущий

следующий



другие решения

ВПУСК

ты знаешь ответ ?

ответ:

связанные кроссворды

  1. Впуск
    1. Ввод топлива в двигателе 5 букв
    2. 1-й такт двигателя внутрен. сгорания 5 букв
    3. Такт двигателя внутрен. сгорания 5 букв
    4. Ввод зрителей в зал 5 букв
    5. Подача топлива в камеру сгорания 5 букв
    6. Залив топлива в камеру сгорания 5 букв

похожие кроссворды

  1. 1-й такт двигателя внутрен. сгорания 5 букв
  2. Такт двигателя внутрен. сгорания 5 букв
  3. Такт двигателя внутреннего сгорания
  4. 1 й такт двигателя внутрен сгорания 5 букв
  5. Один «такт» работы легких букв
  6. Устройство для работы двигателя под водой
  7. Часть цикла работы автомобильного двигателя — набор горючего
  8. Неполный такт в начале музыкального произведения
  9. Неполный такт в начале музык. произведения 6 букв
  10. Неполный такт 6 букв
  11. Свистеть в такт, сопровождая пение, игру, танцы 13 букв
  12. Топнуть с легка или в такт чему-нибудь 10 букв
  13. Ряд пластических и ритмических движений, исполняемых в такт музыке 5 букв
  14. Ряд телодвижений, исполняемых в определенном темпе и ритме в такт музыке 5 букв
  15. Свободно, не строго в такт (музык. ) 6 букв

Определение тактов двигателя

6 комментариев

/ Подача воздуха и топлива, Двигатель, Особенности двигателя, Избранные статьи, Технология, Особенности технологии / Автор
Ромен Николя

Принцип 4-тактного двигателя

В 4-тактном двигателе ходы поршня (перемещение от нижней мертвой точки к верхней мертвой точке или наоборот) необходимы для завершения рабочего цикла.

Такт впуска (от ВМТ до НМТ): свежая смесь в двигателе с искровым зажиганием или свежий воздух в дизеле подается в цилиндр через впускные клапаны, которые могут открываться с небольшим опережением до ВМТ и могут закрываются с определенной задержкой после НМТ, чтобы максимизировать индуцированную массу.

Такт сжатия (от НМТ до ВМТ): свежая смесь в двигателе СИ или свежий воздух в дизеле сжимается при закрытых клапанах. Ближе к концу такта сжатия сгорание инициируется искровым зажиганием (двигатель с искровым зажиганием) или впрыском топлива (дизельный двигатель).

Рабочий ход (от ВМТ до НМТ): горячие газы расширяются, толкая поршень вниз и совершая над ним работу, в пять раз (или более) превышающую работу, совершаемую поршнем в такте сжатия. Ближе к концу рабочего такта выпускные клапаны могут начать открываться, и часть сгоревших газов выбрасывается из цилиндра благодаря перепаду давления.

Такт выпуска (от НМТ до ВМТ): поршень выталкивает оставшиеся сгоревшие газы. Ближе к концу такта выпуска впускные клапаны могут открыться, а вскоре после ВМТ выпускной клапан может закрыться, это называется перекрытием. После этого можно начинать новый цикл.

Хотя цикл завершается за 4 такта за 2 оборота кривошипа, можно выделить 6 рабочих фаз, поскольку во время одного такта могут происходить разные фазы:

  • Впуск
  • Сжатие
  • Горение
  • Расширение
  • Выхлоп (Продувка)
  • Выхлоп (объемный)

Следует отметить, что требуются 2 рабочие фазы для замены сгоревших газов свежей смесью.

Двухтактный принцип

В двухтактном двигателе для полного рабочего цикла требуется всего два хода поршня (т.е. 1 оборот коленчатого вала).

Чтобы получить более высокую выходную мощность, два такта, используемые для газообмена, подавляются и заменяются процессом продувки. Процесс продувки определяется вытеснением сгоревших газов, когда поршень приближается к концу рабочего хода, посредством свежего заряда, находящегося под давлением.

В простейшей конструкции свежий заряд находится под давлением благодаря самому картеру, объем которого изменяется в зависимости от объема цилиндра, так что минимальный объем картера (а затем и максимальное давление) достигается, когда поршень находится в положении НМТ в главном цилиндре.

Возможна более компактная конструкция по сравнению с 4-тактным двигателем, поскольку впускной и выпускной клапаны могут быть заменены портами (отверстиями) в гильзе цилиндра, открытие и закрытие которых может управляться непосредственно движением поршня.

Два такта следующие: Такт сжатия : после закрытия впускного и выпускного отверстий поршень сжимает заряд цилиндра (в то же время объем в картере увеличивается, втягивая свежий заряд в картер путем сжатия). Ближе к концу такта сжатия сгорание инициируется искровым зажиганием (двигатель SI) или впрыском топлива (дизельный двигатель).

Рабочий ход : горячие газы расширяются, толкая поршень вниз. К концу этого такта выпускное отверстие открывается, и часть продуктов сгорания выбрасывается из цилиндра благодаря перепаду давления. После этого продувочные отверстия открываются, и свежий заряд под давлением вытесняет сгоревшие газы, так что новый цикл может начаться снова после того, как поршень достигнет НМТ.

Опять же, как и для 4-тактного двигателя, во время 2-тактного цикла происходит 6 различных фаз:

  • Продувка
  • Впуск
  • Сжатие
  • Горение
  • Расширение
  • Продувка

Однако для реализации такого цикла необходим клапан с регулируемым давлением на порте продувки. Если используются простые отверстия в стенках цилиндра, край впускного отверстия должен находиться ниже выпускного отверстия, чтобы обеспечить фазу продувки. Это может привести к короткому замыканию части индуцированного свежего заряда в начале такта сжатия, поскольку выпускное отверстие остается открытым некоторое время после закрытия впускного отверстия.

Процесс продувки представляет собой ахиллесову пяту двухтактного двигателя, поскольку в его простейшей компоновке с простыми портами в стенках цилиндра часть свежего заряда будет поступать непосредственно в выпускной порт, вызывая высокий расход топлива и выбросы углеводородов в двигатель СИ.

По этим причинам использование двухтактных двигателей SI было ограничено маломощными двигателями общего назначения (такими как газонокосилки, пильные цепи, подвесные моторы для движения лодок…), где минусы считались приемлемыми из-за высокой простоте, дешевизне и высокой удельной мощности этих двигателей.

2-тактные двигатели также используются для больших дизелей для морских и стационарных применений (диаметр около 1 метра), где они обычно предпочтительнее 4-тактных из-за чрезмерно высоких термомеханических нагрузок, которые должны выдерживать клапаны (нагрузка увеличивается с клапаном). диаметр, который пропорционален диаметру цилиндра).

В настоящее время нет примеров применения двухтактных двигателей в автомобилестроении.

Ромен Николя мнение:

Базовые двухтактные и четырехтактные двигатели имеют почти противоположные характеристики. Тем не менее, некоторые исследования продолжаются, чтобы использовать преимущества одного типа и применять его к другому типу двигателя, например, с непосредственным впрыском для двухтактного двигателя. Считаете ли вы, что 2-тактные двигатели появятся в автомобильной промышленности для нестандартных нужд, таких как увеличение запаса хода для серийных гибридов? Как вы думаете, будут ли недостатки двухтактных двигателей преодолены, чтобы занять место в двигателе внутреннего сгорания сегодня?

Четырехтактный двигатель — Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

ИНДЕКС

Поиск

Рисунок 1. Четырехтактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выпуск. [1]

Четырехтактный двигатель является наиболее распространенным типом двигателей внутреннего сгорания и используется в различных автомобилях (которые специально используют бензин в качестве топлива), таких как легковые автомобили, грузовики и некоторые мотоциклы (многие мотоциклы используют двухтактный двигатель). Четырехтактный двигатель обеспечивает один рабочий ход за каждые два цикла поршня (или четыре хода поршня). Справа (рисунок 1) есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. Такт впуска: Поршень перемещается вниз к низу, это увеличивает объем, чтобы топливно-воздушная смесь могла попасть в камеру.
  2. Такт сжатия: Впускной клапан закрыт, и поршень движется вверх по камере вверх. Это сжимает топливно-воздушную смесь. В конце этого такта свеча зажигания обеспечивает сжатое топливо энергией активации, необходимой для начала сгорания.
  3. Рабочий ход: Когда топливо достигает конца своего сгорания, тепло, выделяемое при сгорании углеводородов, увеличивает давление, которое заставляет газ давить на поршень и создавать выходную мощность.
  4. Такт выпуска: Когда поршень достигает дна, открывается выпускной клапан. Оставшийся выхлопной газ выталкивается поршнем, когда он движется обратно вверх.

Тепловой КПД этих бензиновых двигателей зависит от модели и конструкции автомобиля. Однако в целом бензиновые двигатели преобразуют 20% топлива (химической энергии) в механическую энергию, из которых только 15% будут использоваться для движения колес (остальное теряется на трение и другие механические элементы). [2] Одним из способов повышения термодинамической эффективности двигателей является повышение степени сжатия. Это соотношение представляет собой разницу между минимальным и максимальным объемом камеры двигателя (обозначается как ВМТ и НМТ на рис. 2). Более высокое соотношение позволит поступать большему количеству топливно-воздушной смеси, вызывая более высокое давление, что приводит к более горячей камере, что увеличивает тепловую эффективность. [2]

Цикл Отто

Рис. 2. Реальный процесс цикла Отто, происходящий в четырехтактном двигателе. [3]

Рис. 3. Идеальный цикл Отто. [4]

Диаграмма давление-объем (диаграмма PV), которая моделирует изменения давления и объема топливно-воздушной смеси в четырехтактном двигателе, называется циклом Отто. Изменения в них будут создавать тепло и использовать это тепло для движения транспортного средства или машины (поэтому это тип теплового двигателя). Цикл Отто можно увидеть на рисунке 2 (реальный цикл Отто) и на рисунке 3 (идеальный цикл Отто). Компонент любого двигателя, использующего этот цикл, будет иметь поршень для изменения объема и давления топливно-воздушной смеси (как показано на рисунке 1). Поршень получает движение от сгорания топлива (где это происходит, поясняется ниже) и электрического наддува при запуске двигателя.

Ниже описано, что происходит на каждом шаге PV-диаграммы, на которой сгорание рабочего тела — бензина и воздуха (кислорода), а иногда и электричества изменяет движение поршня:

Реальный шаг цикла от 0 до 1 (идеальный цикл — зеленая линия): Называемая фазой впуска , поршень опускается вниз, чтобы позволить объему в камере увеличиться, чтобы он мог «всасывать «топливно-воздушная смесь. С точки зрения термодинамики это называется изобарным процессом.

Процесс с 1 по 2: На этом этапе поршень поднимается вверх, чтобы он мог сжимать топливно-воздушную смесь, поступающую в камеру. Сжатие вызывает небольшое повышение давления и температуры смеси, однако теплообмена не происходит. С точки зрения термодинамики это называется адиабатическим процессом. Когда цикл достигает точки 2, это происходит, когда топливо встречается со свечой зажигания для воспламенения.

Процесс со 2 по 3: Здесь происходит сгорание за счет воспламенения топлива от свечи зажигания. Сгорание газа завершается в точке 3, что приводит к образованию камеры с высоким давлением, в которой выделяется много тепла (тепловой энергии). С точки зрения термодинамики это называется изохорным процессом.

Процесс с 3 по 4: Тепловая энергия в камере в результате сгорания используется для работы поршня, который толкает поршень вниз, увеличивая объем камеры. Это также известно как силовой ход , потому что это когда тепловая энергия превращается в движение для питания машины или транспортного средства.

Фиолетовая линия (процесс с 4 по 1 и фаза выхлопа ): От процесса с 4 по 1 открывается выпускной клапан, и все отработанное тепло удаляется из камеры двигателя. Когда тепло покидает газ, молекулы теряют кинетическую энергию, вызывая снижение давления. [5] Затем происходит фаза выхлопа (шаг 0-1), когда оставшаяся в камере смесь сжимается поршнем для «выпуска» наружу без изменения давления.

Для дополнительной информации

  • Двигатель внутреннего сгорания
  • Цикл Отто
  • Двухтактный двигатель
  • Тепловая эффективность
  • Или просмотрите случайную страницу

Ссылки

  1. 2.0 2.1 Р. Вольфсон, Энергия, окружающая среда и климат. Нью-Йорк: WW Нортон и компания, 2012, с.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *