Рубрики
Разное

Распределенный впрыск непосредственный впрыск: Распределенный или непосредственный впрыск (MPI или GDI). Какая разница и что лучше

Содержание

Система непосредственного впрыска топлива: преимущества и недостатки

Система впрыска

На чтение 4 мин. Просмотров 669

Непосредственный впрыск — это новейший способ подачи топлива в цилиндры. Для его внедрения был усовершенствован двигатель, что позволило ему значительно экономить горючее.

Тенденция развития рынка требует создания новейших механизмов впрыска топлива, которой является система непосредственного впрыска. В бензиновых двигателях внутреннего сгорания, для которых она предназначена, данная система осуществляет непосредственный впрыск топлива в цилиндры. Камера их сгорания под высоким давлением получает горючее. Данная система этим отличается от стандартной системы распределенного впрыска (топливо впрыскивается во впускной коллектор).

Система непосредственного впрыска топлива

Содержание

  1. Составляющие системы непосредственного впрыска топлива.
  2. Непосредственный впрыск имеет ряд преимуществ.
  3. Недостатками непосредственного впрыска являются:

Прямой впрыск происходит благодаря слаженной работе всех составляющих структуры. Система непосредственного впрыска топлива состоит из:

  1. Топливного насоса высокого давления. Данный насос состоит из плунжеров. Их может быть несколько. Движение начинает осуществляется насосом от распределительного вала. Его основной функцией является непосредственный впрыск к топливной рампе бензина. Затем, по мере возникновения потребностей двигателя, приборы для пульверизации получают его под высоким давлением.
  2. Топливной рампы. Ее назначение — накопление горючего, его перераспределение по приборам для пульверизации. Она предотвращает контурные колебания бензина.
  3. Форсунок впрыска. Они обеспечивают распределение в камере сгорания бензина, благодаря чему происходит образование топливно-воздушной смеси.
  4. Камеры высокого давления, оснащенной регулятором количественного давления топлива. Благодаря ей осуществляется дозированная подача насосом топлива, зависящая от впрыскивания форсунки.
  5. Привода топливного насоса. Его функция — запуск движения вала.
  6. Предохранительного клапана. Обеспечивает защиту элементов системы впрыска от давления превышающего норму. Это происходит путем расширения топлива, если есть нарушения режима температур.
  7. Датчика высокого давления. Повышение нормы давления способствует работе датчика путем реакции на изменения. Затем, на основании результатов передачи от него данных, действует блок управления, который уменьшает давление в топливной рампе.
  8. Топливного фильтра. Очищает топливо путем отсеивания ржавчины, частичек пыли. Таким образом, топливная система защищена от их попадания.
  9. Блока управления двигателем. Обеспечивает единую слаженную работу самой системы.
  10. Блока управления форсунками. Осуществляет согласованную работу форсунок.
  11. Топливного насоса низкого давления. Основой его функционирования является подача из бака горючего к топливному оборудованию.
  12. Перепускного клапана. Он является исполнительным механизмом, который начинает действие с помощью блока управления двигателем.
  13. Входных датчиков. Они обеспечивают блок управления двигателем новой информацией.
  14. Фильтров супертонкой очистки топлива. Его функция — очищать от грязного горючего.

Схема непосредственного впрыска топлива

В двигателях, подающих прямой впрыск, требования к качеству топлива намного выше. Они позволяют больше экономить — до 20%, соответствуют высокому уровню экологических стандартов — сокращают вместе с отработавшими газами выброс вредных элементов.

Высокую эффективность использования топливной смеси определяет разнообразие смесеобразования на всех режимах работы двигателя.

Непосредственный впрыск топлива дает возможность получить такие виды смесеобразования:

  1. Послойное. Оно применяется при работе бензиновых двигателей на небольших нагрузках, а также малых и средних оборотах. При этом входные клапаны остаются закрытыми, а дроссельная заслонка — открыта. С огромной скоростью воздух поступает в камеры. Впрыск подается к свече зажигания. Воздух, оставшийся после воспламенения смеси, является теплоизолятором.
  2. Стехеометрическое гомогенное. Его применяют при больших нагрузках и высоких оборотах. Впускные заслонки, при данном образовании смеси, открыты, а дроссельная, при изменении положения педали газа, открывается. На такте впуска происходит впрыск горючего. Образование смеси по своей структуре является однородным. Горение смеси проиходит в полном объеме камеры сгорания.
  3. Гомогенное. Оно используется в промежуточных режимах работы двигателя. Смесеобразование получается благодаря максимальному открытию дроссельной заслонки. Впускные заслонки остаются закрытыми. Цилиндры, содержащие воздух, способствуют его эффективному движению. На такте впуска происходит впрыск бензина. Гомогенная смесь может содержать отработанные газы.

Непосредственный впрыск имеет ряд преимуществ.

Технология впрыска топлива

Непосредственный впрыск дает возможность точной подачи горючего, благодаря инновационным компьютерам. Не образовывая капель, он распределяет топливо наиболее оптимально с помощью правильного расположения инжекторов. Таким образом, происходит эффективное сгорание бензина. Это приводит к увеличению мощности автомобиля, при этом каждая капля бензина несет меньше грязи и ненужных частиц.

Недостатками непосредственного впрыска являются:
  • система достаточно сложна,
  • система имеет высокую стоимость.

Данная система затратная в производстве. Ее элементы работают с топливом под большим давлением. Иная ситуация у обычного способа образования смеси. Крепость форсунок должна выдерживать давление, температуру в цилиндрах.

Таким образом, эта система является новой технологией, позволяющей двигателям сжигать, эффективно прорабатывать горючее. Она позволяет увеличить мощность, экономичность двигателей автомобилей, а также сократить атмосферные выбросы.

Что такое непосредственный впрыск топлива, описание системы

Содержание

  1. Что такое система непосредственного впрыска топлива, ее конструкция
  2. Принцип действия и режимы работы системы непосредственного впрыска
  3. Впрыск в цилиндр на такте сжатия (послойное смесеобразование)
  4. Впрыск на такте впуска (гомогенное смесеобразование)
  5. Двухстадийный впрыск на такте сжатия и впуска
  6. Чем непосредственный впрыск топлива отличается от распределенного?
  7. Распределенный впрыск топлива
  8. Непосредственный впрыск топлива
  9. Конструктивные сходства и отличия систем впрыска
  10. Плюсы и минусы прямого впрыска топлива

Бензиновые двигатели с системой непосредственного впрыска массово появились на авторынке в начале 2000-х и постепенно стали непременной составляющей любой современной машины среднего или высшего ценового сегмента.

Всего существует три разновидности систем впрыска:

  1. центральный,
  2. распределенный,
  3. прямой.

До настоящего времени дожили лишь две последние. Что касается центрального впрыска, нередко называемого также моновпрыском, то он оказался неспособным равномерно распределять горючую смесь по отдельным цилиндрам, а также создавал высокое сопротивление на впуске.

Поэтому и центральный впрыск отправился в отставку, как только перестал соответствовать ужесточившимся экологическим требованиям и удовлетворять потребительским запросам к величине расхода топлива.

Что такое система непосредственного впрыска топлива, ее конструкция

Согласно википедии, система непосредственного впрыска топлива (СНВТ) (Gasoline Direct Injection (GDI)) — инжекторная система подачи топлива для бензиновых двигателей внутреннего сгорания с непосредственным впрыском топлива, у которой форсунки расположены в головке блока цилиндров и впрыск топлива происходит непосредственно в цилиндры.

Топливо подается под большим давлением в камеру сгорания каждого цилиндра в противоположность стандартной системе распределённого впрыска топлива, где впрыск производится во впускной коллектор.

Такие двигатели более экономичны (до 20 % экономии), отвечают более высоким экологическим стандартам, однако и более требовательны к качеству топлива.

Из чего состоит система непосредственного впрыска топлива:

Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа.

Камера высокого давления с регулятором количественного давления топлива. Последний обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки.

Привод топливного насоса.

Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре.

Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.

Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.

Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом.
Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела.

Форсунки впрыска обеспечивают распыление топлива в камере сгорания для образования топливно-воздушной смеси.

Блок управления двигателем. Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.

Блок управления форсунками. Работа форсунок контролируется электронным блоком управления. При этом он основывается на показаниях множества датчиков двигателя, после анализа данных, он производит управление форсунками – момента впрыска, количества топлива и способа распыла.

Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.

Перепускной клапан. Если на ТНВД подается количество топлива больше необходимого, то срабатывает перепускной клапан, который часть топлива возвращает в бак. Также часть топлива сбрасывается в бак в случае превышения давления в рампе, но делается это уже предохранительным клапаном.

Топливный фильтр.

Фильтры супертонкой очистки топлива. Топливоподкачивающий насос из бака по магистрали низкого давления подает бензин на ТНВД, при этом бензин проходит через фильтр тонкой очистки топлива, где удаляются крупные примеси.

Входные датчики.

Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.

Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом.

Принцип действия и режимы работы системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  1. послойное ;
  2. стехиометрическое гомогенное ;
  3. гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

Впрыск в цилиндр на такте сжатия (послойное смесеобразование)

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря.

Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Принцип работы в этом режиме заключается в образовании сверхбедной смеси, что позволяет максимально экономить топливо. В начале в камеру цилиндра подается воздух, который закручивается и сжимается. Далее под высоким давлением осуществляется впрыскивание топлива и перенаправление полученной смеси к свече зажигания.

Факел получается компактным, поскольку формируется на этапе максимального сжатия. При этом топливо как бы окутано прослойкой воздуха, что уменьшает тепловые потери и предотвращает предварительный износ цилиндров. Режим используется при работе мотора на малых оборотах.

Впрыск на такте впуска (гомогенное смесеобразование)

Состав топлива в этом режиме близок к стехиометрическому. Подача воздуха и бензина в цилиндр происходит одновременно, при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа.

Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания. Факел смеси при таком впрыске имеет коническую форму. Применяется при мощных нагрузках (скоростной езде).

Двухстадийный впрыск на такте сжатия и впуска

Применяется при резком ускорении машины, движущейся на малой скорости. Двойной впрыск в цилиндр позволяет снизить вероятность детонации, которая может возникнуть в моторе при резкой подаче обогащенной смеси.

Вначале (на такте впуска воздуха) подается небольшое количество бензина, что приводит к образованию обедненной смеси и снижению температуры в камере сгорания цилиндра. На такте максимального сжатия подается оставшаяся часть топлива, что делает смесь богатой.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска.

Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Чем непосредственный впрыск топлива отличается от распределенного?

Зачастую, когда описываются двигательные характеристики, можно увидеть аббревиатуры MPI, а также GDI. Что они означают:

  • GDI — непосредственный впрыск,
  • MPI — распределенный.

Теперь рассмотрим, в чем между ними разница.

Распределенный впрыск топлива

Принцип работы в приготовлении ТВС прямо во впускном коллекторе. Другими словами, расположение форсунок определяется в коллекторе. Во впускной коллектор также обеспечивается доступ воздуха, кода открывается дроссельная заслонка. В результате чего образуется смесь.

Затем она поступает к цилиндрам сквозь клапана, посредством разреженности получаемой при поршневом движении. Не стоит считать, что MPI более не используется. Производятся двигатели с MPI и сейчас. Хоть они считаются более простыми, но соответственно и меньше стоят.

Непосредственный впрыск топлива

При применении прямого впрыска смесь образуется в самом цилиндре. Расположение форсунок — в двигательном блоке, одна приходится на один цилиндр. Топливо поступает прямо в него в необходимый момент.

Принципы функционирования определяют достоинства и недостатки каждой из систем коротко: MPI обладает большей простотой и надежностью. Вообще MPI — это развитие карбюраторной системы, более мощная. Однако она уступает системе непосредственного впрыска топлива, поскольку она более современная и эффективная.

Конструктивные сходства и отличия систем впрыска

В обеих системах каждый цилиндр двигателя обслуживается отдельной форсункой, но при распределенном впрыске форсунки распыляют бензин во впускной коллектор.

При прямом впрыске бензин подается непосредственно в камеру сгорания цилиндра. Это главное, что отличает моторы, в зависимости от производителя помечаемые индексами GDI (Mitsubishi), FSI (Volkswagen), HPi (Peugeot), CGI (Mercedes-Benz) и так далее, от двигателей MPI.

Что же хорошего сулит подача бензина прямо внутрь цилиндра? Как ни странно, ничего, если подойти к этому вопросу с точки зрения конструкции двигателя. Проблема состоит в том, что при прямом впрыске на испарение бензина и перемешивание его паров с воздухом отводится примерно в 10 раз меньше времени, чем когда бензин распыляется во впускной коллектор, а в цилиндры поступает уже в смеси с воздухом после того, как открылись впускные клапана.

Как в условиях столь короткого промежутка времени, отводимого при прямом впрыске на смесеобразование, добиться, чтобы смесь получилась качественной, ведь именно от этого зависит, каким будет результат последующего сгорания?

Отсюда другие отличия GDI, FSI, HPi, CGI и иже с ними от MPI. Во-первых, давление, с которым форсунка при прямом впрыске распыляет бензин, в десятки раз превышает давление, действующее в системах питания с распределенным впрыском (порядка 50-120 бар против 3-4).

Это предполагает наличие у двигателей с прямым впрыском топливного насоса высокого давления, в котором нет необходимости при распределенном впрыске.

Во-вторых, распылители форсунок прямого впрыска придают капелькам топлива вращение, что ускоряет их испарение. От форсунки распределенного впрыска требуется гораздо меньше — лишь сформировать факел топлива и направить его в зону впускного клапана.

Другими словами, система питания MPI конструктивно проще, а значит, дешевле как при изготовлении, так и при ремонте для устранения неисправностей, что никак не может считаться ее недостатком.

Плюсы и минусы прямого впрыска топлива

Основной недостаток систем, использующих GDI — это то, что уменьшается надежность в целом. Если произойдет небольшой сбой или выйдет из строя какой нибудь компонент, то двигатель начинает себя вести неправильно. Он может заглохнуть, не работать на полной мощности, показывать на приборке ошибку, в общем показывает что с двигателем что то не в порядке.

Второй недостаток, тоже немаловажный, — система прямого впрыска стоит достаточно дорого. Она очень сложна в эксплуатации, должна питаться только качественным топливом, здесь необходимо тщательно следить за всеми компонентами GDI, за питанием, зажиганием, электроникой. Этот недостаток отпугивает очень многих автолюбителей, которые рассматривают приобретение машины с GDI.

Дешевое топливо GDI не переносит категорически. Здесь не важно с каким октановым числом залит бензин, многие двигатели спокойно используют А-92, и даже спирт. Но наличие в плохом топливе различных сторонних компонентов, может вывести из строя весь двигатель внутреннего сгорания.

Еще одним недостатком GDI является то, что ее обслуга и запчасти к ней могут вылиться в очень круглую сумму. Эти запчасти сложны в производстве и поэтому дороги. Также эти системы очень требовательны к качеству масел, фильтров и прочих расходных запчастей.

Повышенное внимание к системе фильтрации. Чистка и замена воздушного фильтра в такой системе должна производиться чаще, поскольку качество поступающего воздуха напрямую связано с состоянием форсунок.

В чем преимущества системы прямого впрыска:

Двигатели, которые ее используют — самые технологичные, имеют небольшую массу, потребляют мало топлива.

С такими двигателями хорошо передвигаться в больших городах, поскольку в пробках двигатель, имеющий непосредственный впрыск работает с наибольшей экономией. К тому же в них можно реже менять масло, у них большой ресурс работы, потому что нагар почти не образуется. Потому что ТВС перерабатывается с большим КПД.

Именно моторы с непосредственным впрыском являются наиболее технологичными, экономичными, лёгкими и тяговитыми. Они идеально подходят для эксплуатации в загруженных мегаполисах (именно в пробочных режимах ДВС с непосредственным впрыском наиболее экономичны).

Они позволяют увеличивать интервал замены масла и обладают увеличенным сроком службы из-за уменьшения нагара (это достигается программно максимально эффективным сжиганием топливовоздушной смеси). Однако всего этого удаётся добиться только при чрезвычайно внимательном отношении к автомобилю и грамотном его обслуживании.

Но эти достоинства будут работать только тогда, когда владелец автомобиля будет очень тщательно относится к его обслуживанию у грамотных специалистов, потому как мы уже говорили, что двигатели с GDI очень сложны в устройстве.

Toyota Direct Injection и Port Injection

Если вы обслуживали импортные автомобили по крайней мере в течение последнего десятилетия, вы, возможно, видели автомобиль Toyota с непосредственным и портовым впрыском топлива. Вы увидите форсунки во впускном коллекторе и топливный насос с непосредственным впрыском. Toyota называет эту систему D-4S или Dynamic Force Engine («S» означает «превосходный»), и самое раннее ее применение было на внедорожнике Lexus GS с двигателем V8. Система D-4S не является системой «холодного пуска» или «облива» форсунки, как на двигателях V6 с начала до конца 2000-х годов.

Форсунки прямого впрыска аналогичны любой другой системе прямого впрыска топлива. И топливные форсунки порта не предназначены для очистки впускных клапанов; эти форсунки работают, чтобы подавать топливо в двигатель. Оба комплекта форсунок работают вместе для получения наилучшей топливной смеси в цилиндре.

Однако системы впрыска топлива во впускной коллектор и системы непосредственного впрыска топлива имеют свои преимущества и недостатки.

Распределенный впрыск топлива может обеспечить лучшее испарение при определенных условиях. Но капельки топлива в порту могут выпадать из взвеси, когда они ударяются о впускной клапан перед попаданием в камеру сгорания. Прямой впрыск топлива лучше охлаждает камеру сгорания и регулирует подачу топлива при определенных условиях. Но при определенных оборотах двигателя и условиях нагрузки непосредственный впрыск может привести к образованию сажи из-за недостаточного испарения. В некоторых случаях впрыск топлива через порт обеспечивает больший крутящий момент.

Toyota использует смешанный подход, сочетающий порт и непосредственный впрыск топлива, чтобы обеспечить наилучшие характеристики, выбросы и экономичность. Трудно сказать, когда активен входной, прямой или оба инжектора, потому что это зависит от многих переменных, таких как положение дроссельной заслонки, нагрузка, частота вращения двигателя и даже температура двигателя.

Двигатели и модели D-4S

Все больше и больше двигателей оснащаются системой впрыска D-4S. Все началось с Lexus на моделях GS в 2007 году. В 2012 году Toyota/Scion FR-S F86 получила D-4S. Highlander и Tacoma также получили системы D-4S в 2015 году в качестве опции. Последним автомобилем, получившим его, является четырехцилиндровый двигатель, используемый в Camry 2017 года. Лучший способ обнаружить один из этих двигателей — посмотреть на топливные форсунки и топливный насос высокого давления.

Как это работает

По данным Toyota, при низких и средних нагрузках на двигатель одновременно используются как прямой, так и портовый впрыск топлива, или один из них используется для создания гомогенной смеси воздуха и топлива, что способствует к устойчивым процессам горения.

В диапазонах высоких нагрузок двигателя используется только прямой впрыск топлива для охлаждения всасываемого воздуха за счет охлаждающего эффекта паров топлива, которое впрыскивается в цилиндр, повышая эффективность наддува и антидетонационные свойства. При некоторых условиях впускные клапаны открываются, пропуская гомогенную топливно-воздушную смесь в камеру сгорания, и топливо впрыскивается в течение первой половины такта впуска.

Во время холодного пуска система синхронизирует открытие порта и прямой топливной форсунки для уменьшения выбросов и достижения послойного сгорания. Сразу после запуска холодного двигателя и во время такта выпуска топливо впрыскивается во впускное отверстие из блока топливных форсунок (для впрыска во впускное отверстие). Топливо также впрыскивается из топливной форсунки непосредственно в конце такта сжатия. В результате воздушно-топливная смесь расслаивается, а область возле свечи зажигания богаче, чем остальная часть воздушно-топливной смеси. Этот процесс позволяет использовать более позднее зажигание, повышая температуру выхлопных газов. Повышенная температура выхлопных газов способствует быстрому прогреву катализаторов и улучшению характеристик выбросов выхлопных газов.

Невозможно определить, где происходит переключение с порта на прямой впрыск. Единственный способ увидеть различные операции впрыска топлива — это использовать сканирующий прибор.

Модуль ECM управляет топливным насосом и рассчитывает потребность в топливе низкого давления на основе состояния автомобиля и сигналов, поступающих от различных датчиков, и выходных сигналов. Трехфазная широтно-импульсная модуляция (ШИМ) используется для ЭБУ управления топливным насосом.

Как и во многих автомобилях Toyota последних моделей, топливный насос останавливается при срабатывании любой из подушек безопасности дополнительной удерживающей системы (SRS), что сводит к минимуму утечку топлива.

В обоих комплектах форсунок используется один и тот же топливный насос в баке для обеспечения давления топлива в топливной рампе для форсунок с отверстиями и топливного насоса высокого давления на двигателе. Насос должен создавать давление от 51 до 73 фунтов на квадратный дюйм во время работы и через пять минут после выключения двигателя. Если насос не работает, обе системы не будут работать.

Топливный насос высокого давления может создавать давление от 435 до 725 фунтов на квадратный дюйм. Ранние модели D-4S Lexus V8 с этой системой имели обратную линию в бак на стороне высокого давления топливной системы.

Более поздние модели используют переливной клапан и улучшенное управление электромагнитным насосом, чтобы сделать систему без возврата и улучшить выбросы EVAP. Клапан контроля разлива используется для контроля давления нагнетания насоса. Он расположен во впускном канале узла топливного насоса. Переливной клапан и соленоид контролируют, сколько топлива должно быть сжато насосом высокого давления. Это позволяет несжатому топливу проливаться обратно в сторону низкого давления системы, позволяя системе контролировать давление, когда система непосредственного впрыска топлива не используется. Насос будет тише, когда клапан открыт, потому что он не сжимает топливо. При некоторых режимах холостого хода обычное тиканье насоса исчезает.

В топливных форсунках с непосредственным впрыском используется специальный зажим, который под действием пружины постоянно давит на рампу топливных форсунок высокого давления. Это предотвращает перемещение узла топливной форсунки, когда давление топлива подается на узел топливной форсунки при запуске двигателя с низким давлением топлива. Хомут снижает вибрацию и шум при герметизации системы. Эти хомуты следует заменять вместе с рекомендованными фитингами на стороне высокого давления системы впрыска топлива при ее обслуживании.

Система сочетает в себе лучшее из обоих миров, не допуская образования нагара на впускных клапанах. Другие производители, в том числе Audi и даже Ford, используют систему двойного впрыска Toyota D-4S. Поскольку стоимость компонентов снижается, ищите эти типы систем на еще большем количестве двигателей.

Двойной порт и технология прямого впрыска: что вам нужно знать о конструкции двигателей следующего поколения | 2018-04-01

Примечание редактора: При работе над статьей TechSpec за март 2018 г. о Ford F-150 2018 г. я наткнулся на следующее заявление в отношении новых двигателей, доступных для грузовика: «существенные обновления, включая усовершенствованную двухпортовую технологию и технологию прямого впрыска , а также технология напыления хвостовика». Никогда раньше в своих работах для TechSpec я не сталкивался с двигателем, использующим как усовершенствованную двухпортовую технологию, так и технологию прямого впрыска, поэтому я обратился к одному из самых умных парней, которых я знаю, чтобы пролить свет на эту тему.

Бензиновые двигатели с непосредственным впрыском (GDI) представляют собой самый быстрорастущий рынок двигателей, но с возрастом этих двигателей связано много непредвиденных последствий — не только в двигателях Ford EcoBoost, но и во многих других. В этой статье я (поклонник Ford) подытожу вопросы редизайна Ford EcoBoost.

После коллективного иска 2013 года Ford объявил о выпуске в 2017 году «совершенно нового 3,5-литрового двигателя EcoBoost». Automotive News добавили, что модернизация двигателя Ford с чистого листа включала новый блок, головку блока цилиндров и турбины, а также новую систему впуска.

Можно сказать, что оригинальный двигатель Ford EcoBoost подпадает под категорию двигателей, срочно выпущенных на рынок. Почему бросились на рынок? В ответ на предписания с указанием сроков и штрафов за улучшение экономичности и выбросов производители иногда спешат с новыми технологиями. Конгресс США утвердил нормы корпоративной средней топливной экономичности (CAFE) для легковых и легких грузовиков, при этом требования были увеличены с шагом до «54,5 миль на галлон к 2025 году» (цифры в движении). Если OEM-производители не соблюдают эти требования, предусмотрены штрафы. Например, Mercedes-Benz заплатил CAFE штрафы в размере 30,3 млн долларов за 2006 год и 28,9 млн долларов США.миллионов на 2007 год.

Когда двигатель выводится на рынок в спешке, иногда можно упустить некоторые конструктивные особенности. Депозиты часто являются основной причиной для редизайна. Согласно документу SAE 2002-01-2659, «отложения в двигателе… являются наиболее важными из характеристик [конструкции двигателя]». В документе SAE 1999-01-3690 сообщается, что ранние двигатели GDI «страдали от серьезных проблем с отложениями, которые не могли быть преодолены в то время».

[lgc_column grid=»50″ table_grid=»50″ mobile_grid=»100″ last=»false»]

Рис. 1: Распределительный впрыск топлива (PFI)

[/lgc_column]
[lgc_column grid=»50″ table_grid=»50″ mobile_grid=»100″ last=»true»]

Рис. 2. Непосредственный впрыск бензина (GDI)

[/lgc_column]

была одна действительно большая проблема: в то время как впрыск топлива помогает промывать впускные клапаны (рис. 1), GDI распыляет бензин непосредственно в камеру сгорания без промывки впускных клапанов (рис. 2). В документе SAE 1999-01-1498 добавлено, что «IVD (отложения на впускных клапанах) неожиданно выше в двигателях GDI, чем в двигателях PFI… ожидается, что топливо не попадет (или будет очень мало) на клапаны двигателей GDI».

GDI впрыскивает бензин непосредственно в камеру сгорания под гораздо более высоким давлением (2200 фунтов на квадратный дюйм или более), чем распылитель во впускном коллекторе PFI (40-60 фунтов на квадратный дюйм). Увеличенное количество загрязняющих веществ GDI выбрасывается через поршневые кольца низкого напряжения в масляный картер. Затем принудительная вентиляция картера (PCV) пропускает насыщенные маслом загрязняющие вещества в поток всасываемого воздуха, где, согласно SAE Paper 2002-01-2660, пары и капли маслянистого картера PCV объединяются с углеродными частицами рециркуляции отработавших газов и нагреваются, образуя слой над липким воздухозаборником. покрытия клапанов и запекаются в отложениях. Это создает более крупные, твердые и твердые отложения в топливной системе.

Ford и другие OEM-производители объединили PFI с GDI для «усовершенствованного двухпортового и прямого впрыска», также известного как двойная подача топлива. Примеры включают:

  • Модернизированные двигатели Ford 3,5 л EcoBoost и V6
  • Двигатели Lexus 2GR-FSE
  • VW Group VW Group 3,0-литровый двигатель V-6 и 5,2-литровый двигатель V-10
  • 2,0-литровые рядные четырехцилиндровые двигатели Toyota производства Subaru, а также 3,5-литровые двигатели V6 D4-S и 5,0-литровые двигатели V-8.

Системы двойной подачи топлива с GDI и PFI пытаются объединить преимущества обеих систем, особенно с промывкой впускного клапана PFI, добавленной к повышенной экономии топлива и точности GDI. Но двухтопливная подача значительно увеличивает сложность и стоимость (см. рис. 3, Toyota D-4S [обратите внимание на желтые кружки] и рис. 4, Audi VW Group).

[lgc_column grid=»50″ table_grid=»50″ mobile_grid=»100″ last=»false»]

Рис. 3: Крупный план GDI и PFI на двигателе Toyota D-4S (обратите внимание на желтые кружки)

[/lgc_column][lgc_column grid=»50″ table_grid=»50″ mobile_grid=»100″ last=»true»]

Рис. 4: Audi

VW Group [/lgc_column]

Автор форума утверждал, что OEM-производители прибегая к комбинированному GDI и PFI, «наконец-то выбросили полотенце из-за нагара на впускных клапанах и добавили впрыск топлива в задний порт, который очищает клапаны бензином вместе с системой GDI».

Итак, Тэмми Нил задала интересный вопрос, когда мы обсуждали тему этой статьи. «То, что двигатель Ford был переработан с использованием этой новой технологии, означает ли это, что он действительно устраняет проблемы с GDI?» она спросила.

Это выжидательное предложение с историей неожиданных проблем GDI из-за непредвиденных последствий.

Помните, только потому, что Ford изменил конструкцию своего двигателя, проблемы с двигателем предыдущего поколения не исчезают навсегда на свалках.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *