Рубрики
Разное

Принцип работы лямбда зонд: Кислородный датчик (лямбда-зонд): устройство и принцип работы

Содержание

Лямбда-зонд, кислородный датчик: устройство и принцип работы

Лямбда зонд— один из многочисленных датчиков автомобиля, фиксирующий объем кислорода (02), оставшегося после сжигания горючей смеси в камере сгорания. Находится в системе выпуска возле катализатора (спереди и сзади), передает данные в ЭБУ для корректировки пропорции подготовленного горючего. Ниже рассмотрим, что это за устройство, для чего оно необходимо, и как работает. Отдельно разберемся с коэффициентом лямбда (λ) и его параметром, рассмотрим основные виды и особенности узла.

Оглавление

  1. Что такое лямбда-зонд (кислородный датчик), назначение
  2. Коэффициент избытка воздуха λ
  3. Конструкция и принцип работы кислородного датчика
  4. Ресурс лямбда-зонда и его неисправности
  5. Виды кислородных датчиков
  6. Итог

Что такое лямбда-зонд (кислородный датчик), назначение

Кислородный датчик (λ-зонд) — устройство, предназначенное для определения количества 02 в выхлопных газах. Обеспечивает эффективную работу ДВС, благодаря передаче сведений о содержании кислорода в блок управления. Последний, в свою очередь, корректирует состав топливовоздушной смеси.

Важно

При дефиците воздуха в топливе окисление угарного газа / углеводородов происходит не полностью, а при избытке оксиды азота не делятся на азот и кислород.

Интересно, что до прогрева двигателя до рабочей температуры сигналы с лямбда-датчика не принимаются ЭБУ из-за высокой погрешности. При этом в конструкции машины предусмотрено два таких элемента— передний и задний.

Первый установлен до катализатора и контролирует содержание О2в выхлопе, а второй — за ним. Лямбда зонд после катализатора применяется для корректировки состава и проверки работоспособности каталитического нейтрализатора. При этом основные функции берет на себя передний кислородный датчик.

Коэффициент избытка воздуха λ

При анализе работе двигателя часто применяется термин «стехиометрическое соотношение». Под ним подразумевается оптимальное соотношение кислорода и горючего, при котором подготовленная смесь полностью сгорает. На базе этого показателя рассчитываются режимы ДВС и особенности подачи горючего.

Идеальным считается отношение 14,7 к 1. Понятно, что 14,4 кг воздуха попадают в цилиндр не сразу, а в определенный временной промежуток.

Коэффициент λ показывает отношение реального объема кислорода, поступающего в цилиндр, к идеальному параметру (указан выше). Простыми словами, он показывает отклонение текущего количества воздуха от оптимального параметра.

С учетом полученного λ выделяется три варианта:

  • 1 — идеальное соотношение;
  • меньше 1 — дефицит кислорода и переизбыток бензина;
  • больше 1 — нехватка бензина и чрезмерное количество воздуха.

Современные ДВС способны работать во всех случаях, но отклонение от нормы сказывается на многих параметрах: ускорение, экономичность, уменьшение концентрации вредных компонентов и т. д. Оптимально, чтобы коэффициент λ был около 0,9-1.

Конструкция и принцип работы кислородного датчика

Лямбда датчик— сравнительно простой узел, состоящий из нескольких элементов, обеспечивающих измерение нужного параметра и его передачу в ЭБУ. Для примера рассмотрим λ-зонд на базе диоксида циркония. Он состоит из следующих компонентов:

  • два электрода с платиновым напылением: внешний и внутренний, контактирующие с отработавшими газами (ОГ) и окружающим воздухом соответственно;
  • нагреватель — подогревает устройство и быстрей доводит его 300-градусной рабочей температуры;
  • электролит — находится между электродами;
  • кожух — имеет перфорированную структуру для попадания ОГ;
  • проводка для передачи данных в ЭБУ.

Принцип работы датчика (лямбда зонда) построен на появлении разности потенциалов между электродами с платиновым напылением, отличающимися высокой чувствительностью к О2.

Напряжение появляется при нагреве электролитической жидкости, когда через нее идут кислородные ионы от ОГ и окружающего воздуха. Параметр разности потенциалов меняется с учетом объема О2в измеряемом материале.

При измерении возможны следующие варианты:

  • 0,1-0,45 В — обедненная смесь;
  • 0,45-0,9 В — обогащенный состав.

Оптимальным значением, соответствующим стехиометрическому параметру, является 0,45 В. Полученные данные направляются в ЭБУ, который анализирует поступившие сведения, а после дает команду системе впрыска на регулирование состава.

Ресурс лямбда-зонда и его неисправности

В процессе эксплуатации автомобиля λ-зонд находится под постоянно нагрузкой и подвержен износу. Из-за измерения качества ОГ его срок службы зависит от качества заливаемого горючего и исправности ДВС. В среднем кислородный датчик служит от 70 до 120 тысяч километров с возможной погрешностью в большую или меньшую сторону.

При поломке любого из λ-зондов ЭБУ фиксирует проблему и выдает ошибку с последующим зажиганием «CheckEngine» на приборной панели. Для выявления неисправности лямбда-зонда нужен сканер для диагностики, к примеру, Scan Tool Pro BlackE dition. В его функции входит проверка разного оборудования, а не только ДВС. Главное, что он контролирует показания датчиков в онлайн-режиме.

Если λ-зонд исправен, кривая имеет вид синусоиды, меняющей полярность где-то раз в одну секунду. В случае поломки форма сигнала меняется, или скорость отклика становится много меньше. К основным поломкам датчика стоит отнести:

  • естественный износ;
  • попадание внутрь грязи;
  • повреждение цепей питания нагревателя.

Причиной рассмотренных проблем может быть низкое качество бензина, перегрев, добавление неправильных присадок, замасливание детали и т. д. Распознать неисправность можно по появлению ошибки на приборной панели, снижении мощности, медленной реакции на акселератор и колебаниях оборотов при работе на холостых.

Особенность устройства в том, что оно редко подлежит ремонту, а лучший выход —замена лямбда зонда. При выборе устройства необходимо смотреть на рекомендации производителя и выбирать только совместимое оборудование.

Виды кислородных датчиков

  1. При выборе λ-зонда необходимо знать, что они бывают нескольких видов, отличающихся по конструктивным особенностям и эффективности работы. К основным типам стоит отнести:
  2. Устройства без нагревателя. Бывают 1- и 2-проводными. Встречались в старых моделях автомобилей. В 1-проводной конструкции применяется только один провод для подачи сигнала, а в 2-проводном — общий («земля») и основной. Такие устройства монтируются непосредственно возле выхода из ДВС. Недостаток — неудобное расположение и долгий набор рабочей температуры.
  3. Λ-зонд с нагревателем — 3-х или 4-проводный датчик с устройством, обеспечивающим быстрое достижение нужной температуры. Нагреватель представлен в виде сопротивления, которое греется при прохождении тока. Сами датчики стоят на выходе системы выхлопа и работают в оптимальном режиме. Во всех современных лямбда-устройствах предусмотрены нагревательные элементы.
  4. Плоскостные. В качестве активных компонентов применяется глинозем и цирконий. Такая конструкция способствует быстрому нагреву, снижении массы и точным данным. Среднее время нагрева — 5-13 секунд.
  5. FLO и UFLO—датчик с ускоренным разогревом со специальным нагревателем, обеспечивающим более быстрый набор нужной температуры. Для ее достижения нужно не больше 20 с, что позволяет уменьшить загрязнение от выхлопа.
  6. На базе диоксида титана. Такие λ-зонды, как правило, применялись на машинах Ниссан в 80-90-х годах и ряде других машин из Европы. Сегодня они не устанавливаются.
  7. Широкополосные — 5-проводные датчики с новой технологией контроля. Отличаются более высокой точностью, высокой скоростью регулировки и быстрым управлением зажиганием.
  8. Оригинальные —устанавливаются конкретными производителями и имеют индивидуальный каталожный номер. При их покупке нужно быть внимательным, чтобы избежать ошибки.
  9. Универсальные — подходят для всех авто, если учесть тип ДВС и модель λ-зонда. Иногда требуется внесение правок в проводку и разъем для подключения мотора. При наличии сомнений в выборе лучше купить лямбда зонд, который рекомендуется заводом-изготовителем (оригинальный вариант),

Итог

Важность кислородного датчика в автомобиле трудно переоценить, ведь от его работы зависит правильность подготовки рабочей смеси и главные параметры авто: экономичность, динамика, приемистость и другие.

Кроме того, неисправность этого узла может привести к выходу из строя других важных элементов двигателя и необходимости дорогостоящего ремонта. Вот почему при первых признаках неисправности λ-зонда нужно провести его диагностику, а при выявлении поломки сделать замену.

Лямбда зонд. Зачем нужен?

Устройство и принцип работы кислородного датчика

Содержание:

  • Роль коэффициента отработки воздуха в системе ДВС
  • Значения коэффициента избыточности воздуха. «Богатая» и «бедная» смеси
  • Лямбда-зонд: назначение
  • Назначение и устройство датчика кислорода
    • Где располагаются запчасти?
  • Устройство и принцип работы кислородного датчика
    • Устройство лямдба-зонда
    • Принцип работы лямбда-зонда для авто
  • Лямбда-зонд: виды
  • Виды материалов лямбда-зонда
    • Кислородный датчик из циркония
    • Титановый лямбда-зонд
  • Форма лямбда-зонда
  • Особенности применения широкополосных лямбда-зондов
  • Период работы и выявление недостатков
  • Почему ломается лямбда-зонд?

В современных автомобилях есть приборы, которые позволяют оценить влияние работы транспортного средства на окружающую среду. К числу таких устройств относится лямбда-зонд, который также называют кислородным датчиком. Его использование необходимо не только для улучшения ситуации в природе, но и оценки эффективности работы системы ДВС (двигателя внутреннего сгорания).

Роль коэффициента отработки воздуха в системе ДВС

Как известно, принцип работы автомобильного транспортного средства базируется на системе двигателя внутреннего сгорания: за счет потребления (расхода) сгораемого топлива автомобиль черпает энергию, помогающую ему управлять всеми двигательными процессами.

В работе системы ДВС учитывается пропорционное соотношение воздуха и топлива. Идеальное значение получило название стехиометрическое. При таком соотношении топливо в системе ДВС сгорает на 100%. Это не только обеспечивает безупречное движение и работу взаимосвязанных с ним систем, но еще и благоприятно сказывается на влиянии деятельности автомобиля на окружающую среду.

При стехиометрическом соотношении газы авто практически не влияют на загрязнение природы, а потому машина может эксплуатироваться долго и регулярно. Но чтобы обеспечить такое соотношение, производителям автомобиля следует исследовать показатели топливоподачи.

В стехиометрическом соотношении учитываются следующие параметры: 14,7:1, где 14,7 кг – это объем воздуха, а 1 кг – количество топлива, которое требуется для его идеального сгорания. В естественных условиях эксплуатации автомобиля очевидно, что невозможно обеспечить одновременное поступление в ДВС именно такого объема воздушной смеси. Поэтому создатели транспортных средств должны предусмотреть такой уровень топливоподачи, при котором соблюдение этого соотношения будет достигнуто в максимально короткий период.

Значения коэффициента избыточности воздуха. «Богатая» и «бедная» смеси

При расчете топливоподачи учитывают значение коэффициента избыточности воздуха. Он определяется как соотношение поступившего в двигатель газа к объему топливной смеси, необходимому для его полного сгорания. Этот коэффициент обозначается особым символом лямбда («λ»). Значения коэффициента:

 Лямбда равна нулю. В таком случае речь идет о достижении стехиометрического соотношения, при котором топливо полностью сгорает в системе двигателя, обеспечивая оптимальные ходовые качества транспортному средству.

 Лямбда больше нуля. Здесь речь идет о так называемой «богатой», или перенасыщенной смеси. Причем под «богатым» понимается превышение доли топлива над количеством кислорода, используемого для сгорания этого топлива.

 Лямбда меньше нуля. И наоборот: если воздуха в топливовоздушной смеси больше, чем требуется для полного сгорания топлива, смесь считается «бедной».

В зависимости от получившихся расчетов используются 3 системы двигателей, каждая из которых направлена на оптимизацию ходовой активности авто и уменьшение негативного влияния машины на окружающую среду, которое осуществляется за счет выброса газов – результатов переработки топливовоздушной смеси. Виды двигателей, применяемых в зависимости от значения коэффициента избыточности:

 1 тип – экономия топлива;

 2 тип – интенсивное ускорение подачи топлива;

 3 тип – снижение доли вредных примесей в составе топливовоздушной смеси.

Учитывая, какое важное влияние оказывает соотношение отдельных элементов топливовоздушной смеси, в автомобилях используется отдельный прибор, задача которого – определить, правильно ли соблюдаются пропорции. Этот прибор носит название лямбда-зонд, которое связано непосредственно с символом, обозначающим значение коэффициента избыточности воздуха.

Лямбда-зонд: назначение

Лямбда-зонд создан, чтобы определять уровень кислорода в газах после сгорания топливной смеси. Передача информации осуществляется через электронный блок, созданный для управления системой ДВС.

Еще одно предназначение, объясняющее, как работает лямбда-зонд, связано с подготовкой смеси для фильтрации в катализаторе. Так как лямбда-зонд измеряет соотношение уровня кислорода и топлива в ДВС, то при разбалансировке в электронный блок подается соответствующий сигнал о том, что нужно увеличить или, наоборот, уменьшить количество топлива в системе. Когда пропорции идеальные, то есть наблюдается стехиометрическое соотношение, двигатель работает в оптимальном режиме, а потому нагрузка на катализатор снижается.

В конечном итоге выброс вредных веществ, которые появляются при сгорании переизбытков топлива в ДВС, сводится к минимуму. Это положительно сказывается на уровне загрязнения окружающей среды: воздействие выхлопных газов уменьшается.

Назначение и устройство датчика кислорода

Учитывая многозадачность современных транспортных средств, во многих устройствах используется не один, а 2 или даже 4 лямбда-зонда. Чем они отличаются и для чего требуется сразу несколько приборов:

 Основная задача первого лямбда-зонда сводится к расчету соотношения уровня горючего и кислорода в ДВС. То есть, первичный кислородный датчик выполняет свою прямую функцию – измерение пропорций и стремление к достижению стехиометрического соотношения.

 Второй лямбда-зонд нужен для упрощения работы катализатора. Учитывая возможные «погрешности», которые могут возникать при избытке или недостатке топлива в смеси, второй лямбда-зонд осуществляет повторную проверку соотношения, тем самым подготавливая смесь для катализатора.

Если второй кислородный датчик отсутствует, то все обязанности берет на себя единственное устройство. В таком случае нельзя с уверенностью сказать, что катализатор будет работать на полную мощность: случаи, когда этот прибор выходил из строя раньше положенного срока, не являются редкостью. Поэтому в тех автомобилях, где установлено 2 лямбда-зонда, объем вредных выхлопных газов минимален, а сам катализатор работает максимально продолжительный срок (при отсутствии заводских дефектов и разрушающих факторов).

Учитывая принцип работы обоих устройств, то есть первого и второго лямбда-зондов, первый располагается непосредственно перед нейтрализатором, а второй – после. Симбиоз устройств обеспечивает слаженную работу ДВС и катализатора, что положительно сказывается на работе всего автомобиля.

В некоторых автомобилях количество лямбда-зондов еще больше. Максимально в настоящее время встречается 4 устройства в составе одного транспортного средства. Количество приборов напрямую связано с тем, каков объем мотора. В машине с объемом мотора 2 литра и менее, как правило, располагается 2 устройства. Если у двигателя объем превышает 2 литра, то используются целых 4 прибора.

Один прибор встречается крайне редко. Его можно увидеть на устаревших моделях бюджетных марок, которые были выпущены 15-20 лет назад. У более старых, но дорогих автомобилей, как правило, уже установлено 2 и более приборов.

Где располагаются запчасти?

Чтобы узнать, сколько лямбда-зондов предусмотрено в модели вашего автомобиля, изучите инструкцию по эксплуатации или журналы, рассказывающие про самостоятельный ремонт транспортных средств. Проверку запчастей также можно осуществить в ближайшей мастерской.

Тем, кто хочет самостоятельно найти этот прибор, следует сделать следующее:

 Откройте капот автомобиля.

 Перейдите к месту, где располагается двигатель. Его несложно отыскать: устройство обычно располагается в центральной части под капотом, в специальной коробке с плотно закрытой крышкой.

 Изучите приводящие к двигателю элементы. Обратите внимание на выпускной коллектор. Это большие массивные трубы, располагающиеся в непосредственной близости от двигателя.

 В нижней части трубы следует поискать небольшой элемент цилиндрической формы. Он и представляет собой лямбда-зонд, который вы ищите. Если таких приборов несколько, то они будут располагаться рядом друг с другом. Расположение второго прибора не так просто найти. Он будет в нижней части автомобиля, в выпускной системе.

Соответственно, там, где предусмотрено целых 4 детали, вы увидите симметрично расположенные 4 элемента. Главное – не пытаться самостоятельно исправить работу приборов, если нет навыка в ремонте транспортных средств. Выход из строя кислородного датчика негативно сказывается на работе многих систем, поэтому лучше доверить решение этого вопроса профессиональным мастерам.

Устройство и принцип работы кислородного датчика

Чтобы понять, что представляет собой этот элемент, какую роль он играет в работе всей системы двигателя внутреннего сгорания, следует изучить его составляющие и их взаимосвязь с другими элементами.

Устройство лямдба-зонда

В зависимости от вида кислородного датчика его устройство, внешний вид и специфика работы будут незначительно различаться. Самый популярный вид прибора – циркониевый, его структура следующая:

 Электроды. У классического устройства их два. Один контактирует с окружающей средой, другой предоставляет доступ к внутренней системе агрегата. Основной объем работы выполняет внешний элемент. Именно через него происходит контакт запчастей с выхлопными газами, которые сами по себе являются разрушающим элементом. Внутренний электрод контактирует с кислородом, который высвобождается или, напротив, заполняет смесь в случае недостатка/избытка топлива.

 Нагревательный элемент. Самые первые датчики выпускались без него. Но сейчас все современные лямбда-зонды оснащены этим агрегатом. Нагревательный элемент позволяет устройству быстро достичь оптимальной температуры, которая требуется для запуска его системы. В зависимости от вида лямбда-зонда есть различные типы элементов. В нашем случае используется нагреватель, который должен прогреть деталь минимум до 300°C. Если температура будет недостаточно низкой, кислородный датчик будет показывать некорректное значение.

 Электролит – диоксид циркония. Он является важнейшим элементом, который проводит ток, необходимый для обеспечения работы лямбда-зонда. В иных приборах роль электролита выполняет титановый сплав.

 Кожух наконечника. На его поверхности предусмотрена специальная перфорация, которая улучшает проникновение отработанных газов в катализатор.

 Корпус. Обычно изготавливается из стали с уплотнителями на концах.

Зная состав и структуру лямбда-зонда, можно понять, каким образом осуществляется контроль над состоянием газа и топлива. Эти сведения помогают водителям своевременно «считывать» тревожные сигналы, возникающие при выходе запчастей из строя.

Если лямбда-зонд работает в полную силу, то сгорание топлива осуществляется наиболее эффективно. Это отражается на ходовой характеристике и плавности движения. И напротив: малейшие отклонения в кислородном датчике могут привести к тому, что автомобиль становится чересчур инертным, резким, слишком медленным и т.д.

Принцип работы лямбда-зонда для авто

Основной принцип работы лямбда-зонда базируется на следующем:

 оценка уровня топлива в смеси;

 передача данных в электрический блок;

 корректировка уровня кислорода в смеси;

 высвобождение газов и их подготовка к катализатору;

 защита катализатора от агрессивного воздействия продуктов горения.

Основной принцип работы этого устройства базируется на том, чтобы определить соотношение топлива и кислорода в топливовоздушной смеси. Если уровень одного из элементов не находится в рамках норматива (стехиометрическое соотношение), лямбда-зонд подает сигнал в электронный блок для корректировки проблемы.

После подачи сигнала осуществляется высвобождение излишнего кислорода или, напротив, насыщение воздухом. Такой способ позволяет поддерживать оптимальный баланс в системе ДВС, что положительно сказывается на работе мотора.

Лямбда-зонд: виды

Кислородные датчики бывают нескольких видов. Они классифицируются по ряду признаков:

 Материал.

 Форма.

 Конструкция.

Благодаря такой классификации можно без труда определить, какой тип устройства используется в вашем автомобиле. Это может пригодиться в том случае, если требуется срочная замена элемента или кратковременный ремонт. Лицам с навыками автомобильного мастера не составит труда исправить погрешность под капотом автомобиля, но только в том случае, если они будут знать, как устроены детали и чем они отличаются от остальных элементов.

Виды материалов лямбда-зонда

Среди материалов, используемых при создании лямбда-зонда, выделяют титан и цирконий. Самым распространенным видом кислородного датчика считается лямбда-зонд, изготовленный из циркония. В составе материала (база) – диоксид циркония. Также при создании используется другой элемент – оксид иттрия. На поверхности лямбда-зонда располагаются мелкие электроды. Они выполнены из платины. Этот материал идеально подходит для реакций окислительно-восстановительного характера.

Кислородный датчик из циркония

Циркониевый лямбда-зонд довольно устойчив к воздействию внешних факторов. Его оболочка находится в непосредственном контакте с окружающей средой, которая состоит из газов, полученных в результате реакций в ДВС. Внутренняя часть прибора взаимодействует с воздухом. В сам кислородный датчик воздух также попадает, что является нормой. Это необходимо для обеспечения оптимальной работы системы.

В составе элемента также есть нагревательный прибор, который представляет собой керамический изолятор. Без этого прибора кислородный датчик будет попросту неисправен, так как для обеспечения оптимального функционирования запчастей требуется достижение определенной температуры. Она составляет 300-400°C. Если керамический изолятор с функцией нагревания не позволит достигнуть указанных параметров температурного режима, не исключено, что система будет выдавать ошибку (например, показывать недостаточный уровень топлива в составе топливовоздушной смеси).

Несмотря на жесткие требования к соблюдению температурного режима, необходимого для корректной работы устройства, не нужно допускать его перегрева. Если температура зонда достигнет 950°C, устройство попросту выйдет из строя. В таком случае ремонт будет бессилен: придется менять неисправный элемент на новый, так как при такой температуре важнейшие элементы лямбда-зонда сгорают.

При эксплуатации и замене неисправного либо устаревшего лямбда-зонда стоит учитывать, что циркониевый элемент не предусматривает присоединение дополнительных приводящих проводов. Это приведет к появлению дисбаланса: по новым каналам будет поступать дополнительный кислород, что скажется на качестве сигнала и работы запчастей. Иными словами, если мастер по ошибке решить присоединить к кислородному циркониевому датчику дополнительные провода, то он попросту перестанет показывать корректную информацию, что приведет к неправильному соотношению уровня топлива и кислорода, увеличению потребления топлива и росту объемов выхлопа загрязняющих веществ.

Титановый лямбда-зонд

Второй вид материала, используемый при создании кислородного датчика, – это титан. По своему внешнему виду и принципу работы он во многом схож с предыдущей моделью, однако базу составляет диоксид не циркония, а титана.

Информация о соотношении элементов в системе топливовоздушной смеси передается благодаря изменению уровня проводимости. Эти сведения поступают в электронный блок, который затем распределяет необходимое количество топлива для корректировки получившегося значения.

Еще одно различие между титановым и циркониевым лямбда-зондом заключается в том, что для работы первого устройства требуется более высокая температура. Чтобы привести прибор в действие, он должен нагреться минимум на 700°C. Также устройство осуществляет свою работу без дополнительного контакта с кислородом, за исключением процессов, которые происходят внутри самого датчика (анализ соотношения топлива и кислорода и отправка полученных сведений).

Титановый датчик считается менее удобным. Он дольше нагревается, требует более высокой температуры, а потому используется лишь в нескольких авто. В большинстве моделей современных транспортных средств используется циркониевый вариант.

Форма лямбда-зонда

Кислородные датчики классифицируются в зависимости от ширины, поэтому среди них выделяют широко- и узкополосные запчасти. В первом случае речь идет о приборе современного плана. Он используется и на входе, и на выходе, а потому считается универсальным.

Особенности такого лямбда-зонда – выявление цифровых отклонений от нормы. То есть, широкополосный лямбда-зонд предназначен для точного расчета соотношения между кислородом и топливом. Он позволяет с легкостью определить, является ли смесь «богатой» или «бедной», а также подает сигналы в электрический блок, какая именно корректировка позволит достичь стехиометрического соотношения.

Такие элементы могут быть установлены и на двигатели, которые используют «обедненную» смесь. Благодаря своим свойствам широкополосные датчики нагреваются так же, как и титановые. Их средняя температура для активации работы составляет 650°C.

Основное преимущество такого датчика – своевременная регулировка смеси. За счет наличия насосной и измерительной систем осуществляется замер показателей, а затем их корректировка. Как это работает:

 Прибор измеряет состав смеси.

 Показатели сравниваются с рекомендованными значениями. У каждого транспортного средства есть свои особенности работы системы ДВС, поэтому у некоторых автомобилей данные могут почти всегда быть в норме, в то время как у других – «скакать» в том или ином направлении.

 Если смесь «бедная», то осуществляется высвобождение излишне накопившегося воздуха из системы.

 При избытке топлива датчик подает сигнал к электронному блоку, в результате чего осуществляется обогащение кислородом из окружающей среды.

Реакция в системе происходит благодаря измерению напряжения тока. В случае «бедной» смеси, в составе которой преобладает кислород, напряжение увеличивается. И, напротив, для «обогащенной» смеси является нормой снижение уровня напряжения, что является свидетельством того, что пора пополнять запасы газа из внешних источников.

Учитывая сложность процессов, чтобы перемещение кислорода из системы и обратно происходило быстро и без проблем, откачка и наполнение воздухом осуществляется через специальное отверстие. Оно называется диффузионным зазором. Когда кислород высвобождается (а также при обратном процессе), направление тока меняется, как и напряжение в устройстве.

Последние 5 лет преимущественно используются широкополосные датчики. Они более точные и надежные, так как оснащены сверхчувствительными элементами на поверхности лямбда-зонда. Узкополосные зонды учитывают лишь значимые изменения в составе смеси. Если кислород или топливо имеют малый дефицит, прибор все равно будет показывать, что показатели находятся в пределах нормы. Поэтому катализаторы, рядом с которыми установлены узкополосные лямбда-зонды, служат меньше, чем элементы с широкополосными системами.

Особенности применения широкополосных лямбда-зондов

Несмотря на то, что широкополосные устройства показывают определенный уровень напряжения, который принимается за норму, на самом деле в самих датчиках напряжение отсутствует. Продемонстрированные данные – не что иное, как внутренняя система измерителей. То есть прибор попросту отображает определенный норматив, именуемый напряжением, при отклонении от которого происходит некорректная работа в системе ДВС.

За отклонение принимается «обеднение» или «перенасыщение» топливом. И то, и иное не является нормой и подлежит немедленной корректировке, если владелец авто не хочет в будущем иметь проблемы с работой двигателя и его негативным влиянием на окружающую среду.

Чтение напряжения, которое показывает лямбда-зонд, – процесс субъективный. Здесь имеет значение, о каком автомобиле идет речь, какой тип двигателя используется. Все это влияет на исходные данные, которые будет показывать система. Поэтому не следует сравнивать значение, полученное на автомобиле российской марки, с показателями иномарок и наоборот.

Узнать, какое значение лямбда-зонда является нормативом можно в инструкции. Опытные автомобильные мастера, которые специализируются на решении проблем с системой ДВС и ее прилегающими элементами, помогут разобраться со значением для владельцев старых, эксклюзивных или неисправных автомобилей.

Период работы и выявление недостатков

Зная, как работает лямбда-зонд, можно без труда определить состояние этого агрегата в случае отклонения от нормы. В среднем, менять прибор нужно каждые 100 тыс. км пробега. Но порой замена элемента требуется уже через 50 тыс.

Быстрый выход из строя можно назвать особенностью этого агрегата. Так как кислородный датчик регулярно контактирует с газами, получившимися в результате горения топлива, это негативно сказывается на состоянии самого прибора.

Учитывая тот факт, что электронное управление автомобиля находится в тесной взаимосвязи с этим устройством, узнать о возникновении проблем с лямбда-зондом несложно. Если он вышел из строя, на экране появится соответствующая ошибка – загорится лампа Check Engine. Однако лампа может загореться и при выходе из строя иных запчастей, поэтому для моментального и максимального точного определения проблемы можно использовать специальный сканер. Пример — Scan Tool Pro Black Edition. Он подключается к электронному блоку и позволяет «считать» информацию о том, какие именно запчасти требуют срочного ремонта или замены.

Кроме основного признака, позволяющего определить неисправность этого прибора, есть и косвенные факторы. Среди них стоит упомянуть:

 падение мощности двигателя в процессе нажатия на педаль газа. Нельзя считать появление этого признака свидетельством того, что лямбда-зонд вышел из строя. Иногда работа ДВС может быть нарушена банальным скачком в электросети, отсутствием достаточного уровня топлива, перегревом и иными факторами, которые можно исправить спустя некоторое время, дав автомобилю отдохнуть без движения;

 снижение уровня чувствительности акселератора. Зачастую этот фактор проявляется одновременно с предыдущим признаком. Когда нажатие на газ осуществляется с задержкой, возможно, это связано со снижением уровня работы лямбда-зонда;

 «скачки» на дороге, не связанные с наличием плохого дорожного полотна. Так называемое «рваное движение» — один из явных признаков того, что в работе системы ДВС есть определенные сбои. Также этот признак может указывать на проблемы с лямбда-зондом, который нужно менять каждые 50-150 тыс. км пробега.

Наличие одного признака не является гарантией, что ваш кислородный датчик вышел из строя. Но если все факторы имеют место быть, а также загорается лампочка электронного блока, с уверенностью 80% можно сказать, что следует посмотреть состояние лямбда-зонда.

Почему ломается лямбда-зонд?

Причин выхода из строя этого элемента несколько. Среди самых распространенных:

 Естественное старение прибора. Кислородный датчик рассчитан на определенное количество циклов. Если система работает слаженно, то есть автомобиль эксплуатируется на допустимой мощности, не возникает перегрузок или сбоев, то можно использовать лямбда-зонд на протяжении 150 тыс. км пробега и даже больше. Но у старых авто или машин с явными недостатками в работе ДВС срок применения этого агрегата обычно ниже в 2-3 раза и может составлять всего 45-50 тыс. км.

 Проблемы с электричеством. Когда цепь обрывается, связь с устройством может быть потеряна. Зачастую это случается при ДТП или затоплении автомобиля. В обоих случаях необходимо сразу позаботиться о замене неисправного элемента.

 Попадание инородных тел. Несмотря на то, что кислородный датчик в основном контактирует с газами после процесса горения, некоторые его виды осуществляют взаимодействие и с внешними газами – то есть кислородом из окружающей среды. Если диффузионный заслон загрязняется, это приводит к ухудшению работы системы и требует немедленной очистки.

Независимо от причины, которая привела к выходу устройства из строя, следует заняться его ремонтом или заменой в кратчайшие сроки. Этот агрегат играет важную роль в системе ДВС. Он не только «подает сигналы» в блок управления, но и контролирует соотношение топлива и кислорода. Правильная балансировка обеспечивает оптимальный уровень сгорания, при котором количество выделяемых в атмосферу примесей сводится к минимуму, и при этом двигатель осуществляет свою работу более слаженно.

Выбрать инструктора:

  • Автоинструктор Юрий

  • Автоинструктор Яков

  • Автоинструктор Виктор

  • Автоинструктор Оксана

  • Автоинструктор Светлана

  • Автоинструктор Дмитрий

  • Автоинструктор Майя

  • Автоинструктор Светлана

  • Автоинструктор Алексей

  • Автоинструктор Екатерина

Отзывы:

    Все отзывы

    Бинарный лямбда-зонд | Mein Autolexikon

    Лямбда-зонд — это датчик концентрации кислорода, который измеряет разницу в содержании кислорода между выхлопными газами и окружающим воздухом для обеспечения оптимального состава смеси. Одним из типов лямбда-зондов является бинарный лямбда-зонд.

    Назначение

    Лямбда-зонд измеряет остаточное содержание кислорода в выхлопных газах. Он выдает сигнал напряжения на основе остаточного кислорода, содержащегося в отработавших газах. Блок управления двигателем использует этот сигнал напряжения для определения текущего состава смеси. В бинарных лямбда-зондах сигнал датчика переключается между двумя значениями. В зависимости от состава количество впрыскиваемого топлива уменьшается (богатая смесь) или увеличивается (бедная смесь).

    Различают два типа бинарных лямбда-зондов: диоксид циркония и диоксид титана. Лямбда-зонд из диоксида циркония является наиболее широко используемым типом.

    Принцип работы бинарного датчика из диоксида циркония

    Чувствительный элемент из диоксида циркония имеет форму пальца и полый. Внутренняя сторона находится в контакте с окружающим воздухом, внешняя сторона находится в потоке выхлопных газов. Обе стороны покрыты тонким пористым слоем платины, который действует как электрод. Когда бинарный датчик из диоксида циркония достигает своей рабочей температуры, ионы кислорода начинают течь из-за разницы в концентрации кислорода. Ионы кислорода движутся от эталонной стороны в направлении выхлопных газов, чтобы уравновесить это. Из-за результирующей разности потенциалов (напряжения между двумя электрически заряженными телами) к платиновым электродам прикладывается напряжение. Сигнал датчика составляет примерно 0,1 В для бедной смеси и 0,9 В для обедненной смеси.V — богатая смесь.

    Принцип работы бинарного датчика из диоксида титана

    В отличие от бинарных датчиков из диоксида циркония, бинарные датчики из диоксида титана фактически не создают никакого напряжения. Вместо этого их сопротивление изменяется в зависимости от концентрации остаточного кислорода в отработавших газах. Бинарные датчики на основе диоксида титана не нуждаются в эталонном воздухе. Диоксид титана менее электропроводен при высоком содержании кислорода (лямбда больше 1) и более электропроводен при низком содержании кислорода (лямбда меньше 1). Если на элемент подается напряжение, выходное напряжение изменяется в соответствии с концентрацией кислорода в отработавших газах. Рабочая температура этих лямбда-зондов составляет 700°C. Бинарный датчик на основе диоксида титана обычно более компактен, чем версия на основе диоксида циркония, так как он не требует окружающего воздуха в качестве эталона.

    Охрана окружающей среды

    Лямбда-зонды необходимы для эффективного преобразования выхлопных газов. В более современных автомобилях часто используются два лямбда-зонда.

    Лямбда-зонды подвергаются экстремальным нагрузкам. Исправный лямбда-зонд является необходимым условием надежной работы двигателя и, следовательно, следующих трех факторов:

    • Низкий расход топлива
    • Низкий уровень выбросов загрязняющих веществ
    • Правильные значения выбросов

    Своевременная замена лямбда-зонда может не только предотвратить дорогостоящее повреждение каталитического нейтрализатора, но и улучшить работу автомобиля.

    Циркониевый датчик кислорода — датчики

    Функции JavaScript вашего браузера аннулированы. Наш сайт использует JavaScript.
    Пожалуйста, включите JavaScript и обновите страницу для просмотра нашего веб-сайта.

    

    • ДОМ
    • Продукты
    • Датчики
    • Циркониевый датчик кислорода

    Распечатать эту страницу

    О циркониевом кислородном датчике

    Этот датчик используется для контроля соотношения воздух-топливо в выхлопных газах.

    Что такое датчик кислорода…?

    Пористые электроды размещаются с двух сторон циркониевого керамического элемента. Когда одна сторона подвергается воздействию воздуха, а противоположная сторона — выхлопным газам, возникает напряжение в ответ на разницу в концентрации O 2 . Это свойство можно использовать для управления соотношением воздух-топливо.

    Верхний рисунок ниже иллюстрирует поведение кислородного датчика в богатой смеси (избыток топлива, низкая концентрация O 2 ). При высоких температурах диоксид циркония проводит ионы кислорода, что позволяет ионам кислорода перетекать из воздуха с высокой концентрацией O 2 в воздух с низкой концентрацией O 2 на выпускной стороне керамики. Поскольку эти ионы заряжены отрицательно, между двумя электродами возникает электродвижущая сила. В бедных выхлопных газах (меньше топлива, высокое содержание O 2 ), разница в концентрации O 2 между двумя электродами невелика, поэтому электродвижущая сила не генерируется (правый рисунок).

    Компонент и функция

    1. Циркониевый элемент

      Генерация выходного напряжения в ответ на концентрацию O 2 .

    2. Керамический нагреватель

      Нагрев элемента

    3. Фильтр

      Дышащий, водонепроницаемый фильтр. Эталонный воздух поступает через фильтр.

    4. Защитная трубка

      Защищайте элемент от скорости газа или выхлопных газов посторонних материалов.

    5. Подводящий провод

      Передача сигнала с датчика на блок управления двигателем

    Для автомобильного применения

    Чтобы соответствовать строгим нормам по выбросам, каталитический нейтрализатор (CAT) должен максимально эффективно очищать выхлопные газы. CAT наиболее эффективен при стехиометрическом соотношении воздух-топливо (точка полного сгорания), как показано на рисунке справа, поэтому управление подачей топлива в узком окне вокруг этой точки дает самый чистый выхлопной газ.

    Поскольку циркониевый кислородный датчик выдает от 0 до 1 вольта, в зависимости от концентрации выхлопных газов O 2 , сигнал датчика можно использовать для управления впрыском топлива и обеспечения почти стехиометрического сгорания, что приводит к чистоте выхлопных газов. Кислородные датчики также используются после каталитического нейтрализатора с целью диагностики его работы и обнаружения ухудшения CAT. В современных автомобилях на каждом ряду выхлопных газов используется один верхний и один нижний датчики. Таким образом, автомобиль, оснащенный двигателем V8, будет использовать в общей сложности четыре кислородных датчика.

    Для мотоциклов

    Ужесточаются нормы выбросов для мотоциклов. Растет спрос на системы контроля выбросов с контролем соотношения воздух-топливо и каталитическими нейтрализаторами, подобные тем, которые используются в автомобилях. Датчики без обогрева можно использовать на мотоциклах, где датчик установлен в месте с высокой температурой рядом с двигателем, а датчики с подогревом доступны для установок, где выхлопные газы более холодные.

    Прочее

    Кислородные датчики также используются для контроля горения в недорожных устройствах, таких как небольшие двигатели, газонокосилки, генераторы, а также в сельском хозяйстве и промышленности.

    Основная продукция

    OZAS®-S2

    Применение

    Являясь центральным компонентом систем очистки отработавших газов, кислородные датчики являются наиболее часто используемым методом контроля соотношения воздух-топливо. Они обеспечивают высокую производительность и надежность в соответствии со строгими нормами выбросов.

    Характеристики
    • Повышенная термостойкость по сравнению с предыдущей конструкцией, позволяющая использовать его в суровых условиях высоких температур
    • Значительное улучшение устойчивости к отравлению для увеличения срока службы
    • Быстрая активация (8 сек)
    • Подходит для использования после каталитического нейтрализатора
    • Сравнение времени активации
      Выходное напряжение датчика

      (6,3 МБ)

    OZAS®-S1

    Применение

    Предыдущая конструкция циркониевого датчика кислорода

    Особенности
    • Этот датчик наиболее часто используется на рынке среди датчиков NTK. И он широко используется не только в развитых странах с более жестким регулированием выбросов, но и во всем мире.

    ZFAS®-S4 (малый с подогревом)

    Область применения

    Небольшой и легкий кислородный датчик с подогревом для таких применений, как мотоциклы с ограниченным пространством для установки. Конструкция корпуса датчика значительно меньше, чем у обычных датчиков кислорода, таких как OZAS®-S2. Плоский элемент включен для быстрой активации.

    Особенности
    • Ламинированная конструкция плоского элемента для малого размера и легкого веса
    • Конструкция, устойчивая к сильной вибрации, оптимизированная для мотоциклов с высокими оборотами
    • Монолитный элемент и нагреватель для низкого энергопотребления и быстрой активации, что очень важно для соблюдения будущих норм выбросов.
    • Сравнение конструкции с автомобильным датчиком

      (5,3 МБ)

    OZAS®-S5 (маленький, без подогрева)

    Применение

    Небольшой датчик кислорода без подогрева, который использует тепло выхлопных газов и не требует электропитания. Его использование расширяется в мотоциклах с высокотемпературными выхлопными газами. Небольшой корпус датчика обеспечивает гибкость при установке.

    Характеристики
    • В конструкции без обогрева используется тепло выхлопных газов, что снижает потребление электроэнергии нагревателем.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *