Рубрики
Разное

Мощность двигателя от чего зависит: Мощность электродвигателя | Полезные статьи

Содержание

Электродвигатель постоянного тока

  • Постоянная момента
  • Постоянная ЭДС
  • Постоянная электродвигателя
  • Жесткость механической характеристики
  • Напряжение электродвигателя
  • Мощность электродвигателя постоянного тока
  • Механическая постоянная времени

Постоянная момента

,

  • где M — момент электродвигателя, Нм,
  • – постоянная момента, Н∙м/А,
  • I — сила тока, А

Постоянная ЭДС

Направление ЭДС определяется по правилу правой руки. Направление наводимой ЭДС противоположно направлению протекающего в проводнике тока.

Наведенная ЭДС последовательно изменяется по направлению из-за перемещения проводников в магнитном поле. Суммарная ЭДС, равная сумме ЭДС в каждой катушке, прикладывается к внешним выводам двигателя. Это и есть противо-ЭДС. Направление противо-ЭДС противоположно приложенному к двигателю напряжению. Значение противо-ЭДС пропорционально частоте вращения и определяется из следующего выражения: [1]

,

  • где — электродвижущая сила, В,
  • – постоянная ЭДС, В∙с/рад,
  • — угловая частота, рад/с

Постоянные момента и ЭДС в точности равны между собой KT = KE. Постоянные KT и KE равны друг другу, если они определены в единой системе едениц.

Постоянная электродвигателя

Одним из основных параметров электродвигателя постоянного тока является постоянная электродвигателя Kм. Постоянная электродвигателя определяет способность электродвигателя преобразовывать электрическую энергию в механическую.

,

  • где — постоянная электродвигателя, Нм/√Вт,
  • R — сопротивление обмоток, Ом,
  • – максимальный момент, Нм,
  • — мощность потребляемая при максимальном моменте, Вт

Справка: Постоянная электродвигателя вместе с размерами электродвигателя являются основными параметрами для инженера при выборе электродвигателя с лучшим соотношением мощность / объем.

Постоянная электродвигателя не зависит от соединения обмоток, при условии, что используется один и тот же материал проводника. Например, обмотка двигателя с 6 ветками и 2 параллельными проводами вместо 12 одиночных проводов удвоят постоянную ЭДС, при этом постоянная электродвигателя останется не изменой.

Жесткость механической характеристики двигателя

,

  • где — жесткость механической характеристики электродвигателя постоянного тока

Напряжение электродвигателя

Уравнение баланса напряжений на зажимах двигателя постоянного тока имеет вид (в случае коллекторного двигателя не учитывается падение напряжения в щеточно-коллекторном узле):

,

  • где U — напряжение, В.

Уравнение напряжения выраженное через момент двигателя будет выглядеть следующим образом:

Соотношение между моментом и частотой вращения при двух различных напряжениях питания двигателя постоянного тока неизменно. При увеличении частоты вращения момент линейно уменьшается. Наклон этой функции KTKE/R постоянный и не зависит от значения напряжения питания и частоты вращения двигателя.

Благодаря таким характеристикам упрощается управление частотой вращения и углом поворота двигателей постоянного тока. Это характерно для коллекторных и вентильных двигателей постоянного тока, что нельзя сказать о двигателях переменного тока и шаговых двигателях [1].

Мощность электродвигателя постоянного тока

Упрощенная модель электродвигателя выглядит следующим образом:

  • где I – сила тока, А
  • U — напряжение, В,
  • M — момент электродвигателя, Н∙м
  • R — сопротивление токопроводящих элементов, Ом,
  • L — индуктивность, Гн,
  • Pэл — электрическая мощность (подведенная), Вт
  • Pмех — механическая мощность (полезная), Вт
  • Pтеп — тепловые потери, Вт
  • Pинд — мощность затрачиваемая на заряд катушки индуктивности, Вт
  • Pтр — потери на трение, Вт

Механическая постоянная времени

Механическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое частота вращения ненагруженного электродвигателя достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

  • где — механическая постоянная времени, с

Смотрите также

Основные параметры электродвигателя

Общие параметры для всех электродвигателей

  • Момент электродвигателя
  • Мощность электродвигателя
  • Коэффициент полезного действия
  • Номинальная частота вращения
  • Момент инерции ротора
  • Номинальное напряжение
  • Электрическая постоянная времени

    Библиографический список

  • Т.Кенио, С.Нагамори. Двигатели постоянного тока с постоянными магнитами: Пер. с англ.-М.: Энергоатомиздат, 1989.

Основные показатели двигателя и его характеристика

Основные показатели двигателя и его характеристика

В двигателе внутреннего сгорания газы, образующиеся при сгорании смеси, перемещая поршни, совершают полезную работу, и двигатель развивает определенную мощность. Мощностью называется работа (в кГ •м), производимая в единицу времени (в 1 сек).

Рис. 1. Схема возникновения крутильных колебаний вала и гаситель крутильных колебаний

Мощность, развиваемая газами внутри цилиндров двигателя, называется индикаторной мощностью. Мощность, которая может быть снята с коленчатого вала двигателя и использована для осуществления движения автомобиля, называется эффективной мощностью.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Часть давления, развиваемого газами внутри цилиндров, затрачивается на преодоление внутренних потерь в двигателе, на трение между деталями (в основном поршней о стенки цилиндров и в подшипниках коленчатого вала) и на приведение в действие ряда механизмов двигателя (вентилятора, водяного насоса и т. п.). Поэтому эффективная мощность, снимаемая с коленчатого вала двигателя, всегда будет меньше индикаторной мощности, развиваемой газами внутри цилиндров, на величину указанных внутренних потерь.

Эффективная мощность двигателя зависит от величины силы давления газов внутри цилиндров. При увеличении давления газов мощность возрастает. Давление газов в цилиндре при рабочем ходе является переменной величиной. Например, в карбюраторных двигателях давление газов изменяется от наибольшего значения 25—30 кГ/см2 в начале рабочего хода до наименьшего значения 3—4 кГ/см2 в его конце. При подсчете мощности двигателя принимается некоторое среднее постоянное значение давления газов, которое производит ту же работу за цикл, что и переменное действительное давление газов. Величина этого давления зависит от количества горючей смеси, поступающей в цилиндры, от ее состава и т. д., т. е. от режима работы двигателя.

Величина среднего давления газов с учетом внутренних потерь, при полной подаче горючей смеси составляет для автомобильных карбюраторных двигателей примерно 6—8 кГ/см2. Это давление называется средним эффективным давлением.

Работа, производимая газами, а следовательно, и мощность двигателя зависят также от площади поршня и его хода, т. е. от рабочего объема цилиндра, а также от числа цилиндров двигателя и числа оборотов коленчатого вала в минуту. Кроме того, мощность двигателя зависит от его тактности; в четырехтактном двигателе рабочий ход в каждом цилиндре совершается через каждые два оборота коленчатого вала, а в двухтактном — через каждый его оборот.

Из приведенных выше величин постоянными, т. е. зависящими только от конструкции двигателя, являются размеры цилиндра, число цилиндров и тактность двигателя. Остальные величины переменные и зависят от режима работы двигателя и его состояния, а следовательно, и от ухода за ним. При внимательном и умелом уходе за двигателем, при его тщательном регулировании от него можно получить наибольшую мощность.

Очень важной величиной, характеризующей работоспособность двигателя, является крутящий момент, развиваемый на его валу.

Крутящим моментом называется произведение силы (в кГ) на плечо ее действия (в м).

При работе двигателя на его валу развивается определенный крутящий момент, который через силовую передачу передается ведущим колесам и приводит автомобиль в движение.

Крутящий момент двигателя зависит от силы Т, приложенной к кривошипам вала, и от радиуса кривошипа.

Экономичность работы автомобильного двигателя измеряется количеством топлива (в г), израсходованного на каждую единицу мощности (в д. с.) за 1 ч. Эта величина называется удельным расходом топлива ge. Величина удельного расхода топлива зависит от совершенства конструкции двигателя (степени сжатия и т. п.) и его обслуживающих систем и в значительной мере от состояния двигателя, качества ухода за ним и его регулировки. При хорошем уходе за двигателем можно значительно повысить экономичность его работы.

Эффективная мощность двигателя, развиваемая им при работе, не остается постоянной и изменяется в соответствии с изменением его числа оборотов. По мере увеличения числа оборотов коленчатого вала мощность двигателя возрастает, но до известного предела, определенного для каждого двигателя. При дальнейшем повышении числа оборотов мощность начинает уменьшаться вследствие того, что цилиндры . не успевают за все более сокращающиеся промежутки времени наполняться достаточным количеством горючей смеси или воздуха, а также вследствие ухудшения процесса сгорания топлива и увеличения потерь на трение в самом двигателе Поэтому при указании мощности двигателя всегда приводится число оборотов, которому эта мощность соответствует.

С изменением числа оборотов двигателя, кроме мощности, соответственно изменяются крутящий момент Мк и удельный расход топлива. Зависимость всех этих показателей от числа оборотов коленчатого вала при работе двигателя с полной подачей топлива (дизель) или при полностью открытой дроссельной заслонке (карбюраторный двигатель) представляется в виде графика, который называется внешней скоростной характеристикой двигателя. Эта характеристика получается путем соответствующих испытаний двигателя и является основной характеристикой, определяющей все показатели двигателя: мощность, крутящий момент и экономичность.

На рис. 1 показана скоростная характеристика двигателя автомобиля ЗИЛ-130. Из характеристики видно, что наибольшая мощность этого двигателя, равная примерно 150 л. е., развивается при числе оборотов около 3200 в минуту. Наибольший крутящий момент двигателя равен 40 кГ -м, а наименьший удельный расход топлива 240 г.л. с. ч. Аналогичный вид имеют скоростные характеристики и других автомобильных двигателей.

Рис. 1. Скоростная характеристика двигателя автомобиля ЗИЛ-130

Выходная мощность двигателя электромобиля — Easy Electric Life

Что относится к выходной мощности двигателя автомобиля?

В физике под выходной мощностью понимается количество энергии, доставленное в заданный период времени. Применительно к автомобильной промышленности это означает количество механической энергии, вырабатываемой двигателем, опять же в течение заданного периода времени. Он влияет на ускорение автомобиля, его тяговое усилие (вес, который он способен перемещать) и его способность подниматься в гору.

Будь то двигатель внутреннего сгорания или электродвигатель, выходная мощность механической энергии определяется как произведение скорости вращения (измеряемой в оборотах в минуту) и крутящего момента. Выраженный в ньютон-метрах (Нм), крутящий момент описывает тяговое усилие двигателя.

Это объясняет тот факт, что два двигателя с одинаковой выходной мощностью могут вести себя по-разному и ощущаться водителем по-разному. Спортивный автомобиль обеспечивает производительность, которую нельзя сравнить с производительностью большого грузовика, даже если они оба одинаково мощные с точки зрения мощности двигателя!

Как рассчитывается выходная мощность двигателя электромобиля?

Производители не могут просто заявить о мощности двигателя: измерено в процессе испытаний, о чем свидетельствуют изменения крутящего момента в зависимости от скорости вращения. Значение, используемое производителями автомобилей, обычно относится к максимальной измеренной выходной мощности. Она выражается в ваттах (Вт) и, в более общем случае, в киловаттах (кВт).

Как найти выходную мощность двигателя электромобиля

Когда речь идет об электрической системе, например, в электромобиле, механическая мощность, выраженная в ваттах (Вт), киловаттах (кВт) или лошадиных силах (л. с.), рассчитывается путем умножения скорости (об/мин) на крутящий момент. вращательный эквивалент линейной силы, измеряемый в фунт-футах (фунт-фут) или ньютон-метрах (Нм). Но прежде чем вы приступите к длительным вычислениям, быстрый поиск в Интернете выдаст несколько веб-сайтов, где вы просто вводите скорость и крутящий момент вашего электромобиля, чтобы вычислить его выходную мощность в киловаттах. Или вы можете посмотреть руководство по эксплуатации вашего автомобиля.

Как киловатты (кВт) связаны с лошадиными силами (л.с.)?

«Лошадиная сила» исторически относится к выходной мощности автомобильного двигателя и восходит к концу девятнадцатого века. Это способ выразить выходную мощность более буквально, приравняв ее к рабочей нагрузке, понятной людям. Лошадиная сила, иногда сокращенно PS (по-немецки «Pferdestärke»), поэтому относится к выходной мощности, генерируемой лошадью для подъема веса 75 кг на высоту один метр за одну секунду. В метрической системе она равна примерно 736 Вт.

Таким образом, мощность двигателя электромобиля может быть указана как в кВт, так и в л.с. Например, двигатель R135 в ZOE развивает мощность 100 кВт или 135 л.с. — отсюда и название! Его крутящий момент теперь увеличен до 245 Нм по сравнению с 225 Нм у двигателя ZOE R110, выпущенного в 2018 году, чтобы сделать электромобиль более динамичным в ситуациях, когда необходимо ускорение, например, при обгоне или слиянии с дорожным движением.

Какие факторы определяют выходную мощность электромобиля?

Роль двигателя заключается в создании механической энергии из другой формы энергии. Таким образом, его выходная мощность определяется его максимальной способностью преобразования энергии. В случае электромобиля его выходная мощность зависит от размера его двигателя (его объема) и мощности входящего тока.

Что такое «полезная» выходная энергия электродвигателя?

Выходная мощность также является результатом коэффициента полезного действия, т. е. количественного отношения поступающей электроэнергии к отдаваемой механической энергии.

Не вся энергия, вырабатываемая электросетью или зарядной станцией, используется для питания двигателя. Он может быть потерян из-за тепла или трения по пути. Другими словами, механическая энергия, фактически используемая двигателем, является «полезной» энергией. Разделив фактическую выходную мощность электродвигателя на идеальную выходную мощность (равную начальной потребляемой мощности), вы получите механический КПД двигателя.

Таким образом, для электромобиля «полезную» энергию можно рассчитать, разделив выходную мощность (скорость x крутящий момент) на входную и выразив результат в процентах. Это также известно как формула эффективности r=P/C, где P — количество полезной продукции («продукт»), произведенной на количество C («затраты») потребляемых ресурсов.

Таким образом, цель состоит в снижении этих потерь выходной мощности для достижения максимальной энергоэффективности. Таким образом, большая часть энергии, хранящейся в аккумуляторе, используется для увеличения запаса хода электромобиля. В этом отношении ZOE показывает себя особенно хорошо. Благодаря запасу хода по WLTP* в 395 км благодаря батарее емкостью 52 кВт·ч он предлагает одно из лучших показателей на рынке электромобилей во всех сегментах вместе взятых.

Выходная мощность, потребление и запас хода

При этом максимальная выходная мощность не влияет напрямую на запас хода электромобиля, поскольку наибольшее влияние на расход двигателя оказывает стиль вождения. Таким образом, речь идет не о самом эффективном двигателе электромобиля, а о самом эффективном вождении. Например, резкое ускорение будет означать всплеск потребления электроэнергии. Периоды вождения на высокой скорости также значительно расходуют заряд аккумулятора. Чем выше скорость, тем больше энергии требуется для ее поддержания.

И наоборот, расслабленное вождение снижает мгновенный расход топлива и делает рекуперативное торможение более эффективным. Это принцип эковождения, который является одним из лучших способов увеличить запас хода электромобиля.

Как электродвигатели могут увеличить мощность?

Хотя «идеальной машины», которая не теряет мощность между входом и выходом, не существует (однако она существует как гипотетическая механическая система), существуют способы увеличения выходной мощности. Чем эффективнее двигатель электромобиля, тем больше входной мощности он может использовать для создания полезной механической энергии для привода электромобиля.

Эффективность является ключевым словом для инженеров по производству электромобилей и применяется на каждом этапе производственного процесса: от передачи электроэнергии из сети в автомобиль (через зарядную станцию ​​или напрямую) до ее преобразования из переменного тока в постоянный, для хранения энергии батареи, путем ее преобразования в переменный ток и, наконец, эффективность самого механического двигателя. Короче говоря, чем эффективнее транспортное средство, тем больше оно может использовать получаемой мощности и тем более рентабельно для всех участников; от производителя до водителя.

По сравнению со своими собратьями с двигателями внутреннего сгорания, электромобили намного впереди в гонке эффективности. По данным Министерства энергетики США, «электромобили преобразуют более 77 процентов электроэнергии из сети в мощность на колесах. Обычные автомобили с бензиновым двигателем преобразуют только около 12–30% энергии, содержащейся в бензине, в мощность на колесах».

 

*WLTP: Согласованная во всем мире процедура испытаний легковых автомобилей. Стандартный цикл WLTP соответствует 57 % городских поездок, 25 % пригородных поездок и 18 % поездок по автомагистралям.

Авторские права: Mounoury Jean-Christophe, Renault Marketing 3D-Commerce

Читать также

Электрическая мобильность

Различные методы для хранения энергии

10 июня 2021

Просмотр

10 июня 2021

. что нужно знать о подключаемом гибридном автомобиле

10 июня 2021 г.

Подробнее

Электромобили

Все, что нужно знать о зарядке подключаемого гибридного автомобиля

09 июня 2021

Подробнее

Мощность и крутящий момент – x-engineer.org

В этой статье мы собираемся понять, как создается крутящий момент двигателя , как рассчитывается мощность двигателя и что такое a кривая крутящего момента и мощности . Кроме того, мы собираемся взглянуть на карты крутящего момента и мощности двигателя (поверхности).

К концу статьи читатель сможет понять разницу между крутящим моментом и мощностью, как они влияют на продольную динамику автомобиля и как интерпретировать кривые крутящего момента и мощности при полной нагрузке.

Определение крутящего момента

Крутящий момент можно рассматривать как вращающую силу , приложенную к объекту. Крутящий момент (вектор) — это векторное произведение силы (вектор) и расстояния (скаляр). Расстояние, также называемое плечом рычага , измеряется между силой и точкой поворота. Подобно силе, крутящий момент является вектором и определяется амплитудой и направлением вращения.

Изображение: Момент затяжки колесного болта

Представьте, что вы хотите затянуть/ослабить болты колеса. Нажатие или вытягивание рукоятки ключа, соединенной с гайкой или болтом, создает крутящий момент (крутящую силу), который ослабляет или затягивает гайку или болт.

Крутящий момент T [Нм]  является произведением силы F [Н] и длины плеча рычага a [м] .

\[\bbox[#FFFF9D]{T = F \cdot a}\]

Чтобы увеличить величину крутящего момента, мы можем либо увеличить силу, либо длину плеча рычага, либо и то, и другое.

Пример : Рассчитайте крутящий момент, полученный на болте, если плечо ключа имеет 0,25 м и приложенная сила составляет 100 Н (что приблизительно эквивалентно толкающей силе ). 0063 10 кг )

\[T = 100 \cdot 0.25 = 25 \text{ Нм}\]

Такой же крутящий момент можно было бы получить, если бы плечо рычага было 1 м и сила только 25 Н .

Тот же принцип применяется к двигателям внутреннего сгорания. Крутящий момент на коленчатом валу создается силой, прикладываемой к шатунной шейке через шатун.

Изображение: Крутящий момент на коленчатом валу

Крутящий момент T будет создаваться на коленчатом валу на каждой шатунной шейке каждый раз, когда поршень находится в рабочем такте. Рычаг a в данном случае это радиус кривошипа (смещение) .

Величина силы F зависит от давления сгорания в цилиндре. Чем выше давление в цилиндре, тем выше усилие на коленчатый вал, тем выше выходной крутящий момент.

Изображение: Функция расчета крутящего момента двигателя по давлению в цилиндре

Длина плеча рычага влияет на общий баланс двигателя . Слишком большое его увеличение может привести к дисбалансу двигателя, что приведет к увеличению усилий на шейках коленчатого вала.

Пример : Рассчитайте крутящий момент на коленце для двигателя со следующими параметрами:

Цилиндр.
Смещение кривошипа, a [мм] 62

Сначала рассчитаем площадь поршня (считая, что головка поршня плоская и ее диаметр равен диаметру цилиндра): 92\]

Во-вторых, рассчитаем силу, приложенную к поршню. Чтобы получить силу в Н (Ньютон), мы будем использовать давление, преобразованное в Па (Паскаль).

\[F = p \cdot A_p = 120000 \cdot 0,0056745 = 680,94021 \text{ N}\]

Предполагая, что вся сила в поршне передается на шатун, крутящий момент рассчитывается как:

\[ T = F \cdot a = 680,94021 \cdot 0,062 = 42,218293 \text{ Нм}\]

Стандартная единица измерения крутящего момента — Н·м (Ньютон-метр). Особенно в США единицей измерения крутящего момента двигателя является lbf·ft (футо-фунтов). Преобразование между Н·м и lbf·ft :

\[ \begin{split}
1 \text{ lbf} \cdot \text{ft} &= 1.355818 \text{ N} \cdot \ text{m}\\
1 \text{ N} \cdot \text{m} &= 0.7375621 \text{ lbf} \cdot \text{ft}
\end{split} \]

Для нашего конкретного примера крутящий момент в имперских единицах (США):

\[T = 42,218293 \cdot 0,7375621 = 31,138615 \text{ lbf} \cdot \text{ft}\]

Крутящий момент T [N] также может быть выражен как функция среднего эффективного давления двигателя.

\[T = \frac{p_{me} V_d}{2 \pi n_r}\]

где:
p me [Па] – среднее эффективное давление
V d 3 ] – рабочий объем двигателя (объем)
n r [-] – число оборотов коленчатого вала за полный цикл двигателя (для 4-тактного двигателя n r = 2 )

Определение мощности

В физике мощность — это работа, выполненная за время, или, другими словами, — скорость выполнения работы . В вращательных системах мощность P [Вт] является произведением крутящего момента T [Нм] и угловой скорости ω [рад/с] .

\[\bbox[#FFFF9D]{P = T \cdot \omega}\]

Стандартная единица измерения мощности Вт (Ватт) и скорости вращения рад/с (радиан в секунду). Большинство производителей транспортных средств обеспечивают мощность двигателя в л.с. (тормозная мощность) и скорость вращения об/мин (оборотов в минуту). Поэтому мы собираемся использовать формулы преобразования как для скорости вращения, так и для мощности.

Для преобразования об/мин в рад/с мы используем:

\[\omega \text{ [рад/с]} = N \text{ [об/мин]} \cdot \frac{\pi} {30}\]

Преобразование из рад/с от до об/мин , мы используем:

\[N \text{ [об/мин]} = \omega \text{ [рад/с]} \cdot \frac{30}{\pi}\]

Мощность двигателя также может быть измерена в кВт вместо Вт для более компактного значения. Чтобы преобразовать кВт в л.с. и наоборот, мы используем:

\[ \begin{split}
P \text{ [л.с.]} &= 1,36 \cdot P \text{ [кВт]}\\
P \text{ [кВт]} &= \frac{P \text{ [л.с.]}}{1,36}
\end{split} \]

В некоторых случаях вы можете найти л.с. (лошадиная сила) вместо л.с. в качестве единицы измерения мощности.

Имея скорость вращения, измеренную в об/мин , и крутящий момент в Нм , формула для расчета мощности :

\[ \begin{split}
P \text{ [кВт]} &= \frac{\ pi \cdot N \text{ [об/мин]} \cdot T \text{ [Нм]}}{30 \cdot 1000}\\
P \text{ [л.с.]} &= \frac{1.36 \cdot \pi \ cdot N \text{ [об/мин]} \cdot T \text{ [Нм]}}{30 \cdot 1000}
\end{split} \]

Пример . Рассчитайте мощность двигателя как в кВт , так и в л.с. , если крутящий момент двигателя 150 Нм и частота вращения двигателя 2800 об/мин .

\[ \begin{split}
P &= \frac{\pi \cdot 2800 \cdot 150}{30 \cdot 1000} = 44 \text{ кВт}\\
P &= \frac{1,36 \cdot \pi \cdot 2800 \cdot 150}{30 \cdot 1000} = 59,8 \text{ л.с.}
\end{split} \]

Динамометр двигателя

Частота вращения двигателя измеряется датчиком на коленчатом валу (маховике). В идеале, чтобы рассчитать мощность, мы должны также измерить крутящий момент на коленчатом валу с помощью датчика. Технически это возможно, но не применяется в автомобильной промышленности. Из-за условий работы коленчатого вала (температуры, вибрации) измерение крутящего момента двигателя датчиком не является надежным методом. Кроме того, стоимость датчика крутящего момента довольно высока. Поэтому крутящий момент двигателя измеряется во всем диапазоне скоростей и нагрузок с использованием динамометр (испытательный стенд), и проецируется (хранится) в блок управления двигателем.

Изображение: схема динамометра двигателя

Динамометр представляет собой тормоз (механический, гидравлический или электрический), который поглощает мощность, производимую двигателем. Наиболее используемым и лучшим типом динамометра является электрический динамометр . На самом деле это электрическая машина , которая может работать как генератор или двигатель . Изменяя крутящий момент нагрузки генератора, двигатель можно перевести в любую рабочую точку (скорость и крутящий момент). Кроме того, при остановке подачи топлива (без впрыска топлива) генератор может работать как электродвигатель для вращения двигателя. Таким образом, можно измерить потери на трение в двигателе и насосный момент.

В электрическом динамометре ротор соединен с коленчатым валом. Связь между ротором и статором электромагнитная. Статор крепится через плечо рычага к тензодатчику . Чтобы сбалансировать ротор, статор будет давить на тензодатчик. Крутящий момент T вычисляется путем умножения силы F , измеренной в тензодатчике, на длину плеча рычага a .

\[T = F \cdot a\]

Параметры двигателя: тормозной момент, тормозная мощность (л. с.) или удельный расход топлива при торможении (BSFC) содержат ключевое слово «тормоз», поскольку динамометр (тормоз) используется для измерить их.

Результаты испытаний двигателя на динамометрическом стенде представляют собой карты крутящего момента (поверхности), которые дают значение крутящего момента двигателя при определенной частоте вращения и нагрузке (стационарные рабочие точки). Нагрузка двигателя эквивалентна положению педали акселератора.

Пример карты крутящего момента для бензинового двигателя с искровым зажиганием (SI) :

Двигатель
крутящий момент
[Нм]
Положение педали акселератора [%]
5 10 20 30 40 50 60 100
Engine
speed
[rpm]
800 45 90 107 109 110 111 114 116
1300 60 105 132 133 134 136 138 141
1800 35 89 133 141 142 144 145 149
2300 19 70 133 147 148 150 151 155
2800 3 55 133 153 159 161 163 165
3300 0 41 126 152 161 165 167 171
3800 0 33 116 150 160 167 170 175
4300 0 26 110 155 169 176 180 184
4800 0 18 106 155 174 179 185 190
5300 0 12 96 147 167 175 181 187
5800 0 4 84 136 161 170 175 183
. 0182 153 159 171

Example of power map for a gasoline, spark ignition (SI) engine :

Engine
power
[HP]
Accelerator pedal position [ %]
5 10 20 30 40 50 60 100
Engine
speed
[rpm]
800 5 10 12 12 13 13 13 13
1300 11 19 24 25 25 25 26 26
1800 9 23 34 36 36 37 37 38
2300 6 23 44 48 48 49 49 51
2800 1 22 53 61 63. 0181

3300 0 19 59 71 76 78 78 80
3800 0 18 63 81 87 90 92 95
4300 0 16 67 95 103 108 110 113
4800 0 12 72 106 119 122 126 130
5300 0 9 72 111 126 132 137 141
5800 0 3 69 112 133 140 145 151
6300 0 0 65 108 130 137 143 153

Электронный модуль управления (ECM) двигателя ICE хранит в памяти карту крутящего момента. Он вычисляет (интерполирует) функцию крутящего момента двигателя от текущей частоты вращения двигателя и нагрузки. В ECM нагрузка выражается как давление во впускном коллекторе для бензиновых двигателей (искровое зажигание, SI) и время впрыска или масса топлива для дизельных двигателей (воспламенение от сжатия, CI). Стратегия расчета крутящего момента двигателя имеет поправки, основанные на температуре и давлении воздуха на впуске.

График данных крутящего момента и мощности, функции частоты вращения двигателя и нагрузки дает следующие поверхности:

6 Для лучшей интерпретации карт крутящего момента и мощности можно построить двухмерную линию крутящего момента для фиксированного значения положения педали акселератора.

Изображение: Поверхность крутящего момента двигателя SI

Изображение: Поверхность мощности двигателя SI

Изображение: Кривые крутящего момента двигателя SI

Изображение: кривые мощности двигателя SI

Крутящий момент и мощность двигателя при полной нагрузке

Как вы видели, крутящий момент и мощность двигателя внутреннего сгорания зависят как от частоты вращения двигателя, так и от нагрузки. Обычно производители двигателей публикуют характеристики крутящего момента и кривой (кривые) при полной нагрузке (100% положение педали акселератора). Кривые крутящего момента и мощности при полной нагрузке показывают максимальное распределение крутящего момента и мощности во всем диапазоне частоты вращения двигателя.

Изображение: параметры крутящего момента и мощности двигателя при полной нагрузке

Форма кривых крутящего момента и мощности, приведенных выше, не соответствует реальному двигателю, а предназначена для объяснения основных параметров. Тем не менее, формы аналогичны реальным характеристикам двигателя с искровым зажиганием (бензин), портового впрыска, атмосферного двигателя.

Частота вращения двигателя Н и [об/мин] характеризуется четырьмя основными точками:

Н мин – минимальная устойчивая частота вращения двигателя при полной нагрузке
N Tmax – частота вращения двигателя при максимальном крутящем моменте двигателя
N Pmax – частота вращения двигателя при максимальной мощности двигателя; также называется номинальная частота вращения двигателя
N max – максимальная стабильная частота вращения двигателя

При минимальной частоте вращения двигатель должен работать ровно, без колебаний и остановок. Двигатель также должен позволять работать на максимальных оборотах без каких-либо повреждений конструкции.

крутящий момент двигателя при полной нагрузке кривая T e [Нм] характеризуется четырьмя точками: крутящий момент или номинальный крутящий момент )
T P – крутящий момент двигателя при максимальной мощности двигателя
T M – крутящий момент двигателя при максимальных оборотах двигателя

В зависимости от типа всасываемого воздуха (атмосферный или с турбонаддувом) пиковый крутящий момент может быть либо точкой, либо линией. Для двигателей с турбонаддувом или наддувом максимальный крутящий момент может поддерживаться постоянным между двумя значениями частоты вращения двигателя.

Кривая мощности двигателя при полной нагрузке P e [л.с.] характеризуется четырьмя точками:

P 0 – мощность двигателя при минимальных оборотах двигателя
– максимальная P 90 мощность (пиковая мощность или номинальная мощность )
P T – мощность двигателя при максимальном крутящем моменте двигателя
P M – мощность двигателя при максимальных оборотах двигателя

Область между минимальными оборотами двигателя N min и максимальный крутящий момент оборотов двигателя N Tmax называется нижней границей зоны крутящего момента. Чем выше крутящий момент в этой области, тем лучше стартовые/разгонные возможности автомобиля. Когда двигатель работает в этой области, при полной нагрузке, если увеличивается сопротивление дороги, частота вращения двигателя будет уменьшаться, что приведет к падению крутящего момента двигателя и остановке двигателя . По этой причине эту область также называют областью нестабильного крутящего момента 9.0016 .

Область между частотой вращения двигателя с максимальным крутящим моментом Н Tmax и частотой вращения двигателя с максимальной мощностью Н Pmax называется диапазоном мощности . Во время разгона автомобиля для достижения наилучших результатов переключение передач (вверх) следует выполнять при максимальной мощности двигателя. В зависимости от передаточных чисел коробки передач, после переключения выбранная передача будет снижать частоту вращения двигателя при максимальном крутящем моменте, что обеспечит оптимальное ускорение. Переключение передач при максимальной мощности двигателя будет поддерживать частоту вращения двигателя в пределах диапазона мощности.

Область между частотой вращения двигателя максимальной мощности Н Pмакс и максимальной частотой вращения двигателя Н макс называется зоной верхнего предела крутящего момента. Более высокий крутящий момент приводит к более высокой выходной мощности, что приводит к более высокой максимальной скорости автомобиля и лучшему ускорению на высокой скорости.

Когда частота вращения двигателя поддерживается между максимальной скоростью вращения двигателя N Tmax и максимальной частотой вращения двигателя N max , если сопротивление дороги автомобиля увеличивается, частота вращения двигателя падает, а выходной крутящий момент увеличивается, таким образом компенсация увеличения дорожной нагрузки. По этой причине эта область называется 9-й. 0015 область стабильного крутящего момента .

Ниже приведены примеры кривых крутящего момента и мощности при полной нагрузке для различных типов двигателей. Обратите внимание на форму кривых в зависимости от типа двигателя (с искровым зажиганием или с воспламенением от сжатия) и типа впуска воздуха (атмосферный или с турбонаддувом).

Двигатель Honda 2.0, крутящий момент и мощность при полной нагрузке

Конструкция цилиндров 4 рядных

Изображение: Двигатель Honda 2.0 SI – кривые крутящего момента и мощности при полной нагрузке

Fuel gasoline (SI)
Engine capacity [cm 3 ] 1998
Fuel injection valve port
Air intake атмосферный
Фаза газораспределения переменная
T макс. 0183
N Tmax [rpm] 4500
P max [HP] 155
N Pmax [rpm] 6000
N MAX [RPM] 6800

SAAB 2,0T ENGIN0182 4 Встроенный

Изображение: SAAB 2,0T Двигатель SI-Кривые крутящего момента и мощности при полной нагрузке

Fuel GASOLINE (SI) GASOLINE (SI) (SI). 1998 .0182 fixed T max [Nm] 265 N Tmax [rpm] 2500 P max [HP] 175 N Pmax [rpm] 5500 N max [rpm] 6300

Audi 2.

0 TFSI engine torque and power at full load

Cylinders architecture 4 in-line

Image: Audi 2.0 TFSI SI engine – torque and power curves at full load

Fuel gasoline (SI)
емкость двигателя [CM 3 ] 1994
.0182 turbocharged
Valve timing fixed
T max [Nm] 280
N Tmax [rpm] 1800 – 5000
P max [HP] 200
N Pmax [rpm] 5100 – 6000
N max [rpm] 6500

Toyota 2,0 D-4D Крутящий момент и мощность при полной нагрузке

9

Architecture 4. A-Line

101010101018. at full load

Fuel diesel (CI) Engine capacity [cm 3 ] 1998 Fuel injection direct Air intake turbocharged Valve timing fixed T max [Nm] 300 N Tmax [rpm] 2000 – 2800 P max [HP] 126 N Pmax [rpm] 3600 N max [rpm] 5200

Mercedes-Benz 1.8 Kompressor engine torque and power at full load

Cylinders архитектура 4 рядный

Изображение: Двигатель Mercedes Benz 1. 8 Kompressor SI – кривые крутящего момента и мощности при полной нагрузке

Топливо gasoline
Engine capacity [cm 3 ] 1796
Fuel injection valve port
Air intake supercharged
Valve timing фиксированный
T макс.0183

2800 – 4600
P max [HP] 156
N Pmax [rpm] 5200
N max [rpm] 6250

BMW 3.0 Twinturbo Engine Tooting and Power при полной нагрузке

Architecture

9018 7.

018 7018 7.018 7018 7018 7018 7018 7018 7018 7018 7018 7018 7.018 7018 7018 7.018 7018 7018 7.018 7018 7018 7.018 7018 7.018 7018 7.018 70118. загрузить

Fuel gasoline
Engine capacity [cm 3 ] 2979
Fuel injection direct
Air intake dual
с турбонаддувом
Фаза газораспределения переменная
T макс. [Нм] 400
N Tmax [rpm] 1300 – 5000
P max [HP] 306
N Pmax [rpm] 5800
N MAX [RPM] 7000

MAZDA 2.

6 TOURENGENTER DOURENT и POYT AT FULLAP LOAL LATE

MAZDA 2.6 TOURENGENTER и POYT AT FULLAP LOAL LATE

MAZDA 2.6 TORTECE ENGIN0016

2 Wankel

Image: Mazda 2.6 SI engine – torque and power curves at full load

Fuel gasoline Engine capacity [cm 3 ] 1308 (2616) Впрыск топлива Порт клапана Воздухозаборник Атмосферный1

1

10016 fixed T max [Nm] 211 N Tmax [rpm] 5500 P max [HP] 231 N Pmax [rpm] 8200 N max [rpm] 9500

Porsche 3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *