Рубрики
Разное

Как проверить давление в цилиндрах: Инструкция по проверке компрессии в цилиндрах двигателя: этапы и видео

Содержание

Как проверить компрессию в двигателе

Как проверить компрессию в двигателе автомобиля и как определить причину низкого давления. Для правильной диагностики неисправности. Какой способ замера даёт более полное представление о возникшей проблеме. Для того чтобы ответить на эти вопросы. Можно сделать замеры двумя методами. При помощи компрессометра и прибора для замера давления в цилиндрах.

Содержание статьи:

  • 1 Причины падения давления в цилиндрах
  • 2 Как проверить компрессию в двигателе компрессометром
    • 2.1 Условия проведения замера
  • 3 Как померить компрессию в двигателе
    • 3.1 Анализ измерений
  • 4 Тестер для замера потери давления в цилиндрах двигателя
    • 4.1 Устройство тестера
    • 4.2 Применение тестера
    • 4.3 Условия проведения замера
    • 4.4 Анализ показаний прибора

Причины падения давления в цилиндрах

Двигатель автомобиля теряет мощность. Неравномерно работает. Троит. При замене свечей работает какое-то время нормально потом снова начинает троить. Увеличивается расход бензина. На холодную двигатель заводится нормально. Но на горячую двигатель завести уже проблема. Все это говорит о том, что возможно возникли проблемы в цилиндро-поршневой группе.

Износ поршневых колец. Прогорание клапанов. Выработка в сёдлах и самих клапанах. Прогорание прокладки головки блока. Это одни из немногих причин которые приводят к неэффективной работе двигателя. Проблемы с цилиндро-поршневой группой можно диагностировать.

Как проверить компрессию в двигателе компрессометром

Одним из способов диагностики является замер компрессии возникающей в камере сгорания при достижении поршнем верхней мертвой точки в такте сжатия.

На всех двигателях устанавливается раннее зажигание. Топливо воспламеняется до того как поршень дойдет до верхней мертвой точки. В ВМТ уже горящее топливо сжимается возникает давление, при котором топливо сгорает наиболее эффективно. Происходит как бы взрыв топлива. То есть в результате горения газы начинают мгновенно расширяться. И если давления сжатия не достаточно. То интенсивного горения не происходит. Топливо  в цилиндре сгорает не полностью. Двигатель теряет мощность.  Для бензиновых двигателей давление которое поршень должен создавать в ВМТ соответствует 10- 13 bar. Если давление ниже 9 bar можно сказать что в двигателе возникли серьёзные проблемы. Связанные с прогоранием клапанов поршневых колец или прокладок.

        Фактически замерив компрессию в цилиндрах, мы можем определить наличие или отсутствие серьезных проблем с двигателем. Замерить компрессию можно при помощи специального прибора компрессометра.  Он представляет собой манометр, который герметично соединяется с полостью камеры сгорания. И при вращении двигателя стартером. Замеряет возникающее давление в камере сгорания.

Для того чтобы произвести замер необходимо выполнить несколько условий.

Условия проведения замера

  1. Двигатель должен быть прогрет до рабочей температуры. Потом у что тепловые зазоры должны соответствовать именно той температуре, в которой двигатель эксплуатируется.
  2. Необходимо вывернуть  свечи со всех цилиндров. Что бы компрессия, возникающая в цилиндрах, не оказывала сопротивление на стартере. С помощью, которого будет проворачиваться двигатель. В противном случае не сможет создать максимально возможный крутящий момент. И измерения будут неправильными.
  3. Необходимо отключить катушку зажигания, что бы при вращении не образовывалась искра достаточно снять разъём с катушки или модуля зажигания. Потом у что возникающее напряжение будет образовывать искру в любом месте. И это могут оказаться обмотки катушки зажигания. Может повредиться изолирующий слой проводов. Или диэлектрических элементов катушки. В результате пробоя катушка выйдет из строя.
  4. Заслонка акселератора должна быть открыта полностью. Что бы не создавалось сопротивление поступающего в камеру сгорания воздуха. Любое сопротивление снизит фактическое показание компрессии в камере сгорания.

Как померить компрессию в двигателе

Прибор для измерения компрессии присоединяется к свечному отверстию. Вращается стартер. На манометре возникает давление. По максимально возросшему давлению судят о состоянии цилиндро поршневой группы.

Анализ измерений

Существует мнение, что разность показания манометра между цилиндрами в 0,5-1 bar говорит о неисправности в поршневой группе. И двигатель требует ремонта. Но на самом деле с точной уверенностью сказать этого нельзя. Потому что изначально цпг не герметичная система.  Потери давления присутствуют даже на совершенно новом обкатанном двигателе. Речь идет о среднем допустимом давлении, при котором происходит воспламенение и расширение горящих газов. Стартер создает небольшое количество оборотов. На заведенном двигателе даже на холостых оборотах картина изменится в лучшую или худшую сторону.

  По этому с уверенностью можно только сказать. Что если компрессия ниже 9 bar то существует проблема требующая вмешательства. Но нет возможности определить в каком именно месте возникла проблема.

 Дедовский способ определения источника проблемы. Заключается  в следующем. При замере компрессии обнаружено низкое давление в цилиндре. Добавляют 5-10 моторного масла в камеру сгорания.

  • Если давление повысилось. Проблема в гильзе или поршневых кольцах.
  • Давление осталось неизменным значит причина в клапанах или прокладке.

Но это не правда. Потому что давление повысится в любом случае. Так как масло уплотнит поршневые кольца с гильзами. И давление возрастет даже если существует прогар клапанов или прокладки.

Говорить о детальной диагностике неисправности цилиндро-поршневой группы при использовании компрессометра  не приходится. Детально определить неисправност возможно если применить другой прибор. Для измерения давления камере сгорания.

Тестер для замера потери давления в цилиндрах двигателя

Устройство тестера

Выглядит тестер следующим образом. Два манометра подключены к общему каналу. В канале установлен жиклер который. Жиклер дает возможность подавать фиксированное количество воздуха в камеру сгорания. Которое измеряется манометром в процентном соотношении от допустимой нормы потери воздуха в цилиндре. Первым прибором мы устанавливаем давления воздуха идущее от компрессора. Для бензиновых двигателей оно составляет 5 bar. Второй прибор показывает давление, создаваемое в цилиндре. С учетом возможных потерь. Шкала разделена на три зоны:

  • Зеленая — допустимые потри давления
  • Желтая — критичное падение давления
  • Красная — не допустимое падение давления

Применение тестера

Тестер подключается к компрессору. Который создает необходимое давление воздуха. С другой стороны шланг соединяется с камерой сгорания через переходники в свечное отверстие.

Условия проведения замера

Они такие же как и при использовании компрессометра. Добавляется толь ко то что замер производится при нахождении поршня цилиндра  в ВМТ такта сжатия. Как и при регулировки клапанов. То есть клапана должны быть полностью закрыты. Для проведения измерения давления придется  в каждом цилиндре выставлять поршень в такте сжатия.

После того как поршень в измеряемом цилиндре подведён в ВМТ прибор соединяется с камерой сгорания и на него подается давление воздуха от компрессора. При помощи крана выставляется давление в 5 bar. На первом манометре. Второй прибор уже показывает потерю давления.

В зеленой зоне все нормально

Желтая зона требуют внимания.

Красная зона требуется ремонт

Анализ показаний прибора

С применением данного прибора уже можно сориентироваться где именно возникла потеря давления. Прорывающийся воздух будет создавать шум

  • Если воздух слышен при открытии масло заливной пробки. Значит потеря давления происходит через поршневые кольца в картер двигателя
  • Потери воздуха слышны в выхлопной трубе. Нет герметичности в выпускном клапане
  • Воздух во впускном коллекторе значит проблема с впускным клапаном.
  • Бурление в расширительном бачке системы охлаждения. Прогорела прокладка либо трещина в гильзе или головке блока.

Тестер для замера давления в цилиндрах как диагностический прибор даёт больше информации чем просто проверить компрессию в двигателе. Можно уже диагностировать конкретную неисправность. И планировать возможный ремонт.

Как проверить компрессию в цилиндрах двигателя 2AZ-FE Toyota Camry

Компрессия (давление в конце такта сжатия) в цилиндрах это важнейший показатель состояния двигателя без его разборки

По средней величине и по разнице величин в отдельных цилиндрах можно достаточно точно определить степень износа деталей цилиндропоршневой группы двигателя и выявить ее неисправности и деталей клапанного механизма

Проверяется компрессия специальным прибором — компрессометром

 

Так выглядит компрессометр

Есть компрессометры, у которых вместо резьбового штуцера для вворачивания вместо свечи зажигания установлен резиновый наконечник

Для правильности показаний при проверке, нужно чтобы стартер и аккумулятор были исправны

Запускаем двигатель и прогреваем его до рабочей температуры

Снижаем давление в системе питания двигателя, для этого:

Отсоединяем минусовую клемму аккумулятора

 

Отключаем топливный насос, отсоединив от него колодку жгута проводов

Подсоединяем минусовую клемму аккумулятора

Запускаем двигатель и даем ему поработать до полной остановки двигателя

Выключаем зажигание. Теперь в топливной рампе нет давления топлива.

 

Снимаем декоративный кожух двигателя

Снимаем катушки зажигания со свечей зажигания

 

Выкручиваем все свечи

Отсоединяем колодки жгутов проводов от топливных форсунок

Вкручиваем или вставляем в свечное отверстие проверяемого цилиндра компрессометр

Помощник нажимает на педаль газа до упора, чтобы при проворачивании коленчатого вала стартером дроссельная заслонка полностью открылась в режиме продувки цилиндров двигателя

Включаем стартер, и проворачиваем коленчатый вал двигателя до тех пор, пока давление в цилиндре не перестанет увеличиваться. Это соответствует примерно четырем тактам сжатия

Для получения правильных показаний компрессометра коленчатый вал должен вращаться со скоростью 180-200 мин-1, или выше, но не более 350 мин-1.

 

Записываем показания компрессометра

После этого устанавливаем стрелку на ноль, нажав на клапан выпуска воздуха

Повторяем операции для остальных цилиндров

Давление должно быть не ниже 1,36 МПа (13,6 кгс/см2) и не должно отличаться в разных цилиндрах более чем на 0,1 МПа

Пониженная компрессия в отдельных цилиндрах может возникнуть:

— в результате неплотной посадки клапанов в седлах;

— повреждения прокладки головки блока цилиндров;

— поломки или прогорания поршневых колец.

Пониженная компрессия во всех цилиндрах указывает на износ поршневых колец

Чтобы выяснить причину недостаточной компрессии нужно залить в цилиндр с пониженной компрессией 20 мл чистого моторного масла и вновь измерить компрессию

Если показания компрессометра повысились, вероятная неисправность поршневых колец

Если величина компрессии осталась неизменной, значит, тарелки клапанов неплотно прилегают к их седлам или повреждена прокладка головки блока цилиндров

Причину недостаточной компрессии можно выяснить и подачей сжатого воздуха в ци­линдр, в котором поршень предварительно установлен в ВМТ такта сжатия.

Для этого снимите с компрессометра наконечники при­соедините к нему шланг компрессора. Вставьте наконечник в свечное отверстие и подайте в цилиндр воздух под давлением 0,2-0,3 МПа.

Чтобы коленчатый вал двигате­ля не провернулся, включите высшую переда­чу и затормозите автомобиль стояночным тормозом.

Выход (утечка) воздуха через дроссельный узел, свидетельствует о негерметичности впускного клапана, а через глу­шитель — о негерметичности выпускного кла­пана.

При повреждении прокладки головки блока цилиндров воздух будет выходить че­рез горловину расширительного бачка в виде пузырей или в соседний цилиндр, что обнару­живается по характерному шипящему звуку

Введение в испытания давлением в цилиндрах

Каждые десять лет или около того открываются новые автомобильные технологии, которые действительно меняют правила игры. Использование датчиков давления в автомобильных станциях техобслуживания — одно из самых захватывающих открытий 21 века. Эта инновационная технология значительно экономит время и деньги ремонтных мастерских.

Эту технологию можно использовать для проверки двигателей, трансмиссий, гидроусилителей руля, тормозных систем, систем EVAP и систем кондиционирования воздуха. Практически любую систему, в которой используется давление, можно проанализировать с помощью датчика давления. Эти преобразователи измеряют изменения физического давления, отрицательные или положительные, и преобразуют эти изменения в электрический выходной сигнал. Для преобразователей давления требуется источник питания и источник заземления, и они будут генерировать сигнал напряжения, пропорциональный применяемой физической величине. Осциллограф используется для отображения и анализа выходного сигнала датчика давления путем построения графика изменения давления с течением времени, тем самым определяя изменения, происходящие в системе.

Рисунок 1. Здесь схема давления в цилиндре наложена на таблицу характеристик кулачка, чтобы проиллюстрировать, как картина изменяется в течение цикла сгорания 720°.

Датчики давления позволяют технику увидеть внутреннюю работу двигателя внутреннего сгорания без разборки. Для проверки двигателя внутреннего сгорания с искровым зажиганием применяют три датчика давления: один в цилиндре, один на впуске и один на выпуске. Чтобы поместить один в цилиндр, снимите свечу зажигания с головки цилиндра (обязательно заземлите искру), затем установите шланг для проверки компрессии со снятым односторонним обратным клапаном и поместите датчик на 300 фунтов на квадратный дюйм на компрессионный шланг. Вакуумный датчик -30 Hg на впускном коллекторе будет расположен в центре вакуумного порта рядом с корпусом дроссельной заслонки. Поместите шланг преобразователя выхлопных газов 25 дюймов/ч30 в конец выхлопной трубы. При наличии этих датчиков двигатель будет работать в трех различных режимах: запуск без запуска, холостой ход, резкое нажатие дроссельной заслонки, и каждое из этих условий работы двигателя будет отображать на осциллографе различные формы сигналов давления, и для их диагностики будут использоваться разные методы.

Двигатель в этих трех условиях работы можно проверить на наличие проблем с синхронизацией распределительного вала и коленчатого вала, проблем с переменной синхронизацией распределительного вала, проблем с уплотнением впускных и выпускных клапанов, как постоянных, так и прерывистых, проблем с пружиной клапана, проблем с уплотнением поршневых колец, износа кулачков распределительного вала, заедания. проблемы с выхлопом, проблемы с опережением зажигания или определение пропусков зажигания в цилиндрах. Как видите, этот список включает в себя некоторые из наиболее сложных для диагностики проблем. Эти сложные диагнозы станут рутиной в вашем сервисном отсеке, если вы хотя бы немного понимаете изменения давления, происходящие в двигателе.

Начнем с анализа формы волны сжатия на холостом ходу, как показано на рисунках 1 и 2. На рисунке 1 показана диаграмма распределительного вала с формой волны сжатия, наложенной на карту кулачка. Рисунок 2 представляет собой базовую форму волны сжатия, полученную при закрытой дроссельной заслонке на низких оборотах. Большие розовые линии делят форму волны сжатия на 180-градусные части вращения коленчатого вала или такты двигателя (впуск, сжатие, мощность, выпуск), а маленькие розовые линии делят вращение коленчатого вала на 30-градусные части, как показано на рисунке. 2. Большая розовая линия в середине Рисунка 2 показывает, когда поршень находится на 360 градусов вращения коленчатого вала в верхней мертвой точке (ВМТ). Впускной клапан открывается непосредственно перед этой точкой. Коленчатый вал вращается, поэтому поршень движется, поршень отходит от головки цилиндра, увеличивая объем внутри цилиндра. Это, в свою очередь, создает область низкого давления внутри цилиндра, которая оказывает отрицательное давление (вакуум) на закрытую дроссельную заслонку. Это снижение давления можно увидеть от G (атмосферное давление) до I (отрицательное давление).

Это падение давления должно начинаться в точке ВМТ и быстро падать до I, и это изменение давления должно происходить до двух маленьких розовых маркеров после ВМТ или до 60 градусов после ВМТ. I указывает наименьшее давление, полученное во время такта впуска, тогда как J указывает среднее давление во время такта впуска. Продолжительность впуска составляет от G до K, обратите внимание, что K происходит после того, как такт впуска заканчивается на отметке нижней мертвой точки (НМТ). Давление на впуске остается низким после появления метки НМТ даже при движении поршня вверх.

Можно было бы подумать, что это движение поршня вверх создаст увеличение давления внутри цилиндра; однако, поскольку объем впускного коллектора находится под низким давлением, впускной коллектор действует как аккумулятор, накапливающий отрицательное давление. Пока впускной клапан открыт, он подвергается воздействию этой области низкого давления, содержащейся во впускном коллекторе. Этот эффект аккумулятора стабилизирует область низкого давления в цилиндре, что, в свою очередь, поддерживает низкое давление в цилиндре даже при подъеме поршня вверх. Когда впускной клапан закрывается, давление начинает расти, что происходит в точке K. Впускной клапан должен закрываться при температуре от 40 до 60 градусов после отметки НМТ.

Рисунок 2. У каждого элемента этой модели есть своя история.

Теперь поршень движется вверх в цилиндре, и оба клапана, впускной и выпускной, закрыты. Объем, содержащийся внутри цилиндра, теперь захвачен. Коленчатый вал вращается и, таким образом, перемещает поршень к головке блока цилиндров. По мере приближения поршня к головке цилиндра площадь внутри цилиндра уменьшается. Это уменьшение площади цилиндра создает меньше места для объема, содержащегося внутри цилиндра; это, в свою очередь, увеличивает давление внутри цилиндра.

Пиковое давление возникает, когда поршень приближается к головке блока цилиндров настолько близко, насколько это возможно механически. Это точка ВМТ сжатия, то есть A. Это пиковое давление в точке A можно использовать для определения положения ВМТ для таких вещей, как проверка момента зажигания, момента впрыска и проверка датчика положения коленчатого или распределительного вала. Интересно отметить, что от 60 до 70 процентов давления сжатия в цилиндре создается в течение последних 30 градусов вращения коленчатого вала перед ВМТ (ВМТ), в течение которых поршень замедляется и останавливается, хотя и на мгновение, в точке ВМТ. . Хотя скорость поршня мала, давление растет из-за уменьшения площади над днищем поршня.

Поскольку объем, содержащийся в цилиндре, работает против площади, содержащейся в цилиндре, любая потеря объема из-за утечки из цилиндра во время такта сжатия повлияет на пиковое давление в цилиндре. Важно проверять точки пикового давления в течение нескольких циклов цилиндров, поскольку они должны быть одинаковыми. Если один пик высокий, а следующий ниже всего на несколько фунтов (PSI), а затем следующий пик снова высокий, цилиндр негерметичен. Поток воздуха в цилиндр не может изменяться достаточно быстро, чтобы обеспечить изменение высокого/низкого/высокого давления. Это происходит из-за изменения объема или утечки внутри цилиндра.

Рисунок 3. Обратите внимание на меняющийся выпускной карман. Это указывает на проблему с уплотнением клапана (выпускного или впускного).

Поскольку коленчатый вал находится во вращательном движении, поршень притягивается шатуном вниз. Движение поршня вниз позволяет увеличить площадь между головкой блока цилиндров и поршнем, что приводит к уменьшению давления в цилиндре. Поскольку в цилиндре нет искры (свеча зажигания снята), этот такт не является рабочим тактом, а является тактом декомпрессии. Компрессионная башня имеет восходящий пандус и нисходящий пандус, если башня измеряется от K до A, а давление делится пополам, на обеих сторонах башни есть точки, которые представляют собой точку полумачты. Полумачта обозначается буквами B и M. Эти точки измеряются в градусах коленчатого вала до отметки ВМТ и должны находиться в пределах 20 градусов друг от друга. Если в компрессионной градирне разница между подъемом и опусканием рампы составляет более 20 градусов, это означает механическую неисправность.

Когда это произойдет, башня сжатия будет выглядеть так, как будто она наклонена, с одной стороны будет гораздо больше места между рампой и отметкой ВМТ, по сравнению с другой рампой и отметкой ВМТ. Поршень продолжает свое движение вниз, и при 90 градусах после ВМТ форма волны возвращается в состояние отрицательного давления. C обозначает эту точку. Поршень продолжает движение вниз, увеличивая площадь внутри цилиндра, и форма волны сжатия также продолжается вниз до точки D; это точка открытия выпускного клапана. В точке D должна быть четкая точка определения, указывающая на то, что уплотнение клапана не повреждено. Точка D должна выглядеть так, будто клоны цикл за циклом с очень небольшими изменениями в выхлопном кармане. Если точка D меняет цикл за циклом, это указывает на то, что клапан имеет проблемы с посадкой. На рис. 3 видно, что ни один из выпускных карманов не похож на другой, что указывает на наличие проблемы с посадкой клапана. Важно понимать, что либо клапан, либо впускной, либо выпускной могут вызвать изменение выпускного кармана. Необходимо будет проверить давление во впускном коллекторе и давление на выпуске, чтобы определить, какой клапан не сидит должным образом.

Давление в цилиндре начинает расти в точке D; однако поршень все еще движется вниз. Казалось бы, из-за того, что поршень движется вниз и увеличивает площадь внутри цилиндра, происходит соответствующее снижение давления. Давление выхлопных газов близко к атмосферному давлению, а давление в цилиндре находится в отрицательном состоянии. Поскольку область высокого давления всегда перемещается в область низкого давления, давление выхлопных газов устремляется в цилиндр, как только открываются выпускные клапаны. Это повышение давления в цилиндре от D до F является давлением, уравнивающим атмосферное давление в выхлопной системе. В точке D открывается выпускной клапан. Это событие открытия клапана должно происходить за 30-50 градусов до НМТ (BBDC) и используется для проверки фаз газораспределения. Кривая выпуска от D до F также будет использоваться для проверки фаз газораспределения выпускных клапанов.

Рисунок 4. На этом сигнале синхронизация кулачка явно отключена. Эта камера слишком далеко задвинута или отстала?

Если давление измеряется в точке D, а затем в точке F, и эта рампа давления делится пополам (это показано в точке Е), эта точка должна попасть на отметку НМТ. Если метка BDC находится между E и F, синхронизация выпускного кулачка правильная. Если метка BDC опускается ниже метки E, синхронизация распределительного вала задерживается. Если метка BDC находится справа от метки F, фаза газораспределения выпускных клапанов сдвигается вперед. Метка BDC на более новых двигателях может располагаться на несколько градусов правее метки F и быть рассчитана правильно. Важно измерить выхлопную рампу и найти точку E и отметить ее вертикальным курсором. Этот курсор теперь будет пересекать розовую сетку, которая представляет градусы коленчатого вала. На старых двигателях этот курсор должен находиться между 15-градусной отметкой BBDC и BDC. На более новых двигателях этот курсор должен находиться между отметками 23° BBDC и 12° BBDC.

Поршень поднимется от отметки НМТ до отметки ВМТ, при этом выпускной клапан будет открыт. По мере того, как поршень движется вверх, площадь внутри цилиндра уменьшается, что создает более высокое давление, чем слегка повышенное атмосферное давление в выхлопе. Это, в свою очередь, выталкивает объем, содержащийся в цилиндре, в выхлопную систему. Рябь между F и G представляет собой резонанс давления выхлопных газов в выхлопной системе. Поскольку выпускной клапан открыт, давление в выхлопной системе можно увидеть внутри цилиндра. Область между точками D и I называется плато выхлопа. Это плато создается разрежением во впускном коллекторе. Такт впуска втягивает цилиндр в область отрицательного давления, после чего впускной клапан закрывается, задерживая отрицательное давление внутри цилиндра.

Затем поршень перемещается вверх, сжимая объем внутри цилиндра до пикового давления, а затем движется вниз, сжимая объем внутри цилиндра. В тот момент, когда поршень возвращается в то же положение внутри цилиндра, что и при закрытом впускном клапане, давление внутри цилиндра также возвращается к тому же давлению, которое было при закрытии впускного клапана, то есть отрицательному (вакуумному). Поскольку такт впуска изменил давление в цилиндре на вакуум по отношению к давлению выхлопа, а выпускной клапан открылся, когда цилиндр вернулся в ту же точку, а затем снова поднялся до давления выхлопа, таким образом, плато выхлопа создается вакуумом. Точки D и I должны совпадать. Если точка D ниже точки I, цилиндр имеет утечку, если точка D немного выше точки I примерно на 2 фунта на кв. дюйм или меньше, утечка в цилиндре в порядке. Если это больше 2 фунтов на квадратный дюйм, цилиндр имеет объем утечки.

Впускная рампа будет использоваться для проверки фаз газораспределения впускных клапанов. Поскольку впускной клапан должен открыться, чтобы давление на впуске быстро упало, открытие впускного клапана можно рассчитать, используя кривую впуска от G до I. Если давление измеряется в точке G, а затем в точке I и этой кривой давления делится пополам (эта точка показана в точке Н), эта точка должна располагаться на 20 градусов ниже отметки ВМТ. Синхронизация впускного распределительного вала правильная, если 20 градусов после метки ВМТ находятся в пределах ± 5 градусов по горизонтали. Если 20 градусов после метки ВМТ опускаются ниже метки Н, синхронизация распределительного вала опережает. Если 20 градусов после метки ВМТ находятся справа от метки H, синхронизация выпускного распределительного вала задерживается.

На более новых двигателях с системой изменения фаз газораспределения (VVT) на впускном кулачке 20 градусов после метки ВМТ будут скорректированы до 30 градусов после метки ВМТ. Будет важно измерить угол наклона впуска и найти точку H, затем отметить точку H вертикальным курсором. Этот курсор теперь будет пересекать розовую сетку, которая представляет градусы коленчатого вала. На старых двигателях этот указатель должен располагаться между 10 и 20 градусами после ВМТ. На более новых двигателях этот курсор должен находиться между 20 и 30 градусами ATDC. Точка, в которой закрывается впускной клапан, также может быть использована для проверки фаз газораспределения впускных клапанов. Эта точка отмечена буквой K и должна находиться между 40 и 60 градусами после НМТ.

Теперь давайте посмотрим на рисунки 4 и 5, на которых показаны проблемы с синхронизацией распределительного вала и коленчатого вала. Сначала мы проанализируем рисунок 4, на котором довольно легко увидеть, что форма волны сжатия не такая, как на рисунке 2. Начнем с расположения выпускного кармана. На рисунке 2 выпускной карман расположен под углом 35 градусов до НМТ, тогда как на рисунке 4 выпускной карман расположен под углом 65 градусов до НМТ. Затем выхлопная рампа в точке E на рис. 2 находится на 12 градусов перед НМТ, а на рис. 4 выхлопная рампа в точке Е расположена на 45 градусов до НМТ. На впускной рампе на Рисунке 2 H расположен в 18 градусах после ВМТ, а на Рисунке 4 впускная рампа, которая должна быть H, расположена в ВМТ. Впускной клапан закрывается на рисунке 2 при 45 градусах после НМТ, на рисунке 4 впускной клапан закрывается при 30 градусах после НМТ. Если вы посмотрите на выпускной или впускной кулачок, совершенно очевидно, что этот распределительный вал является продвинутым.

Рисунок 5. На этом сигнале также показан кулачок, синхронизация которого неверна. Как вы могли бы использовать этот метод для проверки работы системы VVT?

Теперь проанализируем рисунок 5. На рисунке 5 снова довольно легко увидеть, что форма сигнала сжатия не такая, как на рисунке 2. Начнем с расположения выпускного кармана. На рисунке 2 выпускной карман находится под углом 35 градусов до НМТ, а на рисунке 5 выпускной карман находится в точке 0 градусов ВМТ. Далее, рампа выхлопа в точке Е на Рисунке 2 находится на 12 градусах раньше НМТ, а на Рисунке 5 рампа выхлопа в точке Е расположена на 13 градусах после НМТ. На впускной рампе на рис. 2 точка Н расположена на 18 градусов после ВМТ, на рис. 5 впускная рампа, которая должна быть Н, расположена на 35 градусов после ВМТ. На рисунке 2 точка G расположена непосредственно перед отметкой ВМТ, тогда как на рисунке 5 эта точка находится на 25 градусах после ВМТ. Впускной клапан закрывается на рисунке 2 при 45 градусах после НМТ; однако на рисунке 5 впускной клапан закрывается при 70 градусах после НМТ. Если вы посмотрите на выпускной или впускной кулачок, совершенно очевидно, что этот распределительный вал запаздывает.

Имейте в виду, что эти волны сжатия, описанные выше, представляют собой волны сжатия в режиме холостого хода, и некоторые из этих методов не работают с сигналами проворачивания коленчатого вала или резкого открытия дроссельной заслонки. С небольшой практикой эти сигналы сжатия начнут обеспечивать вашу мастерскую быстрой диагностикой срабатывания. Эти диагностические методы выведут ваш магазин на уровень 21 st века и обеспечат вашему магазину преимущество над конкурентами.

Подписаться на Motor Age  и получать такие статьи каждый месяц… абсолютно бесплатно. Щелкните здесь

Измерение давления в баллонах | Kistler

Измерение давления в цилиндрах является основой для индикации давления в цилиндрах: метрологический метод измерения и анализа кривой давления внутри цилиндров поршневых двигателей внутреннего сгорания.

Из-за высоких давлений измерение внутреннего давления в цилиндре также известно как «индикация высокого давления». «Индикация низкого давления» является дополнительным типом измерения давления в баллоне. Проводится в фазе газообмена с целью определения давления во впускной и выпускной системах. Чтобы измеренное давление можно было соотнести с определенной рабочей фазой двигателя внутреннего сгорания в каждом случае, в расчет включаются положение поршня (угол поворота коленчатого вала) или время.

Эти методы предоставляют данные, необходимые для исследования, разработки и настройки двигателей. Они также обеспечивают необходимую основу для производителей двигателей, чтобы соблюдать все более строгое законодательство по выхлопным газам и оптимизировать эффективность своих двигателей.

Кривая давления в баллоне, полученная путем измерения давления в баллоне, является наиболее важным источником информации для индикации давления в баллоне. Индикация давления в цилиндрах дает более точные сведения о термодинамических процессах во время сгорания и мощности двигателя. Эффекты действий по оптимизации двигателя на основе этих знаний:

  • Повышенная эффективность
  • Повышенная мощность/производительность двигателя
  • Снижение выбросов
  • Увеличенный срок службы двигателя

Где используется измерение давления в цилиндрах?

Измерение давления в цилиндрах используется для:

  • Автомобильных, мотоциклетных и грузовых двигателей
  • 2-тактные и 4-тактные дизельные двигатели в судоходстве

  • Стационарные большие двигатели, такие как мощные двигатели для электростанций

Какая технология измерения используется для измерения давления в баллоне?

Измерение давления в цилиндрах в основном выполняется с помощью пьезоэлектрических высокотемпературных датчиков давления, которые устанавливаются через монтажное отверстие, которое для этой конкретной цели необходимо просверлить в головке цилиндра. Также используются измерительные свечи зажигания со встроенным высокотемпературным датчиком давления. Для них не требуется монтажное отверстие, поскольку их можно легко ввинтить вместо стандартной свечи зажигания. В дизельных двигателях для измерения также можно использовать специальные переходники для свечей накаливания.

Измерительная цепь укомплектована усилителем заряда, системой сбора данных и системой оценки. В автомобильном секторе также есть инновационные системы индикации, которые объединяют сбор и оценку данных в одном устройстве; их можно использовать на испытательных стендах, а также в качестве мобильных приложений.

Почему так важно измерять кривую давления в баллоне?

Кривая давления в баллоне, определяемая путем измерения давления в баллоне, является наиболее важным источником информации для индикации давления в баллоне. В принципе поршневые двигатели внутреннего сгорания являются тепловыми двигателями: посредством сгорания они в основном преобразуют химическую энергию, связанную в топливно-воздушной смеси, в механическую работу и тепло.

Разработчики стремятся получить максимально возможную долю механической работы от процесса преобразования — другими словами, их цель — максимизировать эффективность. Существенными факторами здесь являются уровень и кривая давления в цилиндре от угла поворота коленчатого вала, действующего на поршень. Эта кривая давления представляет сгорание, поэтому она показывает, как энергия преобразуется в двигателе. Полная механическая работа поршня, суммированная за один цикл сгорания или ход, получается из давления и соответствующего изменения объема камеры сгорания.

Каковы характеристические переменные для кривой давления в баллоне?

Ключевыми параметрами являются уровень сигнала (пиковое давление) и указанное среднее эффективное давление (IMEP) за один цикл сгорания.

Как оптический анализ горения используется для измерения давления в цилиндре?

Оптический анализ сгорания используется в качестве дополнения к измерению давления в цилиндре и других опций для оптимизации процессов сгорания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *