Автомобильный дифференциал и системы его блокировок. Дифференциал устройство
Устройство дифференциала - как он работает?
К сожалению, современные дороги далеко не всегда отличаются высоким качеством дорожного покрытия и автомобиль часто вынужден преодолевать всевозможные неровности. При таких условиях движения, а также на поворотах, размещенные на главной оси колеса, проходят разные расстояния. Что бы транспортное средство не проскальзывало по дороге, его колеса должны вращаться с разной скоростью. Именно этот условие и обеспечивается автомобильным дифференциалом. Более подробно о его назначении, расположении и устройстве мы Вам расскажем в данной статье.
1. Назначение дифференциала
Для начала немного истории. Появление первых дифференциалов, практически совпадает с изобретением самых двигателей внутреннего сгорания. А все дело в том, что первые автомобили, оборудованные таким двигателем, очень плохо поддавались управлению: при повороте транспортного средства, угловая скорость вращения двух колес одной оси была одинаковой, вызывая тем самым, пробуксовку одного колеса, которое перемещалось по внешнему, большему диаметру.
Решение возникшей проблемы не заставило себя долго ждать: разработчики и конструкторы машин с ДВС, просто позаимствовали дифференциал у популярных на то время паровых повозок. Данный механизм был изобретен французским инженером О. Пекке-Ромом в 1828 году и являл собой некое устройство, состоящее из валов и шестерней, с помощью которых выполнялась передача крутящего момента от мотора к ведущим колесам. Однако, полностью решить проблему - тогда не удалось.
После установки дифференциала на автомобиль, возникла еще одна неточность – колесо, утратившее сцепление с дорогой, также начало пробуксовывать. Как правило, это проявлялось при движении транспортного средства по обледеневшей дороге: когда колесо попадало на лед, и начинало вращаться намного быстрее нежели то, которое оставалось на грунте. В результате, автомобиль заносило, а водитель попросту терял управление.
Случившаяся неудача заставила инженеров-конструкторов задуматься над усовершенствованием имеющегося дифференциала, которое бы в такой ситуации, смогло обеспечить одинаковую скорость вращения обоих колес, без заноса транспортного средства. Первым ученным, который взялся за решение поставленной задачи, стал Ф.Порше. На разработку, тестирование и выпуск нового механизма с ограниченным проскальзыванием, ему понадобилось всего три года, после чего кулачковый дифференциал увидел мир (изначально устанавливался на первые Volkswagen).
В современном понимании, дифференциалом принято считать механизм, распределяющий крутящий момент входного вала между выходными полуосями главных (ведущих) колес, а на автомобилях с повышенной проходимостью, крутящий момент распределяется между двумя ведущими осями - передней и задней.
Дифференциал дает колесам возможность вращения с разной угловой скоростью, что позволяет проходить разный путь, без всякого проскальзывания по отношению к дорожному полотну. Проще говоря, приходящий на дифференциал 100% крутящий момент, может распределяться между ведущими колесами как в пропорции 50 х 50, так и в любой другой (к примеру, 60 х 40). К сожалению, иногда, пропорция может соответствовать значению и 100х0, указывающему на то, что одно колесо стоит, а другое буксует.
Описанный механизм является составляющей трансмиссии, которая, на классических и переднеприводных автомобилях, зачастую, представлена в виде сплошного блока, с имеющейся главной передачей, а на полноприводных внедорожниках встроена в раздаточную коробку. Крутящий момент, поступающий на свободный дифференциал, всегда делится поровну, не смотря на то, с какой скоростью вращаются ведущие колеса (или оси) – с одинаковой или с разной.
Когда транспортное средство перемещается по криволинейной дороге (например, при поворотах), колеса главной оси передвигаются по разным окружностям. Если выходить из соотношения с центром поворота машины, то внешнее колесо проходит сравнительно больший путь, чем колесо, оказавшееся размещенным на внутренней стороне. Чем круче поворот, тем больше будет заметна эта разница.
Проблема может возникнуть и при передвижении по прямой траектории, например, когда на автомобиле установлены ведущие колеса разного размера. Если их соединить жесткой осью, то станет ясно, что одно колесо крутиться быстрее, чем это нужно для преодоления заданного пути, а другое несколько отстает от его темпа, тоесть, крутится медленнее. В таких случаях, оба колеса будут испытывать повышенные нагрузки, а как следствие сильнее нагреваться и быстрее изнашиваться, что также приведет к увеличению расхода топлива. Более того, данный фактор отрицательно влияет на курсовую устойчивость транспортного средства, вызывая его занос или полный снос, особенно в холодную пору года, когда дорожное полотно, хоть немного, но покрывается коркой льда.
Исходя из описанной выше проблемы, становится понятно, что без компенсации разницы пути, проходимого ведущими колесами (осями) обойтись нельзя, а так как для этих целей используется дифференциал, то это делает его очень важной и необходимой составляющей частью конструкции автомобиля. В самом простом варианте, свободный дифференциал, способный уравнивать крутящие моменты (тяговые силы) обоих колес и если у них наблюдаются разные скорости вращения (линейного движения), то и мощности будут пропорциональны такой разнице. Колесо, которое крутится быстрее, расходует на это больше мощности, нежели то, которое имеет сравнительно низкую скорость вращения. Таким образом, главной задачей дифференциала есть обеспечение разной угловой скорости вращения ведущих колес, в условиях стабильно-постоянной передачи крутящего момента на оба колеса одной (ведущей) оси.
2. Расположение дифференциала
И так, мы уже выяснили, что дифференциал – это одна из основных частей конструкции трансмиссии. Теперь давайте рассмотрим, где же именно она устанавливается. В транспортном средстве, она может занимать одно из следующих расположений:
- в автомобиле, оснащенном задним приводом, дифференциал используется для привода ведущих колес и устанавливается в картере заднего моста;
- в переднеприводном транспортном средстве – размещается в коробке передач;
- в полноприводных машинах, может использоваться как для привода ведущих колес, так и для аналогичного привода мостов. В первом случае, дифференциал помещается в картер переднего и заднего мостов, а во втором – монтируется в раздаточную коробку.
С конструктивной точки зрения, дифференциал основывается на устройстве планетарного редуктора и в зависимости от вида зубчатой передачи, использующейся в нем, выделяют следующие типы данного элемента: конический дифференциал, червячный и цилиндрический.
Конический тип, в основном используется в качестве междуколесного дифференциала. Цилиндрический, как правило, занимает место между ведущими осями полноприводных автомобилей, а червячный дифференциал, принимая во внимание его универсальность, подходит для применения как между колесами, так и между осями.
Если в транспортном средстве имеется только одна ведущая ось, значит дифференциал располагается прямо на ней. Автомобили, где установлена сдвоенная ведущая ось, оборудуются двумя дифференциалами – по одному на каждой оси. Вездеходы, с возможностью отключения полного привода, также, имеют по одному дифференциалу на каждой оси. В последнем случае, для езды по дорогам, не рекомендуется использовать включенный полный привод. На транспортных средствах, оборудованных полным приводом, имеется три дифференциала: два на осях (по одному на каждой) и еще один межосевой, в задачу которого входит распределение крутящего момента между осями.
Если в автомобиле установлены три или четыре ведущие мосты (встречается на колесных формулах формула 6x6 или 8x8), к уже названным типам добавляется еще один – межтележечный дифференциал.
3. Как устроен дифференциал
На сегодняшний день, усовершенствованный конструкторами дифференциал, представлен в виде планетарной передачи, крутящий момент которой направляется от двигателя транспортного средства к корпусу самого дифференциала, проходя через кардан и коническую зубчатую передачу. В свою очередь, корпус элемента, посылает крутящий момент на шестерни, а уже от них он распределяется между полуосями.
Сцепление между полуосями и шестернями-сателлитами обладает двумя степенями свободы, что дает им возможность вращения с разными угловыми скоростями. Именно поэтому, получается, что дифференциал способствует разноскоростному вращению колес одной оси, предотвращая тем самым, их пробуксовку на поворотах. После изобретения полноприводных автомобилей, у них появились два, а чуть позже и три (включая межосевой) дифференциала, работа которых нацелена на разделение крутящего момента между ведущими осями.
К основным составляющим устройства дифференциала относят такие элементы:
Ведущий вал. Главная его задача - передача крутящего момента от коробки передач к началу самого дифференциала.
Главная (ведущая) шестерня ведущего вала. Небольшая деталь с косыми зубцами, представленная в форме конуса, которую используют для сцепления с механизмом дифференциала.
Коронная шестерня – это ведомая деталь, также имеющая форму конуса и приводящаяся в движение при помощи ведущей оси. Ведущая и ведомая шестерня (а именно так и называют коронную шестерню) являются главной передачей и служат последним этапом на пути к уменьшению скорости вращения, достигающего, в последствии, колес автомобиля. Коронная шестерня всегда меньше ведущей, а значит, последней придется выполнить намного больше оборотов, в то время как ведомая, сделает всего лишь один - кругом своей оси.
Шестерни полуосей являются последней ступенькой на пути передачи крутящего момента от ведущего вала к колесам.
Сателлиты. Как раз и представлены в виде планетарного механизма, осуществляющего ключевую задачу в вопросе обеспечения разной скорости вращения колес при повороте.
Полуоси – это валы, непосредственно соединяющие дифференциал и колеса.
Среди всего видового разнообразия дифференциалов, выделяют еще симметричные или несимметричные виды. Первый вид, обеспечивает передачу равносильного крутящего момента на каждое из колес и, обычно, дополняется главной передачей. Дифференциал второго вида, способствует выполненю передачи крутящего момента в разном соотношении и, как правило, применяется между приводными осями транспортного средства.
4. Неисправности дифференциала
Основные неисправности дифференциалов и главной передачи могут иметь следующий вид:
- износ крестовины или подшипников устройства;
- подтекание масла в местах соединения картера и заднего моста;
- износ или повреждение сальников.
Причин каждой поломки может быть несколько. Так, например, подтекание масла, чаще всего, вызвано износом уплотнителя, сальников карданных шарниров или ослаблением обоймы фланцевого сальника эластичной муфты.
Если Вы заметили повышение люфта, то скорее всего, причина кроется в износе соединений крестовины. Когда проблемы возникают в работе главной передачи, то при движении транспортного средства, в картере заднего моста, можно будет услышать небольшой характерный шум. Небольшие зазоры в подшипниках, легко устраняются посредством обычной регулировки, но если детали дифференциала и главной передачи сильно изношены, то ремонтные мероприятия здесь не помогут – их придется заменять новыми.
При длительной эксплуатации, на карданных передачах, довольно часто износу поддаются крестовины карданных валов. Степень изношенности их шипов определяется расстоянием между ними. При достижении размера меньше допустимого – крестовины подлежат замене. Также, в случае сильного износа или трещин (обломов) срочно нужно менять и вилки подшипника. Приваривается вилка путем использования электродуговой сварки, после чего, в среде углекислого газа, ее покрывают слоем флюса.
Есть на вале прогибы или нет, станет ясно в результате измерения радиального биения, выполняющегося при торце в вилках по всей длине и установке приспособлений с требуемым диаметром. Если в ходе диагностической части станет понятно, что исправность нельзя будет устранить, то придется менять вал полностью.
Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.
Была ли эта статья полезна?Да Нет
auto.today
Кулачковый дифференциал повышенного трения.
Кулачковый дифференциал
Кулачковый дифференциал, в отличие от конического, обладает повышенным внутренним трением. Это позволяет рациональнее распределять тяговые силы между ведущими колесами, имеющими разные силы сцепления с дорогой, и практически исключить их раздельное буксование. При этом распределение сил тяги на ведущих колесах дифференцируется автоматически, без участия водителя и характеризуется коэффициентом блокировки:
Кб = Мот/Мобг,
где Мот – момент на отстающем валу; Мобг – момент на обгоняющем валу.
Кулачковые дифференциалы могут выполняться с горизонтально или радиально расположенными сухарями. Сухари могут размещаться в один или два ряда, выполняя функции сателлитов обычных конических дифференциалов. При однорядном размещении сухарей число кулачков на полуосевых звездочках должно быть разным для того, чтобы при этом хотя бы один сухарь передавал усилие.
При двухрядном размещении сухарей число кулачков на звездочках одинаковое, но один ряд сухарей смещен относительно другого на половину шага кулачков, чтобы исключить пульсацию передаваемого крутящего момента.
Двухрядный кулачковый дифференциал применяется на автомобиле ГАЗ-66-11 (рис. 1, а). Он устанавливается на двух конических подшипниках в картере главой передачи и состоит из чашки 4, сепаратора 2, внутренней звездочки 1, наружной звездочки 3, двадцати четырех сухарей 5.
Сепаратор 2 имеет два ряда отверстий, в которых размещаются сухари 5. От выпадения из сепаратора и проворачивания вокруг своих осей сухари удерживаются кольцами. Сепаратор 2 вместе с чашкой 4 крепится к ведомому зубчатому колесу главной передачи и образует корпус дифференциала. Наружная звездочка 3 имеет на внутренней поверхности шесть равномерно распложенных кулачков. Она устанавливается свободно внутри чашки и соединяется шлицами с полуосью.
Внутренняя звездочка 1 имеет на внешней поверхности два ряда по шесть кулачков, расположенных в шахматном порядке. Эта звездочка находится в отверстии сепаратора и соединяется шлицами со второй полуосью.
В рабочем положении детали дифференциала устанавливаются таким образом, что сухари соприкасаются с кулачками наружной и внутренней звездочек.
Дифференциал работает следующим образом (рис. 1, б). При движении автомобиля по ровной дороге все детали дифференциала вращаются вокруг обшей оси как одно целое, при этом угловые скорости колесных валов и корпуса дифференциала равны между собой. Сухари относительно сепаратора не перемещаются.
Крутящий момент передается от ведомого зубчатого колеса главной передачи на сепаратор 2, с него на сухари 5, которые давят на кулачки звездочек 1 и 3, приводя их во вращение. Сила нормального давления сухарей на кулачки наружной и внутренней звездочек одинакова, но окружные силы Р, вращающие звездочки, вследствие разных углов наклона профилей кулачков на звездочках разные.
На внутренней звездочке, имеющей больший угол наклона кулачков, окружная сила больше, чем на наружной. Бóльшая окружная сила, приложенная на меньшем радиусе наружной звездочки, дает такой же крутящий момент, как и меньшая окружная сила, действующая на бóльшем радиусе наружной звездочки. Таким образом, крутящий момент при движении прямо по твердой дороге распределяется между колесами поровну.
При движении на повороте или по неровной дороге одно из колес начинает вращаться быстрее другого. Звездочка, соединенная с отстающим колесом, вращается медленнее. Своими кулачками она толкает сухари в сторону второй звездочки, ускоряя ее вращение, тем самым дифференциал позволяет колесам вращаться с разными угловыми скоростями.
При скольжении сухарей по кулачкам на их поверхности возникают силы трения Ртр. На звездочке, имеющей бóльшую скорость, сила трения направлена против вращения, притормаживая ее, а на отстающей звездочке – в сторону вращения, увеличивая тем самым окружную силу, в результате чего передаваемый на колесо крутящий момент возрастает в три-четыре раза.
К недостаткам кулачкового дифференциала по сравнению с коническим можно отнести:
- сложность изготовления;
- меньшие значения КПД из-за повышенного трения между деталями;
- повышенное изнашивание из-за больших сил трения и контактных напряжений в деталях.
***
Самоблокирующиеся или автоматические дифференциалы
k-a-t.ru
Главная передача и дифференциал - назначение, устройство и типы
Главная передача
Назначение главной передачи
Основное назначение главной передачи в трансмиссии — передача тяги двигателя к, так сказать, «конечному потребителю» – колесам. Если автомобиль заднеприводный, то тяга от коробки передач через карданный вал передается на главную передачу, а та, в свою очередь, перенаправляет поток мощности на колеса через полуоси (если задняя подвеска зависимая и имеет мост) или приводные валы с шарнирами равных угловых скоростей (об этом пойдет речь дальше). Если автомобиль переднеприводный, то главная передача через шестерню связана непосредственно с коробкой передач.
Есть такое понятие, как неразрезной мост. Означает оно то, что главная передача вместе с дифференциалом находятся в корпусе, к которому подсоединены или отлиты вместе с ним изначально два кожуха полуосей. Полуоси — это валы, соединяющие дифференциал и главную передачу с колесами. Данная конструкция является частью зависимой подвески автомобиля, так как жестко связывает правое и левое ведущие колеса. Полуось жестко связывает колесо и главную передачу, то есть при преодолении какоголибо препятствия весь мост перемещается вместе с колесами и всем содержимым. Убираем кожух полуосей, корпус главной передачи устанавливаем на кузов или подрамник, колеса с главной передачей соединяем с помощью приводных валов через шарниры равных угловых скоростей и получаем разрезной мост и независимую подвеску колес. Все это подробнее описано ниже в разделе «Устройство главной передачи» и представлено на рисунке 5.32.
ПримечаниеГлавная передача служит для понижения числа оборотов, передаваемых от двигателя к колесам, и увеличения тягового усилия. Она обеспечивает передачу вращения с карданного вала на полуоси под углом 90° при классической компоновке автомобиля (о которой подробно рассказывается в главе 3). В главной передаче применяют шестеренчатые передачи, одинарные или двойные.
Устройство главной передачи
Главная передача состоит из двух шестерен, а точнее, из конической шестерни (на рисунке 5.33 — ведущая шестерня) и конического колеса (на рисунке 5.33 — ведомое колесо).
Рисунок 5.33 Главная передача заднего неразрезного моста.
Шестерня является ведущим элементом (к ней подводится тяга от коробки передач и двигателя), а колесо —ведомым (принимает тягу от шестерни и перенаправляет под углом 90 градусов).
Шестерни изготавливают со спиральными зубьями, благодаря чему повышается прочность зубьев, увеличивается число зубьев, одновременно находящихся в зацеплении, и шестерни работают более плавно и бесшумно.
Кроме конической простой шестеренчатой передачи, у которой оси взаимно пересекаются, в легковых автомобилях применяют гипоидную передачу (показана на рисунке 5.34). В этой передаче зубья имеют специальный профиль и ось малой конической шестерни смещена вниз относительно центра большой шестерни на некоторое расстояние «S». Это дает возможность расположить карданный вал ниже и уменьшить высоту выпуклой верхней части туннеля для размещения вала в полу кузова, вследствие чего достигается более удобное размещение пассажиров в кузове. Кроме того, имеется возможность несколько снизить центр тяжести автомобиля и повысить его устойчивость при движении. Гипоидная передача обладает большей плавностью работы, более высокой прочностью зубьев и износоустойчивостью.
ПримечаниеОднако у гипоидной передачи есть одна неприятная особенность: порог заклинивания при обратном ходе. Расчеты данной передачи, конечно, исключают такую возможность, но всегда стоит помнить, что данную главную передачу может заклинить при превышении расчетных оборотов (при вращении в обратную сторону). Так что будьте осторожны с выбором скорости движения задним ходом.
Для гипоидной передачи необходимо применение смазки специальных сортов из-за большого давления между зубьями при работе и больших скоростей относительного скольжения между зубьями. Кроме того, требуется более высокая точность монтажа передачи.
Рисунок 5.34 Элементы главной передачи. Гипоидная передача.
Дифференциал
Назначение дифференциала
Дифференциал позволяет катиться правому и левому ведущим колесам с различным числом оборотов при поворотах автомобиля и при движении по неровностям дороги.
При движении автомобиля на повороте (как показано на рисунке 5.35) внутреннее ведущее колесо его проходит меньший путь, чем наружное, и, для того чтобы обеспечить качение без буксования, оно должно вращаться медленнее, чем наружное колесо. Для того чтобы колеса могли вращаться с разным числом оборотов, их подсоединяют через приводные валы к дифференциалу, а уже дифференциал жестко связан с ведомым колесом главной передачи.
Принцип работы дифференциала
Дифференциал состоит из (смотрите рисунок 5.33) полуосевых шестерен, сателлитов, оси сателлитов (которая может быть крестовидной, если сателлитов четыре) и корпуса. Полуосевые конические шестерни закреплены на внутренних концах полуосей, на наружных концах которых крепятся ведущие колеса. Сателлиты, представляющие собой малые конические шестерни, посажены свободно на оси.
Рисунок 5.x Схема работы дифференциала.
При движении автомобиля на повороте, внутреннее колесо проходит меньший путь и вследствие сцепления с дорогой начинает вращаться медленнее. При этом сателлиты, вращаясь, начинают перекатываться по замедлившей свое вращение полуосевой шестерне внутреннего колеса. В результате сателлиты начинают вращаться около своих осей, увеличивая число оборотов второй полуосевой шестерни и наружного колеса соответственно.
ПримечаниеПри наличии дифференциала между количеством оборотов колес существует определенная зависимость, при которой сумма чисел оборотов колес всегда равна удвоенному числу оборотов коробки дифференциала, т. е. при уменьшении числа оборотов одного из колес число оборотов другого колеса на столько же увеличивается. При неподвижной коробке дифференциала, если вращается одно из колес, другое колесо будет вращаться в обратную сторону.
Однако работа дифференциала и результат положителен только в случае сухой дороги. В определенных условиях дифференциал может отрицательно повлиять на движение автомобиля.
Так, при попадании одного из колес на скользкое место (лед, грязь) колесо из-за недостаточного сцепления с дорогой начинает буксовать. При значительном ухудшении сцепления буксующего колеса с дорогой тяговое усилие на нем становится очень низким. При этом второе колесо, имеющее достаточное сцепление с дорогой, останавливается, так как вследствие свойства дифференциала распределять усилие между колесами поровну тяговое усилие на втором колесе также становится очень малым и недостаточным для движения автомобиля. Буксующее колесо вращается при этом с удвоенным числом оборотов, и автомобиль полностью останавливается.
Разновидности дифференциалов
Дифференциалы могут быть симметричными и не симметричными, а так же свободными или с возможностью блокировки.
ПримечаниеДифференциал, распределяющий тягу от двигателя поровну между колесами или между осями, называется симметричным. Если же дифференциал межосевой (делит тягу от двигателя в полноприводном автомобиле между передней и задней осью), он может быть несимметричным, то есть на одну из осей передавать меньше тяги, чем на другую.
Если симметричное распределение не всегда играет на руку управляемости или проходимости автомобиля, значит эту проблему необходимо решить. Есть два пути:
1. Установить в главную передачу дифференциал с возможностью его блокировки.
Так появились дифференциалы с блокировкой. Процесс блокировки может быть отдан на откуп механическому приводу с выведением рычага управления в салон автомобиля или же передан в ведение электроники и может быть автоматическим полностью или же с управлением при помощи контроллеров в салоне автомобиля.
2. Установить дифференциал повышенного трения, который при усложнившихся дорожных ситуациях просто-напросто не позволит всей тяге «уйти» на колесо, потерявшее сцепление с поверхностью.
monolith.in.ua
Как работает дифференциал
Как работает дифференциал
Начнем с того, что означает сам этот автомобильный технический термин на доступном для обычного человека языке. Автомобильный дифференциал - это то, из чего состоит трансмиссия и то, что дает возможность колесам крутится асинхронно, то есть каждые колеса не зависят друг от друга и вращаются отдельно.
Научным языком, (от лат. differentia — разность, различие) дифференциал автомобиля - это устройство, которое разделяет входящую энергию (момент), поступаемую на входной вал между выходными валами. Простое и понятное объяснение расширяет горизонты. Интересуются работой механизмов машин еще и девушки.
Причина использования в конструкциях автомобилей
Во время поворота машины, ведущие приводные колеса вращаются с одинаковой частотой вращения и так, как одно колеса авто совершает поворот по длинной дуге, а другое по короткой, происходит пробуксовка, что плохо сказывается и сопровождается износом шин и доставляет дискомфорт водителю из-за уменьшения качества динамики автомобиля.
Назначение дифференциала
- дает возможность приводным (ведущим) колесам вращаться с разными угловыми скоростями
- служит отдельной доп.передачей в паре с главной передачей. Главная передача - это зубчатый механизм трансмиссии автомобиля, который передает крутящий момент ведущим колесам.
- непрерывно передает крутящий момент, исходящий от двигателя к ведущим колесам.
У переднеприводных авто главная передача и differencial расположены непосредственно в коробке переключения передач.
Если на транспортном средстве установлены более одного двигателя, на каждое колесо один двигатель, то дифференциал не требуется. Но так обычно не делают. Устанавливают 4 двигателя, по одному на каждое колесо, только на самосвалы Белаз. Двигатели эти электрические.
В устройстве гоночных картингов также дифференциал не устанавливают, так как конструкция рамы гибкая, что позволяет слегка приподнимать ведущее заднее колесо с внутренней стороны поворота не приподнимая передние колеса.
на рисунке а) - колеса вращаются с одинаковой частотой, на рисунке б) - движение колес на повороте1 - ось сателлитов, 2 – ведомая шестерня, 3 - полуосевые шестерни, 4 - сателлит,5 - ведущая шестерня, 6 - полуоси.
На гоночных автомобилях ралли differencial обычно заваривают сваркой, жестко блокируют и намертво связывают колеса на ведущей оси. Это применяется потому, что такие машины при езде, все повороты проходят с заносом.
Как работает дифференциал
Принцип действия. Главная передача посредством шестерни передает крутящую энергию на корпус и сателлиты, которые сцеплены с шестернями полуосей.
Когда скорость вращения колес одинакова, сателлиты сидят неподвижно (см. рисунки ниже).
При изменении угловых скоростей колес, например, при повороте или пробуксовке из-за неровностей дорог и так далее, происходит вращение сателлитов. Сателлиты служат для компенсации разницы частот вращения колес.
Рассмотрим на примере - автомобиль буксует на льду. Здесь одно колесо буксует, потому что нет сцепления со льдом, а значит и нет крутящего момента. А так как свободное блокирующее устройство распределяет тягу поровну на колеса, то раз нет крутящей силы на одном колесе, значит оно исчезает и на втором.
Выход из такой ситуации - создать противодействующую силу на противоположном колесе. А это делает блокировка. Необходимо заблокировать буксующее противоположное колесо и тогда появится противодействующая сила для противоположного колеса.
Как работает дифференциал на полноприводном автомобиле
На джипах, седанах, хэтбчеках и универсалах 4х4, если установлен свободный симметричный дифференциал, происходит следующая ситуация. Во время движения без пробуксовок на каждое колесо распределяется по 25% энергии кр.момента поровну.
Но если одно колесо буксует, например на льду, крутящая энергия снижается до нуля, так как колесо не может сцепиться с гладкой поверхностью льда. В такой ситуации, если одно колесо осталось без вращения, то и на противоположном соседнем колесе исчезает энергия вращения, потому что в данном примере установлен симметричный межосевой.
Получается одна ось осталась без вращения, поэтому и пропадает крутящий момент и на второй оси, так как differencial межосевой симметричный. Результат - на всех 4 ведущих колесах нет вращения.
Далее, что мы делаем. Мы блокируем межосевой симметричный дифференциал, при этом получается между осями жесткая связь. Так как передние колеса стоят без вращения, энергия вращения распределяется пополам на задние колеса по 50%.
Чертеж-differential в разрезе. Главная передача и дифференциал заднеприводного автомобиля:1 — картер; 2 — крышка; 3 — защитный чехол; 4 — стопорное кольцо; 5 — полуось; 6 — сальник подшипника; 7 — регулировочная гайка; 8 — стакан подшипника; 9 — полуосевая шестерня; 10 — крышка коробки дифференциала; 11 — ведомая шестерня главной передачи; 12 — стопорное кольцо пальца сателлитов; 13 — палец сателлитов; 14 — сателлит; 15 — коробка устройства
История создания автомобиля, Шины для спецтехники, Как купить автомобиль в кредит, Мосты Уаз, Диагностика трансмиссии
Комментарии:
successfulauto.ru
Дифференциал и системы его блокировок
Благодаря наличию в автомобиле такого механизма, как дифференциал, колеса двигающегося автомобиля на поворотах, кочках и других неровностях проходимого пути, могут двигаться с разной скоростью. Это помогает повысить манёвренность автомобиля и скорость его движения при достаточно жёсткой конструкции рабочих узлов.
Дисковый дифференциал
Устройство автомобильных дифференциалов довольно простое: на главную пару, к ведомой шестерёнке крепится коробка, в которую заключены два сателлита на оси, передающие вращательные движения на две других шестерни полуосей; те, в свою очередь, и заставляют вращаться колеса с нужной скоростью. Такая конструкция позволила передавать больший крутящий момент на ту полуось и шестерню, которая будет оказывать наименьшее сопротивление при вращении. Во время поворота такое сопротивление оказывает полуось, отвечающая за вращение внешнего колеса, так как при таком манёвре внутреннее колесо получает больше нагрузки и оказывает большее сопротивление соответственно.
К сожалению, как и любой механизм, дифференциал, иногда даёт сбои. Так, например, из-за попадания колеса на скользкую поверхность — лёд или грязь, автомобиль начинает буксовать. Связанно это с тем, что потеряв нормальный контакт с дорожной поверхностью, колесо, а с ним и его полуось начинают оказывать меньшее сопротивление при вращении на сателлитах, отбирая мощность у другого колеса. Для того чтобы предупредить подобные инциденты дифференциал дополнили системой блокировки. Систем блокировок много и все они разные, рассмотрим некоторые из них.
Автомобильный дифференциал
Системы блокировки дифференциала
Первое, что нужно знать о системах блокировки, которыми может быть оснащён дифференциал — они бывают двух типов: полные и частичные.
В свою очередь, первые включаются вручную, а вторые — автоматические или как их еще называют самоблокирующиеся. Дифференциалы, оснащённые автоматической системой блокировки, разделяют на четыре подтипа: червячные, дисковые, жидкостные и управляемые электроникой.
- Жидкостные или вискомуфта. В основе работы данной модели дифференциала лежит принцип повышения плотности отдельных материалов при нагревании, благодаря чему происходит залипание фрикционов, и скорость вращения осей при пробуксовке выравнивается. Единственный недостаток этой системы — позднее реагирование на пробуксовку, ведь для того, чтобы жидкость нагрелась до требуемой температуры и приобрела необходимую плотность нужно время. Из-за этого дифференциал данного типа применяется исключительно на автомобилях городского типа, для бездорожья он не предназначен.
- Дисковый. Принцип работы этого механизма основывается на физических законах силы трения. Устройство дискового дифференциала несколько отличается от устройств обычных передаточных механизмов тем, что в его конструкцию встраивают пару дополнительных пакетов фрикционов и распорную пружину, которая обеспечивает сжатие пакетов. Часть пакета устанавливается на полуоси, а вторая на коробку дифференциала. При одинаковой скорости диски во фрикционном пакете вращаются, как одно целое, но когда появляется разница в скорости вращения — сила трения, которая появляется между ними, стремится выровнять скорость вращения, за счёт чего и осуществляется блокировка. Недостатки данного вида передаточных механизмов — срок службы фрикционов, он сравнительно небольшой. Плюс требуется дополнительное использование трансмиссионного масла.
- Героторный дифференциал. В принципе, это одна из разновидностей дисковых дифференциалов, которую принято считать более совершенной. Блокировка в нём осуществляется за счёт наличия гидропоршня, который приводится в действие масляным насосом. При этом сила, с которой насос выдавливает поршень, прямо пропорционально зависит от того, насколько велика разница во вращении полуосей.
- Дифференциал с электронным управлением. Здесь все просто. Это самый обычный дифференциал, дополненный двумя передачами, которые приводятся в действие электроникой, посредством двух приводов: гидравлическим либо электрическим. Естественно, как, и любой механизм, который контролируется с помощью компьютера, эти механизмы сцепления самые практичные, потому что степень блокировки колеса можно регулировать от 0 до 100%, в зависимости от потребностей автомобиля. Единственный недостаток данного устройства — его цена.
- Если уж и заговорили об электронных системах блокировки дифференциала, то не упомянуть об имитации блокировок будет просто неправильно. Во-первых, для городских автомобилей — это то что надо. Во-вторых, она очень практична и не боится ни скользкой дороги, ни диагонального вывешивания, которое является проблемой для большинства других дифференциалов. Принцип работы её очень прост — при малейшем намёке на пробуксовку, электронная система автомобиля начинает подтормаживать колесо, которое буксует штатной системой торможения.
- Червячный дифференциал. Во главу этого механизма заложены принципы червячных передач. То есть скорость вращения полуосей в данном случае зависит от угла наклонов витков червяка по отношению к червячному колесу. Чем меньше угол, тем выше скорость вращения, соответственно увеличение угла вращения сателлита по отношению к червячному колесу, приводит к уменьшению скорости колеса. При этом, когда угол вращения достигает своего максимального значения, происходит блокировка колеса, так как передача становится невозможной.
Червячный дифференциал
На последний дифференциал хотелось бы обратить чуть больше внимания, так как именно он является самым распространённым и наиболее надёжным из малобюджетных механизмов.
Преимущества, которыми обладает дифференциал червячного типа
Благодаря простоте своей конструкции и её эффективности червячные механизмы пользуются огромной популярностью не только у обычных автолюбителей, но и профессиональных гонщиков. Главным её достоинством является моментальный отклик на изменение в скорости вращения колеса. Но это не единственный плюс, которым обладает эта система, и их, кстати, гораздо больше, чем недостатков:
- как показал опыт, практически неограниченный срок эксплуатации;
- блокировка осей почти на 70%;
- замечательная проходимость и управляемость;
- отсутствие требований по специальному техническому обслуживанию.
Какие минусы есть у дифференциала червячного типа
Как и говорилось минусов у данной системы синхронизации не так уж и много. Главным, пожалуй, является падение диапазона преднатяжения в ходе эксплуатации. И чтобы это устранить придётся менять регулировочные шайбы. В принципе это все.
Похожие статьи:
autodont.ru
Дифференциал, его функции, устройство, разновидности
Что такое дифференциал и для чего он нужен?
Чтобы ответить на этот вопрос, давайте представим себе, как двигаются колёса автомобиля на повороте. Траектория их движения будет разной: внешнее колесо должно проделать гораздо более длинный путь, чем внутреннее. Следовательно, угловая скорость вращения колёс должна быть разной: внутреннее должно вращаться медленнее, внешнее – быстрее. Если речь идёт о неведущем мосте, достичь этого совсем несложно, поскольку колёса могут быть между собой не связанными и вращаться независимо. Но если говорить о ведущем мосте, то крутящий момент должен подаваться на оба колеса, иначе автомобиль стал бы практически неуправляемым. В случае же жёсткой связи ведущих колёс возникали бы проблемы на поворотах: внешнему колесу, которое не успевало бы за внутренним, пришлось бы проскальзывать по дорожному покрытию, что привело бы к очень быстрому износу шин.
Именно с этой целью автомобили оснащаются дифференциалом – механизмом планетарного типа, который перераспределяет крутящий момент, поступающий от двигателя, между осями колёс ведущего моста, позволяя им в случае необходимости вращаться с любым соотношением угловой скорости. В результате, автомобиль нормально управляется и двигается как на поворотах, так и на прямой дороге. При этом среднее арифметическое скорости вращения ведущих колёс будет равно скорости вращения двигателя.
Если автомобиль имеет один ведущий мост, то дифференциал устанавливают между приводами ведущих колёс. В этом случае его называют межколёсным. Если же мы говорим о полноприводном автомобиле, то дифференциал зачастую устанавливают между осями и называют его при этом межосевым.
Планетарный механизм ввиду физических законов имеет свойство передавать усилие на то колесо, которое нагружено в меньшей степени. Если, к примеру, оба ведущих колеса имеют с дорогой одинаковое сцепление и требуют равного усилия для раскручивания, то дифференциал распределит крутящий момент между колёсами поровну. Но если в сцеплении колёс с дорогой возникнет ощутимая разница (к примеру, одно из колёс попало на лёд, а другое осталось на асфальте), то дифференциал тут же этим воспользуется и основные усилия направит на более «лёгкое» колесо, то есть, на то, которое находится на скользком покрытии. В результате оно начнёт крутиться с бешеной скоростью, а то колесо, которое находится на асфальте, совсем перестанет получать вращение и остановится.
Подобным образом работают так называемые симметричные дифференциалы с коническими шестернями, получившие распространение на легковых автомобилях российского производства. В этих механизмах сателлиты работают как равноплечные рычаги, передавая к шестерням полуосей, а, следовательно, и к ведущим колёсам, только равные усилия.
Естественно, такое явление заметно ухудшает управляемость и проходимость автомобиля, ведь логика вещей требует, чтобы усилия передавались именно на колесо, находящееся на твёрдом покрытии, поскольку только в этом случае автомобиль сможет продолжить двигаться.
Для увеличения показателей проходимости на автомобилях применяется частичная или полная блокировка дифференциалов. Степень блокировки определяется её коэффициентом (Кб) – соотношением момента на колесе отстающем к крутящему моменту на забегающем. Для симметричных дифференциалов Кб всегда равен единице, для дифференциалов повышенного трения этот показатель может находиться в диапазоне от 1 до 5. Чем выше коэффициент блокировки, тем лучше показатели проходимости автомобиля. Говоря другими словами, если Кб равен 3, то момент, передаваемый на отстающее колесо, будет в 3 раза выше, чем на буксующее. Но возможный крутящий момент на колесе в это время составит от 20 до 70%, зависимо от возможностей блокирующего механизма.
На сегодняшний день дифференциалов повышенного трения существует несколько типов:
Дифференциалы с полной блокировкой
Блокировка в таких дифференциалах приводится в действие водителем принудительно. Во включённом состоянии угловые скорости ведущих колёс всегда одинаковы, а это снижает управляемость автомобиля на твёрдом покрытии и приводит к быстрому износу резины.
При этом типе локинга дифференциал фактически прекращает выполнять свои функции, превращаясь в обычную муфту, жёстко сцепляющую полуоси. В действие её механизм приводится пневматическим, гидравлическим или электрическим приводом. Она может быть как межколёсной, так и межосевой. Межосевым дифференциалом с полной блокировкой оснащаются, к примеру, автомобили ВАЗ-2121.
Включать полную блокировку разрешено только при полной остановке автомобиля и использовать её лишь при невысоких скоростях на труднопроходимых участках.
Многодисковые дифференциалы
Многодисковыми называются симметричные дифференциалы, которые в своей конструкции имеют поджатые пружинами пакеты фрикционных дисков. Момент срабатывания (статический преднатяг) составляет у этих дифференциалов от 2 до 12 кг. Механизмы этого типа используются преимущественно в спортивных автомобилях. К их недостаткам относится быстрый износ и после каждого пробега они требуют профилактических работ для восстановления их технических характеристик.
Вискомуфта
Вискомуфта – это полностью герметичное устройство с набором фрикционных дисков, один из которых жёстко связан с корпусом, а другие – с валом. Для увеличения трения жидкости в дисках предусмотрены каналы и отверстия. Внутри корпус вискомуфты на 80 – 90%заполнен жидким силиконом, обладающим высокой степенью вязкости. Этот агрегат является неремонтируемым и в случае протечки жидкости подлежит замене, поскольку именно её количество и вязкость определяют рабочие характеристики дифференциала.
Торсен
Из самого названия – производного от английского «TORQUE» - «момент» и «SENSING» - чувствительность – становится понятным, что данные дифференциалы являются чувствительными к крутящему моменту. Это один из наиболее эффективных форм блокировки дифференциалов.
Сателлиты в корпусе дифференциала располагаются перпендикулярно его оси и попарно соединяются между собой посредством прямозубого соединения. С шестернями полуосей сателлиты связываются червячным зацеплением. В процессе поворота связанная с отстающим колесом шестерня проворачивает зацепленный с нею сателлит, который вращает в свою очередь второй сателлит и полуосевую шестерню. При помощи такой жёсткой механической связи колёса получают возможность обращаться с различными скоростями. Возникающие в зацеплении червячного типа по причине разности крутящих моментов на колёсах силы трения и осуществляют блокировку дифференциалов.
К недостаткам данной конструкции следует отнести сложность её изготовления, сборки и ремонта.
Квайф
Данная конструкция была запатентована под маркой «QUIFE» и названа так по имени своего создателя Рода Квайфа. Сателлиты в ней располагаются двухрядно параллельно к оси вращения корпуса. При этом они размещаются в закрытых с двух сторон отверстиях в корпусе, а не крепятся, как обычно, на осях. Правосторонние сателлиты, а их количество может быть от 3 до 5, зацепляются с правой полуосевой шестернёй, сателлиты левого ряда - с левой. Помимо этого, сателлиты, находящиеся в разных рядах, через один зацепляются друг с другом.
Все зубчатые колёса оснащены винтовыми зубьями с одним и тем же модулем и углом профиля. Число сателлитов и количество зубьев полуосевых шестерней определяется условиями собираемости конструкции в целом.
В случае, если одно из колёс отстаёт, связанная с ним шестерня полуоси начинает вращаться с меньшей скоростью, чем корпус дифференциала, поворачивая сателлит, находящийся с нею в зацеплении. Тот передаёт вращение сателлиту, связанному с ним, а оттуда крутящий момент поступает на шестерню полуоси. Таким образом обеспечиваются различные обороты колёс во время поворота. Благодаря разности в крутящих моментах на колёсах, в винтовых зацеплениях возникают силы осевой и радиальной направленности, которые прижимают шестерни полуосей и сателлиты к корпусу их торцами или к разделителю крышками. При этом появляются силы трения, которые и осуществляют блокировку, что позволяет увеличить силу тяги в автомобиле, а следовательно – и его проходимость.
Величина коэффициента блокировки находится в прямой зависимости от угла, под которым располагаются зубья шестерни. Изменяя в процессе проектирования углы наклона зубьев (так называемый «угол спирали»), можно изменить Кб в той степени, в которой это необходимо для автомобиля, исходя из его характеристик и предполагаемых условий его применения и эксплуатации.
Дифференциалы этого типа самое большое распространение получили в тюнинге. Производство блокировок этого типа налажено и в России: ими оборудуются некоторые модели автомобилей УАЗ.
www.vozhdenie-nn.ru
Дифференциал: что это такое
Многие, кто собрался приобретать внедорожник, при выборе определённой модели, конечно могли столкнуться с термином «блокировка дифференциала». Но что это? Как это? И каков принцип работы и надобность этого самого дифференциала? Как показывает практика, знают не все будущие потенциальные «джиповоды».
В этой статье мы расскажем о том, что из себя представляет дифференциал и зачем он в автомобиле. Каких разновидностей он бывает и на какие автомобили предусмотрена его установка?
История дифференциала
Появление дифференциала в автомобильном мире не заставило себя ждать. Спустя лишь несколько лет, после того, как с конвейера стали сходить первые автомобили с двигателем внутреннего сгорания (ДВС). Давно ведь дело обстояло не так сладко, как сейчас и первые автомобильные образцы, которые работали при помощи двигателя, очень плохо управлялись.
Колёса, расположенные на одной оси, во время поворота вращались с одинаковой угловой скоростью, а это уже приводило к тому, что колесо, идущее по внешнему диаметру, сильно пробуксовывало. Решили эту проблему достаточно просто: заимствованием дифференциала у паровых повозок.
Этот механизм был изобретён во Франции в 1828 году инженером Оливером Пекке-Ром. Это было устройство, которое состояло из валов и шестерней. Через него крутящий момент от ДВС передавался на ведущие колёса.Но вот случилась ещё одна незадача – стали пробуксовывать колёса, которые утрачивали сцепление с дорожным покрытием. Зачастую это проявлялось во время движения по дороге с обледенелыми участками.
Колесо, которое находилось на льду, вращалось с большей скоростью, чем колесо, что оставалось на более пригодной для движения поверхности. Это и приводило к заносу. После конструкторы и стали думать о том, как настроить дифференциал, чтобы колёса вращались с одинаковой скоростью, дабы воспрепятствовать появлению заносов.
Первым человеком, проводившим эксперименты над дифференциалом с минимальным проскальзыванием, стал ни кто иной как Фердинанд Порше. Для того, чтобы рынок повидал кулачковый дифференциал – «детище» Порше с ограниченным проскальзыванием, потребовалось не менее трёх лет. Им оснащали первые модели автомобилей марки Volkswagen. В следующие десятилетия инженерами были разработаны разнообразные виды дифференциалов, о которых мы расскажем Вам далее.
Принцип работы и устройство
Давайте, пожалуй, начнём с типа дифференциала, который является самым простым для рассмотрения – открытого дифференциала. Мы начнем с простейшего типа дифференциала, называемого открытым дифференциалом. Итак, конструкция дифференциала включает в себя следующие части:
- Ведущий вал. Его задача заключается в передаче крутящего момента. Вал ведёт его от трансмиссии к самому началу дифференциала.
- Ведущая шестерня ведущего вала. Шестерня в форме косозубого конуса, необходимая для сцепки дифференциальных механизмов.
- Коронная шестерня. Элемент, являющийся ведомым. Так же имеет форму конуса и вращается ведущей шестернёй. Система вместе взятых ведущей и ведомой шестерней называется главной передачей. Она служит на завершающем этапе по уменьшению скорости вращения, которое достигает колёс в конечном счёте. Ведущая шестерня в своих размерах гораздо уступает коронной, поэтому для осуществления одного оборота ведомой, первой необходимо совершить не один оборот вокруг своей оси.
- Шестерни полуосей. Являются последним рубежом передачи вращения ведущего вала колёсам.
- Сателлиты – это планетарный механизм, осуществляющий ключевую роль в обеспечении разной угловой скорости колёс при осуществлении поворота.
Когда Вы двигаетесь по прямой на своём автомобиле, то весь дифференциальный механизм вращается с единой скоростью: входной вал вращается с идентичной скоростью, что и полуоси, соответственно, с той же скоростью происходит и вращение самих колёс. Но только Вы повернёте руль, ситуация моментально в корне изменяется. Главными игроками теперь выступают сателлиты, которые разблокировываются под воздействием разности нагрузок на колёса, когда, например, одно колесо начинает пробуксовывать и поэтому движется быстрее.
Вся мощность мотора проходит непосредственно через них. А в результате того, что сателлиты представляют из себя две шестерни, которые независимы, то происходит передача разной частоты вращения двум полуосям. Но мощность не разделяется поровну, а передаётся на колесо, что движется во внешнем крае поворота машины. Следовательно оно и начинает крутиться гораздо быстрее за счёт количественного прибавления оборотов. И разность в распределении мощностей между колёсами тем больше, чем меньше радиус поворота автомобиля, то есть чем сильнее Вы выворачиваете рулевое колесо.
Что такое блокировка дифференциала и как она работает
Блокировка дифференциала – это один из эффективнейших способов повышения внедорожных характеристик автомобиля. Любой автомобиль, который предназначается напрямую или косвенно для бездорожья, оснащается конструкторами на заводе механизмом, который блокирует межосевой дифференциал. Так же автомобили оснащают механизмами, блокирующими передний и задний мосты.
Блокировка данного механизма, как и любое технологическое решение имеет свои преимущества и недостатки. Чтобы понять, когда необходимо использовать блокировку дифференциалов, а какие случаи просто запрещают её использование, нужно разобраться в принципах, на которых её действие основывается.
Попробуйте в зимнее заснеженное время совершить с места прыжок в длину. Ага. А вот и не получается, а всё потому, что одна нога у вас оказалась на скользкой оледенелой поверхности, а вторая на сухом асфальте. Вот из-за этого и не получилось совершить чемпионский прыжок. Одна нога выскользнула из под Вас, а мозг не сориентировался вовремя и не дал команду вложить всю силу для толчка в другую ногу. Итог этого эксперимента достаточно весел и комичен: ноги разъехались и Вы чуть не рухнули на пятую точку.
Так что же сделать в данном случае, чтобы обе ноги возымели возможность прекрасно оттолкнуться от земли? А всё очень и очень просто. Необходимо просто две толчковые ноги превратить в одну, связав их прочно между собой прочным ремнём или жгутом. Теперь они будут работать, как одно целое и будет использоваться максимальная сила толчка от одной стабильной опорной поверхности с хорошим сцеплением. Аналогичный процесс происходит и в автомобиле в момент взаимодействия его ведущих колёс с дорогой.
Давайте представим ситуацию при которой заднеприводный автомобиль остановился случайным образом так, что его левое колесо оказалось на скользкой поверхности, а правое на асфальте. Как Вам известно, стандартный межосевой дифференциал малого трения, который находится на заднем мосту автомобиля, всегда предоставляет колёсам равную окружную силу. Левое колесо, находящееся на льду, не в состоянии сдвинуться со скользкой поверхности с применением больших усилий в силу недостаточности сцепления.
И-за этого дифференциал не в состоянии предоставить ему огромное усилие, так как это просто невозможно физически. А в этом случае аналогичная сила подведётся и к колесу, которое находится на асфальтированной поверхности. Он выровняет усилия, которые распределены между колёсами, ориентируясь на левое колесо.
В результате машина сдвинется с места с пробуксовкой, но медленно. Его колёса не смогут использовать достаточную для толчка силу, которая была бы необходима для сцепления правого колеса, которая в данных условиях будет ни много, ни мало, а в целых семь раз превышающую чем у левого. Из-за такого свойства распределять тяговую силу поровну, правое колесо будет использовать лишь седьмую часть его возможностей сцепления с асфальтом. Говоря проще, толчок мог бы случиться в семь раз мощнее, но дифференциалом не было подведено к нему достаточного количества силы для совершения этого манёвра.
Следовательно необходимо осуществить такую связь между колёсами, для обеспечения совместного вращения или пробуксовки, буд-то бы единого колеса. Для решения данной задачи используется специальный механизм, блокирующий вращение шестерней дифференциала и связывающий два колеса между собой условной жёсткой связью с постоянным вращением и одинаковой скоростью. Такой механизм называется «механизм блокировки (отключения) дифференциала», или в простонародье – блокировкой.
Дифференциал, что заблокирован не в состоянии выравнивать межколёсное усилие, тем самым делая их связанными единой осью. В результате чего каждое колесо получает максимально возможную силу, которая нужна для наилучшего сцепления колёс. Следовательно, где лучше сцепление колёс с дорожной поверхностью, туда и будет прилагаться большая сила.
Какие бывают дифференциалы
Основой дифференциала является планетарный редуктор. Вид зубчатой передачи, который используется, условно может разделить дифференциал на три вида:
- Червячный;
- Цилиндрический;
- Конический.
Червячный дифференциал является самым универсальным и устанавливается как между осями, таки между колёсами. Цилиндрический тип, зачастую, располагается во внедорожниках меж осей. Конический тип в основном применяется в качестве межколёсного дифференциала.
Выделяют так же симметричный и несимметричный дифференциалы. Несимметричная конструкция дифференциала устанавливается в полно приводных автомобилях между осями, распределяя крутящий момент в различных пропорциях. Симметричный тип передаёт на ось между двумя колёсами равный крутящий момент. Так же дифференциалы разделяют по виду блокирования: ручная блокировка и электронная блокировка.
Ручная блокировка дифференциала
Исходя из названия, блокировка дифференциала оси включается по инициативе водителя с помощью нажатия кнопки или переключения определённого тумблера. В данном случае происходит блокировка шестерней-сателлитов, в результате чего ведущие колёса начинают вращаться с одинаковой скоростью. Зачастую ручной блокировкой дифференциала оснащаются внедорожники. Включать её рекомендуется для преодоления тяжёлого бездорожья, а отключение производить при выезде на обычную асфальтированную дорогу.
Электронная или автоматическая блокировка дифференциала
Автоматическое блокирование дифференциала осуществляется путём команд электронного блока управления, который анализирует состояние, в котором находится дорожное покрытие, используя ABSи ESP. Затем ЭБУ самостоятельно блокирует шестерни-сателлиты. По степени блокирования это устройство можно условно подразделить на дифференциал с полной и частичной блокировками.
Полная блокировка дифференциала
Включение такой блокировки подразумевает под собой тот факт, что шестерни-сателлиты останавливаются полностью, а механизм берётся за выполнение функций обычной муфты, тем самым передавая равностепенный крутящий момент на две полуоси. Вследствие этого оба колеса вращаются с одинаковой угловой скоростью. Если случится то, что хотя бы одно колесо потеряет сцепление с поверхностью, то крутящий момент с него в полной мере передаётся на другое колесо, которое осталось форсировать бездорожье. Такое дифференциальное устройство успешно реализовано на Toyota Land Cruiser, Mercedes-Benz G-Class и других.
Частичная блокировка дифференциала
Включение этой блокировки не полностью останавливает шестерни-сателлиты, а позволяет им проскальзывать. Такой эффект доступен благодаря самоблокирующимся дифференциалам. В зависимости от типа срабатывания данного механизма, делят его на два вида: Speed sensitive (задействуется, когда замечается разница в угловых скоростях вращения полуосей) и Torque sensitive (задействуется в случае уменьшения крутящего момента одной полуоси).Такой тип срабатывания дифференциального устройства можно встретить на внедорожниках Mitsubishi Pajero, Audi Q-серии и BMW X-серии.
Группа дифференциалов Speed sensitive различается строением конструкции. Одним из таких механизмов является тот, в котором дифференциальную функцию выполняет вискомуфта. Вискомуфта отличается от фрикционного дифференциала своей меньшей надёжностью. Именно из-за этого она имеет место устанавливаться на автомобили, которые не предназначены для преодоления непролазных дебрей и глубоких бродов или на автомобили со спортивным характером.
Ещё один механизм представляющий группу Speed sensitive называется героторный дифференциал. Роль блокирующих элементов здесь играют масляный насос и фрикционные пластины, монтируемые между корпусом дифференциала и шестернями-сателлитами полуосей. Хотя по принципу действия он схож с вискомуфтой.
Дифференциалы, которые относятся к группе Torque sensitive, также различны по своей конструкции. Например есть механизм с использованием фрикционного дифференциала. Особенность его заключается в разности угловых скоростей колёс в поворотах и при движении по прямой. Когда автомобиль движется по прямой, угловая скорость вращения обоих колёс одинакова, а во время прохождения поворота, крутящий момент для колёс различен.
Очередной тип дифференциалов - с гипоидным и косозубым зацеплением. Они условно подразделяются на три группы.
Первая – с гипоидным зацеплением
Здесь каждая полуось имеет свои собственные шестерни-сателлиты. Крепятся они между собой путём прямозубого зацепления, располагаясь перпендикулярно друг относительно друга. В случае возникновения разницы угловых скоростей ведущих колёс, происходит расклинивание шестерней полуосей. В результате чего шестерни трутся о корпус дифференциала. Дифференциал частично блокируется и происходит перераспределение крутящего момента на ось, с меньшей скоростью углового вращения. После выравнивания полуосевых скоростей, блокировка деактивируется.
Вторая – с косозубым зацеплением
Аналогична первой, но расположение шестерен-сателлитов параллельно относительно полуосей. Эти агрегаты крепятся между собой путём косозубого зацепления. Сателлиты этого механизма вмонтированы в специальные ниши на корпусе дифференциала.Когда наблюдается различие в угловой скорости колёсного вращения, шестерни расклиниваются и сопрягаются с шестернями, что находятся в нишах дифференциального корпуса. Происходит частичная блокировка. Направление крутящего момента определяется на ось с меньшей скоростью вращения.
Третья – с косозубыми шестернями полуосей и винтовыми шестернями сателлитов
Используется в межосевых дифференциалах. Принцип тот же – смещение крутящего момента на ось с меньшим вращением. Диапазон смещения этого вида достаточно велик - от 65/35 до 35/65. Когда угловая скорость колёсного вращения обоих осей стабилизируется и выравнивается, дифференциал разблокировывается. Эти дифференциальные группы широко применяются в автомобилестроении как на обычных моделях, так и на спортивных.
Преимущества и недостатки блокировки дифференциалов
+ возможность колёсного блокирования до 70%;
+ минимальное обслуживание;
+ отсутствие рывков на руле;
+ КПП не требует заливания специального масла;
+ установка не влечёт никаких сложностей;
+ обеспечение лучших внедорожных характеристик автомобиля;
+ более длительный срок работы конструкции;
+ лучшая управляемость автомобиля;
+ способность прохождения поворотов на более высоких скоростях;
+ автомобиль легче выводится из заноса.
- по истечению времени падает преднатяг;
- требуется замена регулировочных элементов каждые 40 тысяч километров для лучшей работоспособности конструкции;
- не своевременное или запоздалое проведение регулировочных работ приведут к тому, что система будет работать не корректно.
Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.
Была ли эта статья полезна?Да Нет
auto.today