Рубрики
Разное

Давление наддува турбины дизельного двигателя: Какое давление наддува в дизельном двигателе

Содержание

Технологические особенности наддува двигателя. Наддув турбонагнетателя

Для повышения мощности двигателя внутреннего сгорания используется технология наддува воздуха. Данная схема распространена на силовых агрегатах дизельного типа, где подача осуществляется под избыточным давлением. В результате общая масса обогащенной смеси увеличивается, что приводит к росту мощности силового агрегата.

Технологические особенности наддува

В наддуве воздуха в двигатель особая роль отводится специальным нагнетателям. Технология отлично подходит для дизельных агрегатов, так как в момент впускного тракта сжатие распространяется только на воздушную массу. Качественный наддув достигается за счет комплексной регулировки. Большой крутящий момент возможен при помощи равномерного наддува и снижения сжатия.

Наиболее распространенными нагнетателями являются:

  • турбированный. Отбор мощности осуществляется от газодинамической цепи между двигателем и нагнетателем.
  • механический. Отбор мощности проводится непосредственно от коленвала ДВС.

Важным показателем, характеризующий степень наполнения дизеля при помощи наддува является коэффициент наполнения. Данный показатель является результатом соотношения количества заключенной воздушной массы в цилиндре к рабочему объему силового агрегата. Как правило, К находится в диапазоне 0,849-2,999 единиц.

Основные виды наддува

Динамический

Динамический наддув достигается за счет применения эффекта непосредственно во впускном тракте. Равномерное распределение воздушных масс по всем цилиндрам возможно, благодаря конструкционным особенностям впускной системы. Современные ДВС дизельного типа оснащены специальными нагнетателями. При этом инженеры делают механизм впускного тракта максимально коротким. В результате это влияет на качество динамики и управление рециркуляционными процессами ОГ.

Турбированный

Работа турбонагнетателя от выхлопных газов имеет наиболее широкое применение. Данная технология позволяет увеличить крутящий момент и общую мощность. Компрессор ставится на легковые и грузовые транспортные средства, сохраняя высокий уровень КПД. Особенность технологической схемы является возможность выхода на высокий крутящий момент при низких частотах коленвала. Она отлично подходит, когда давление наддува регулируется при помощи электроники.

Принцип действия турбонагнетателя

Конструкция турбонагнетателя представлена несколькими устройствами газодинамического типа. Функциональное значение газовой турбины сводится к восприятию энергии потока ОГ. Компрессорная часть надежно закреплена соединительным валом с турбиной, что позволяет качественно сжимать входящие воздушные потоки.

Принцип действия наддува воздуха в дизельном двигателе следующий:

  • Раскручивание вала начинается с поступления горячего ОГ непосредственно на турбину. Частота вращения при этом составляет 200 тыс. оборотов в минуту.
  • Перемещение ОГ к оси, а затем к выпускному тракту.
  • Радиальный компрессор приходит в действие, благодаря валу.

Использование аксиальных турбин технически аргументированно для силовых агрегатов большого объема. Устройства отличаются высокой эффективностью в работе. Существует несколько принципов наддува. При постоянном давлении наблюдается снижение расхода топлива. Такая схема применяется на мощных дизельных генераторах и стационарных установках. Турбины с разделенным потоком оснащены двумя внешними клапанами. Для быстрого выхода на рабочий режим нагнетатель устанавливается ближе к выпускному клапану.

Конструкция нагнетателей

Регулировка давления наддува позволяет не перегружать функционирование ДВС. Данное действие выполняется при помощи различных нагнетателей (с изменяемой геометрией, с перепуском ОГ и дросселированные). Использование перепускного клапана позволяет снижать уровень сжатия и нагнетать поток в турбину. Конструкция нагнетателя имеет ряд технических особенностей. Так, при выходе из строя блока управления, специальный перепуск открывается в автоматическом режиме. Это позволяет исключить поломку дизеля при высоких нагрузках.

Порядок измерения давления

Замер давления на компрессоре проводится при помощи монометра и шланги с переходниками. При этом результаты фиксируются под нагрузкой двигателя. Порядок выполнения работ следующий:

  • определение максимально допустимого давления в инструкции к ДВС;
  • монтаж одного конца шланги к выпускному коллектору. Второй выводится аккуратно в салон;
  • присоединение манометра к отверстию;
  • прогреваем двигатель авто;
  • разгоняем транспортное средство по ровной дороге до 3000 оборотов;
  • контролируя движение педалью газа, следим за показанием манометра.

Если зафиксированный показатель на дизеле недостаточный, проводится комплексная проверка турбокомпрессора на предмет технической исправности.

 

 

 Вернутся к списку «Статьи и новости»

Избыточное давление. Всё про наддув

, Статьи

Всё про современные системы наддува

Наддув — самый доступный и простой способ увеличить мощность двигателя внутреннего сгорания. Теория проста: чтобы выросла отдача, нужно сжечь как можно больше топлива. Но для его горения необходим ещё и воздух. И если «налить» в цилиндры сколько угодно топлива проще простого (качай себе и качай мощным насосом), то с воздухом дело обстоит сложнее — для него тоже нужен своеобразный насос. И роль такого агрегата в двигателях играют нагнетатели. Вне зависимости от его типа, оснащённый наддувом двигатель обладает большей мощностью и крутящим моментом, чем аналогичный атмосферник. Почему это возможно, какие существуют конструкции и какие побочные эффекты имеет наддув? Рассказываем в нашей справке по современным системам.

История наддува

Впервые техническая идея загнать в автомобильный двигатель больше воздуха с помощью энергии вращения коленвала пришла в голову Готтлибу Даймлеру в 1885 году, а в 1905 году швейцарец Альфред Бюхи получил патент на аналогичную систему, работающую уже от энергии выхлопных газов. Но до реализации этих решений в автомобилях прошло некоторое время — первый серийный легковой автомобиль «наддули» с помощью приводного нагнетателя в 1921 году — им стал Mercedes-Benz. Турбонагнетатели же стали получать распространение в авиационных двигателях 1920-х годов, так как там было особенно важно справляться с потерей мощности по мере набора высоты, где плотность воздуха становится меньше. Вскоре газовые нагнетатели нашли своё применение и в грузоперевозках — прибавка в крутящем моменте оказалась для дизелей судов и локомотивов очень кстати. Первой легковушкой с турбонагнетателем под капотом стало купе-хардтоп Oldsmobile Jetfire с 215-сильным V8.

Вскоре турбина появилась и на Chevrolet Corvair Corsa (расположенный сзади 6-цилиндровый оппозитник воздушного охлаждения с наддувом был лишь одним из необычных технических решений этой экзотической машины), а после подоспели и европейцы в лице Porsche (911 Turbo в 1975 году) и Saab (99 Turbo 1978 года). А вот с наддувным дизельным седаном всех опередил производитель из Старого Света — в 1978 году появилась версия 300SD лимузина Mercedes-Benz W116. Вскоре дизельные автомобили приобрели в Европе огромную популярность, а турбонаддув стал неотъемлемой частью конструкции легкового дизеля. Существуют и грузовые дизели с приводными нагнетателями, но по ряду технологических причин эта схема не получила широкого распространения в автомобилестроении.

Какие существуют виды наддува

К механическим видам наддува (обычно под наддувом понимаются именно механические схемы) относят приводной компрессор и турбокомпрессор. Приводной нагнетатель, как правило, располагается вдоль блока рядного двигателя или в развале V-образного блока и приводится от коленвала с помощью ременной передачи, прессуя воздух парой винтовых роторов или крыльчаткой. Турбина же приводится в действие вылетающими из цилиндров в коллектор под большим давлением выхлопными газами и утрамбовывает воздух на впуске крыльчаткой. Обычно турбина находится сразу за выпускным коллектором или непосредственно интегрирована в него — как, например, в современных моторах группы Volkswagen.

Отдельно можно выделить эксперименты производителей с электротурбинами. Они не отбирают мощность у двигателя и лишены газовой турбоямы, так как колесо компрессора вращает электромотор. Впрочем, к этой схеме у производителей до сих пор остаётся немало вопросов, и подробнее об этом можно прочитать в нашем материале Audi завтрашнего дня. Кроме механического, существует ещё безагрегатный наддув. Так называют повышение давления на впуске с помощью сочетания скорости движения и особой формы и размеров впускных патрубков. Избыточное давление такого типа является мерой дополнительного форсирования преимущественно спортивных атмосферных двигателей. Примером заводской реализации такой схемы может служить впускной тракт хэтчбека Porsche Panamera в особой версии GTS.

Как устроен турбонагнетатель

Конструкция турбонагнетателя проста: на едином валу находятся две крыльчатки, каждая из которых вращается в своём корпусе, называемом в народе «улитка». Одну крыльчатку (в так называемой горячей улитке) вращает поток выхлопных газов, а связанная с ней единой осью вторая крыльчатка в холодной части крутится и трамбует во впускной тракт забираемый с улицы воздух. Таким образом, чем выше обороты работы двигателя, тем больше он вырабатывает газов и тем больше воздуха впоследствии получает. Идеальный замкнутый круг с бесконечным потенциалом повышения мощности?

Но всё не так просто. Во-первых, шатунно-поршневая группа каждого мотора рассчитана на определённые нагрузки, и превышение их приведёт к разрушению двигателя. Во избежание бесконтрольного роста давления наддува в горячей части нагнетателя предусмотрена специальная калитка-клапан под названием «вейстгейт» (в переводе — клапан для излишков), которая открывается с помощью пневматики или сервопривода при достижении пикового расчётного давления в системе. В результате «лишние» газы просто идут в обход турбинного колеса прямиком в выхлопной тракт и не раскручивают компрессор сверх меры. Как правило, в моторах есть и ещё одна страховка от «передува» — при превышении критического порога давления блок управления двигателем ограничивает увеличение подачи топлива на безопасной отметке, и мотор перестаёт производить слишком много выхлопных газов.

Эта анимация наглядно показывает как устроен и работает классический турбонагнетатель

Но в защите нуждается не только поршневая группа, но и сам турбокомпрессор. Представьте, что он уже «надул» много сжатого воздуха во впускной трубопровод, а водитель внезапно закрыл дроссель — ударившись в такое препятствие, сжатый воздух направится искать себе другую дорогу и обязательно найдёт её в противоположном направлении, где находится только что спрессовавшее его колесо компрессора. Возникающая в таком случае на крыльчатку нагрузка называется помпаж и воздействует на турбонагнетатель самым деструктивным образом. Для стравливания излишнего воздуха в районе впускного патрубка или интеркулера в систему встраивается ещё один перепускной клапан, который отправляет воздух обратно на впуск перед турбокомпрессором (тогда клапан называется байпасным) или в атмосферу (блоу-офф-клапан). Последняя разновидность «перепускников» как раз и порождает чихающие, свистящие и шипящие звуки тюнингованных автомобилей с турбонаддувом, которые можно услышать на улицах.

Ещё одна проблема уже эксплуатационного характера заключается в том, что на малых оборотах поток газов слишком мал, чтобы раскрутить вал турбокомпрессора для создания сколько-нибудь существенного давления и получения дополнительной мощности — в народе такая ситуация называется «турбоямой». Поэтому конструкторы систем наддува тщательно подбирают размеры «холодной» и «горячей» крыльчаток в зависимости от объёма двигателя и желаемого характера тяги. Например, в спортивной Audi Sport quattro турбина имеет огромную горячую часть и небольшую холодную, поэтому, чтобы раскрутить такой нагнетатель, нужно выйти на высокие обороты (3500-4000 об/мин и выше), но зато потом следует очень резкий бескомпромиссный подхват. А в современном гражданском Mini Countryman (мы совсем недавно ездили на обновлённой модели) с небольшим моторчиком объёмом 1,6 литра нагнетатель маленький, но зато легко раскручивается с минимальных оборотов, что удобно в городских условиях.

Чтобы понизить порог наддува, когда турбина создаёт избыточное давление, и сократить зону турбоямы, создатели турбокомпрессоров используют различные конструктивные ухищрения. Самые распространённые из них — крыльчатка с изменяемой геометрией и твинскролльная горячая «улитка». TwinScroll предусматривает два параллельных, но разного размера и формы канала для выхлопных газов в едином корпусе улитки — газы в каждый из каналов попадают от своей группы цилиндров, но крутят единое турбинное колесо. Его лопатки выполнены таким образом, что одинаково эффективно воспринимают импульсы из обоих каналов.

Из-за различной геометрии каналов и достигается хорошая тяга одновременно и на низких, и на средних и высоких оборотах, а отсутствие столкновения и завихрения потоков газов от разных групп цилиндров улучшает газодинамические свойства системы. Турбины же с изменяемой геометрией имеют специальные, приводимые актуатором, подвижные лопатки-заслонки, которые в разных положениях позволяют менять форму газового канала в горячей улитке (упрощённо — в разное время имитируют маленькую и большую турбину) и таким образом максимально эффективно в конкретный момент времени направлять на турбинное колесо поток выхлопных газов.

Принцип работы турбины с изменяемой геометрией можно изучить на примере дизельного нагнетателя компании Holset

Как устроен механический нагнетатель

В отличие от питающегося «бесплатными» выхлопными газами турбокомпрессора, механический нагнетатель приводится в движение энергией вращающегося коленвала. Соответственно, чтобы получить дополнительную мощность, двигатель сначала часть мощности отдаёт, поэтому КПД такого решения ниже. Но, тем не менее, производители не спешат отказываться от приводных нагнетателей, потому как они наделяют автомобиль моментальной тягой с самых низких оборотов — понятие турбоямы к приводным компрессорам практически неприменимо. Конструкция предусматривает ременную, цепную или реже передачу иного типа, которая вращает вал нагнетателя от коленвала мотора. Аналогично турбокомпрессору, нагнетатель прессует воздух и отправляет его под избыточным давлением во впускной коллектор. Наиболее похожий на турбокомпрессор вид приводного нагнетателя — центробежный. Он трамбует воздух аналогичным турбинным колесом, но приводится оно не выхлопными газами, а механически.

Эта анимация компании Eaton – одного из ведущих производителей компрессоров Roots-типа — объясняет принцип работы такого нагнетателя

Но самым первым компрессором, который применил в автомобилестроении Готлиб Даймлер, стал агрегат типа Roots, названный по имени своих создателей-братьев — изначально они разработали устройство для промышленных нужд. Такой нагнетатель представляет собой собранные в едином корпусе и находящиеся своими лопастями-кулачками в зацеплении два продолговатых ротора, которые своим вращением по направлению друг к другу захватывают и прокачивают воздух во впускной коллектор. Третья разновидность компрессоров — винтовые типа Lysholm — перекачивают и сжимают воздух с помощью сверлообразных несимметричных роторов, которые находятся в зацеплении. Благодаря уменьшающимся по направлению к выходу из компрессора воздушным камерам между шнеками осуществляется внутреннее сжатие воздуха, что обеспечивает большую в сравнении с Roots-нагнетателями эффективность системы. Аналогично газотурбинным схемам, развиваемое механическими компрессорами давление регулируется с помощью клапанов или муфт.

Комбинированные схемы агрегатного наддува

Как только системы наддува стали использоваться массово, инженеры стали думать над повышением их эффективности. Для борьбы с турбоямой, помимо вышеупомянутого твинскролльного наддува, используется схема с двумя последовательно дующими нагнетателями: это может быть маленькая турбина для низких оборотов в сочетании с большой для средних и высоких (так называемая архитектура твинтурбо; пример — Subaru Legacy в кузове BE/BH) или симбиоз приводного компрессора для низких оборотов и турбокомпрессора для средних и высоких. Последним прославилась компания Volkswagen со своим мотором 1.4 Twincharger, который обеспечивал плавный рост давления, но вместе с тем из-за сложности конструкции доставлял немало хлопот по части надёжности и обслуживания.

Однако две турбины одного мотора не обязательно отличаются размерами и работают последовательно: во многих современных наддувных моторах цилиндры условно делятся на две группы, и каждая из них обслуживается своим собственным нагнетателем. Однако инженерные изыскания порой порождают и более экзотические варианты: например, в новом трёхлитровом супердизеле BMW (381 л.с./740 Н•м) — три турбины! На низких оборотах работает первая маленькая турбина с изменяемой геометрией, на средних оборотах в дело включается большой нагнетатель, а на высоких прокачивать воздух в цилиндры помогает третий небольшой турбокомпрессор. Результат — водитель трёхлитровой машины ощущает под капотом литров так пять, да ещё и как будто с механическим нагнетателем, практически без турбоямы и лага. Ещё одна схема, пока не нашедшая серийного применения — электрическая турбина в качестве помощника обычному газовому компрессору, мы упоминали о ней выше.

На этой анимации компании BMW представлена схема работы нагнетателей первого в мире легкового двигателя с тремя турбинами

Охлаждение воздуха

Так как воздух в процессе прохождения через нагнетатель спрессовывается и соприкасается с горячими деталями агрегата, он нагревается и сам. Тёплый воздух имеет меньшую плотность, а порог разрушающей мотор детонации при использовании горячего воздуха становится ниже. Вот почему можно ощутить, что в жару автомобиль с наддувным двигателем «не едет» — в условиях недостатка воздуха (по сравнению с идеальными условиями) система управления двигателем готовит меньше горючей смеси, ограничивая до нужного соотношения и подачу топлива. Поэтому для охлаждения воздуха между нагнетателем и впускным коллектором в системах наддува предусмотрен промежуточный охладитель или, иными словами, интеркулер. Он представляет собой теплообменник (то есть радиатор), через который по пути в камеру сгорания проходит весь нагнетаемый воздух. По конструкции интеркулеры делятся на системы вида: «воздух-воздух» и «воздух-вода».

Первые дешевле в производстве, легче и в целом компактнее, но менее эффективны и дают меньшую гибкость в компоновке моторного отсека. Охлаждение наддувного воздуха осуществляется в них посредством попадающего на рёбра интеркулера набегающего воздуха через воздухозаборники переднего бампера (фронтальное расположение, например, у Mitsubishi Lancer Evolution и вообще у большинства современных автомобилей) или капота (Subaru Impreza WRX, Toyota Caldina GT-T и прочие автомобили с «ноздрёй» над мотором). Интеркулер же типа «воздух-вода» остужает воздух с помощью циркулирующей по встроенному контуру жидкости, имеющей отдельно вынесенный радиатор охлаждения. Такая система обеспечивает меньшую длину впускного тракта, а значит, и меньший турболаг, а также позволяет более гибко выбирать месторасположение кулера. Среди её минусов — повышенная сложность и масса конструкции, а соответственно и цена такого решения.

Пять мифов о турбонаддуве

Миф 1. Наддув снижает надёжность, турбины всё время ломаются

Пожалуй, это миф номер один, и доля правды в нём есть. Это связано с тем, что двигатель с наддувом имеет более сложную конструкцию, больше деталей и сложнее в проектировании, а значит — при прочих равных, — шанс, что в нём что-то сломается, выше, чем в случае с атмосферником. Однако конструктивные просчёты случаются и в безнаддувных моторах, поэтому удачная модель турбодвигателя не уступит в надёжности другому такому же удачному атмосфернику. Конечно, внутренние нагрузки в наддувных моторах выше, но каждый двигатель проектируется инженерами с учётом этих особенностей, поэтому все необходимые детали турбо- или компрессорного мотора изначально усилены. Сам по себе нагнетатель достаточно надёжен, но вследствие неправильной эксплуатации или конструктивных просчётов может выйти из строя, как и любая другая деталь. Даже если это случилось, то специализированные сервисы способны отремонтировать агрегат: для большинства современных моделей выпускаются запасные части и ремкомплекты, а точные измерения, необходимые для ремонта нагнетателя, вполне доступны квалифицированным мастерам. Резюме по мифу номер один: нагнетатель не является каким-либо особенно слабым звеном наддувного двигателя, а если его поломка и произошла, этот узел вполне поддаётся восстановлению или замене.

Миф 2. Автомобиль с наддувом потребляет больше топлива

Отчасти верно, но это касается, в основном, механических нагнетателей. Современные же турбированные двигатели создаются в основной своей массе именно с целью экономии топлива, так как в экономичном режиме вождения мотор с меньшим, чем у атмосферника сопоставимой мощности, рабочим объёмом потребляет меньше топлива, а в случае необходимости наддув даёт возможность распоряжаться существенной мощностью. Иными словами, много топлива расходуется только тогда, когда это действительно необходимо в соответствии с условиями движения. Повсеместный переход производителей на турбомоторы — лишнее тому подтверждение, ведь такое решение позволяет выпускать автомобили с более скромными показателями среднего расхода, а значит, и платить меньше обусловленных экологическим законодательством пошлин. Резюме по мифу номер два: современный автомобиль с турбонаддувом — это экономично.

Миф 3. Чем больше турбина, тем лучше

Размер нагнетателя — понятие, которое невозможно описать каким-то одним параметром. Это всегда совокупность размеров деталей компрессора, которые определяют его характеристики и совместимость системы с конкретным двигателем. В случае с турбокомпрессором основными и определяющими являются размеры и форма холодной и горячей частей, а производительность механического нагнетателя определяется габаритами винтовых элементов и соотношением диаметров приводных шкивов. Простой пример: если заменить турбину на автомобиле гольф-класса на узел от более объёмного мотора, то производимых компактным двигателем выхлопных газов может не хватить для эффективного раскручивания турбинного колеса, а значит, и компрессорная «холодная» крыльчатка не создаст нужного давления в системе. Некоторые турбокомпрессоры большего размера всё-таки помогут существенно увеличить мощность небольшого мотора, но доступна она будет только в узком диапазоне высоких оборотов, что удобно для трассы, но оборачивается чудовищной турбоямой в городе. Резюме по мифу номер три: размер нагнетателя требует инженерных расчётов и должен соответствовать параметрам двигателя и планируемым условиям эксплуатации автомобиля.

Миф 4. Владеть автомобилем с наддувом хлопотнее, чем обычным

В последние годы турбированные двигатели получили такое распространение, что далеко не все владельцы в курсе самого факта наличия нагнетателя под капотом. Разве владелице ярко-оранжевого Audi Q3 интересно, что шильдик TFSI на крышке багажника означает турбомотор? В эксплуатации современные автомобили с наддувом не требуют никаких особенных действий — нужно просто заливать соответствующее качественное топливо (не ниже 95 бензина в большинстве случаев и строго 98 для отдельных высокофорсированных моделей) и вовремя проходить регламентное обслуживание. Автомобили 10-20-летней давности с наддувными двигателями требовали более частого техобслуживания, однако сейчас у большинства производителей наддувные версии требуется загонять на сервис с той же регулярностью, что и атмосферные. Это стало возможным благодаря совершенствованию конструкции моторов, а также появлению новых видов масел.

Старые автомобили с наддувными моторами также боялись резкого глушения после «отжига» — детали турбины продолжали в таком случае вращаться по инерции, а подача масла уже прекращалась, что вело к повышенному износу. Для защиты механизма либо применялось устройство под названием турбо-таймер, которое давало поработать двигателю минуту-другую и затем автоматически его глушило, либо водитель сам ждал пару минут, прежде чем остановить мотор после активной поездки. Современные двигатели ничего подобного не требуют, так как система смазки турбокомпрессора рассчитана на такие условия. К примеру, на турбомоторах Volkswagen предусмотрена отдельная помпа, которая прокачивает через нагнетатель холодный антифриз после выключения зажигания. Резюме по мифу номер четыре: следите за качеством топлива и вовремя посещайте сервис — и можете не вдаваться в детали конструкции. Впрочем, это справедливо для любого автомобиля.

Миф 5. Наддув включается и отключается на определённых оборотах

Нагнетатель — это агрегат, который, как правило, всегда активен с самого момента запуска двигателя. Равно как с первым оборотом коленвала начинают вращаться приводящие механический компрессор шкивы, так даже на холостых оборотах мотор выделяет выхлопные газы, которые через горячую крыльчатку слегка вращают ось турбокомпрессора. Поэтому нагнетатель работает всегда, но вот быть эффективным начинает только с определённого момента. Порог, с которого нагнетатель создаёт избыточное давление, в каждой системе индивидуален, а рост давления может происходить быстро или медленно, но всегда относительно плавно. Резюме по мифу 5: нагнетатель не работает по принципу «вкл-выкл», а степень его участия в наполнении цилиндров воздухом зависит от оборотов двигателя. Исключение составляют системы, где присутствует более одного нагнетателя — в таких схемах обычно предусмотрено электронное управление потоками воздуха, и в зависимости от условий работы мотора специальные актуаторы и клапаны задействуют в нужный момент тот или иной компрессор.

Перспективы развития систем наддува

В настоящее время наблюдается всеобщая тенденция перехода на твинскролльные турбонагнетатели вкупе с уменьшением рабочего объёма двигателей. Эта схема практически не имеет недостатков: такой турбокомпрессор выходит на рабочее давление уже на низких оборотах и успешно «дует» вплоть до высоких. Таким образом, он успешно заменяет приводной нагнетатель в деле обеспечения тяги с самых низов, но при этом имеет более высокий коэффициент полезного действия и все преимущества традиционной турбины. А ровный, без «турбоям» и ярких подхватов, характер тяги делает вождение автомобилей с такими двигателями простым занятием для самого широкого круга водителей. Иной раз даже мы, откатавшие сотни разных машин журналисты, не сразу можем распознать наличие под капотом турбины. Но и приводные нагнетатели не потеряли окончательно своей актуальности. Во-первых, верность им сохраняют производители, для которых беспощадная тяга с самых низов является фирменной чертой характера. Типичный пример — компания Jaguar, чей 5-литровый V8 с механическим нагнетателем своей тягой и звуком пленил немало водительских сердец. Хотя тенденция неумолима: даже компания-первопроходец в области легкового приводного наддува, Mercedes-Benz, в последние годы совершила резкий переход на более эффективную турбокомпрессорную схему.

А во-вторых, компрессоры хороши для использования в… гибридах! Когда нужно состыковать тягу двигателя внутреннего сгорания и электромотора, более прогнозируемым и легко настраиваемым нагнетателем по словам инженеров некоторых автомобильных компаний является всё же механический. Один из примеров — Porsche Panamera S E-Hybrid, который мы недавно протестировали вместе с электрокаром Tesla Model S, а о ещё одном примере такой схемы мы расскажем вам уже на следующей неделе. Наконец, уменьшение рабочего объёма двигателя. Именно широкое распространение нагнетателей дало возможность производителям сделать моторы более компактными, лёгкими, малообъёмными и не жертвовать при этом мощностью. Такая игра идёт на всех уровнях легкового автопрома: взять хотя бы моторчики Fiat MultiAir (0,9 л) или Ford EcoBoost (1,0 л) для компактов, ещё недавно смехотворный для гольф-класса объём в 1,2 литра (например, Volkswagen TSI), распространённую ныне формулу «два-ноль-турбо» для автомобилей среднего класса, наддувные трёхлитровые «шестёрки» для больших седанов бизнес-сегмента и турбированные V8, которые пришли на смену атмосферным монстрам V10 и V12 в суперкарах.

Автор: Дмитрий Ласьков
Фотографии и иллюстрации компаний-производителей, из архива редакции и www.oldcarbrochures.com

Дмитрий Ласьков

Продолжение темы

Все новости

15 ноября 2022Купил и пожалел. Самые проблемные машины с автоматической коробкой передач

31 октября 2022Какую незамерзайку нельзя покупать

31 октября 2022Замерзла стеклоомывайка: простые советы, что делать

31 октября 2022Можно ли мыть машину в мороз

24 октября 2022Шумоизоляция шин: стоит ли делать

Турбокомпрессоры — давление наддува и привода

| Советы по покупке

До того, как дизельные двигатели с турбонаддувом появились на рынке грузовиков, у вас не было выбора. Либо вы купили 6,9-литровый Ford IDI F-серии (мощностью 170 или 180 л.с.), либо 130-сильный 6,2-литровый Chevrolet C/K-серии. По состоянию на 2009 год Chevy, Dodge и Ford предлагают пакеты мощностью 350 л.с. и более, соответствующие гораздо более строгим стандартам выбросов. На вторичном рынке также появился турбонаддув, и 500 с лишним лошадиных сил стали повседневной цифрой. Турбокомпрессор — главная причина, по которой сегодняшние дизели могут достигать такого уровня мощности, поэтому, помня об этом, давайте подробнее рассмотрим, как работает самая важная часть вашего двигателя.

Основы
В среднем дневное давление воздуха на уровне моря составляет около 14,7 фунтов на квадратный дюйм (psi). Когда двигатель оснащен турбонаддувом, турбокомпрессор действует как высокоскоростной вентилятор, который нагнетает в двигатель больше воздуха. Величина давления, которое может создавать турбонаддув, измеряется в фунтах на квадратный дюйм выше атмосферного давления. Таким образом, двигатель с турбонаддувом и 15-фунтовым наддувом будет перемещать примерно в два раза больше воздуха, чем двигатель без наддува, и при прочих равных условиях будет иметь примерно вдвое большую мощность. В более новых дизелях давление наддува может достигать 40 фунтов на квадратный дюйм, но двигатель остается надежным и в три-четыре раза превышает мощность безнаддувного дизеля.

Принцип работы турбонагнетателя
Турбокомпрессор в своей простейшей форме состоит всего из нескольких частей: рамы, вала, компрессора, турбины, корпуса компрессора и выхлопа. Выхлопные газы двигателя используются для вращения турбины, которая, в свою очередь, приводит в действие компрессор через общий вал, который создает давление наддува, направляемое в двигатель. Эти типы турбокомпрессоров успешно использовались с 1920-х годов в гоночных и дизельных двигателях.

Здесь турбонаддув BD Super B виден рядом со стандартным HX35 (найден в 99-м году).4-‘981/2 двигателей Cummins). Хотя они могут выглядеть одинакового размера, есть несколько тонких отличий. Корпус компрессора больше, чтобы обеспечить более высокий максимальный воздушный поток, а корпус выхлопа меньше, чтобы улучшить характеристики раскрутки. Также присутствуют внутренние различия в смазке, подшипниках, колесах турбины и компрессора.

Давление наддува и привода
Хотя мы уже ввели давление наддува, еще одним важным аспектом турбонаддува является давление привода. Давление привода — это величина силы (в фунтах на квадратный дюйм), которая используется для вращения турбонагнетателя. Соотношение приводного давления и давления наддува 1:1 является идеальным, хотя в действительности приводное давление обычно немного выше, чем давление наддува. Если возникает ситуация, когда давление привода намного превышает давление наддува (скажем, наддув 35 фунтов на квадратный дюйм, давление привода 65 фунтов на квадратный дюйм), то вы можете столкнуться с проблемой. Чтобы имитировать ситуацию с высоким давлением, попробуйте сделать обычный вдох, затем прикройте рот рукой и выдохните. Это то, что вы делаете со своим двигателем. Высокое давление в приводе оказывает негативное воздействие на детали и снижает эффективность турбокомпрессора.

Слишком большой наддув также может быть проблемой для турбонагнетателей. Чтобы увеличить наддув, турбины будут вращаться быстрее, и у каждого турбонагнетателя есть место, где он просто не может вращаться быстрее. Например, если у вас есть HX35 (установленный на Dodge 1/2 1/2 94-го года), он может производить только около 40 фунтов на квадратный дюйм, прежде чем превышение скорости станет угрозой. Если вы используете давление наддува 45 фунтов на квадратный дюйм или более на HX35 в течение длительного периода времени, ваш турбокомпрессор почти наверняка выйдет из строя.

Вот пример внешнего вестгейта (стрелка). Вестгейт забирает избыточное давление выхлопных газов из двигателя и отводит его в водосточную трубу. Таким образом, на турбонагнетателе можно использовать меньший корпус со стороны выхлопа для улучшения характеристик наматывания.

Внутренние и внешние вестгейты, а также Turbo Lag
В 1989 году, когда компания Dodge представила свой дизельный Ram D250, на двигатель Cummins был установлен турбонагнетатель WHC-1 без перепуска. Идея заключалась в том, что, поскольку эти грузовики в основном будут использоваться для перевозки, большой реакции не требуется. По мере того как грузовики становились все более популярными среди водителей ежедневно, потребность в турбокомпрессорах с лучшим откликом стала необходимостью. С момента, когда вы заглушите свой дизельный двигатель, до момента, когда он начнет создавать достаточное количество наддува (скажем, 10-15 фунтов на квадратный дюйм), проходит некоторое время. Этот период времени называется турболагом.

Чтобы уменьшить турбояму, Dodge и другие производители начали использовать гораздо меньшие корпуса выхлопных газов и перепускные клапаны своих турбонагнетателей, отводя выхлопные газы вокруг турбинного колеса. Меньший корпус выхлопной трубы помог бы турбонагнетателю быстрее раскрутиться, а перепускной клапан позволил бы сбросить избыточное давление привода, как только турбонагнетатель разогнался бы до нужной скорости. Когда дизельные грузовики модифицируются для производства большего количества топлива или более высоких оборотов, количество выхлопных газов может превышать пропускную способность внутреннего перепускного клапана. В этом случае можно установить корпус выхлопной трубы большего размера или добавить к турбосистеме внешний вестгейт, установленный в выпускном коллекторе. Следует отметить, что не все турбокомпрессоры имеют вестгейт. В соревнованиях, таких как буксировка саней, двигатель может работать только в очень узком рабочем диапазоне (скажем, 3500–5000 об/мин). Если управляемость не вызывает беспокойства, эти гоночные двигатели могут обойтись без корпусов с перепускным клапаном и при этом иметь благоприятное отношение давления наддува к давлению.

Это изображение того, что осталось от турбонагнетателя, у которого взорвалось колесо компрессора. Турбокомпрессор был разрушен в результате превышения скорости — было использовано слишком много закиси азота (что значительно увеличило давление в приводе) без надлежащего перепускного клапана.

Почему турбонагнетатель выходит из строя? Когда мне нужен новый?
Наиболее распространенная проблема, которая приводит к выходу из строя турбонагнетателя, возникает, когда люди пытаются разогнать штатный турбонагнетатель до предела, и либо выходит из строя вал, либо взрывается компрессор. Обе эти ситуации обычно являются результатом превышения скорости турбонагнетателя из-за избыточного давления в приводе. Установка внешнего вестгейта снизит давление привода, но у вас все равно может быть больше топлива, чем воздуха. В этом случае пришло время перейти на турбокомпрессор большего размера. Большинство стандартных турбокомпрессоров хороши примерно до 400-500 лошадиных сил. Кроме того, вестгейт и/или установка турбонагнетателя 62–71 мм (в зависимости от вашего применения) — верный выбор для обеспечения надежной мощности.

Турбины с изменяемой геометрией, корпуса с водяным охлаждением и многое другое
По мере развития технологий были найдены новые способы повышения долговечности и эффективности современных турбокомпрессоров. Многие турбокомпрессоры в настоящее время имеют водяное охлаждение для большей долговечности, а потребность в еще более быстродействующем турбонагнетателе привела к появлению на рынке турбокомпрессоров с изменяемой геометрией. Турбины с изменяемой геометрией (также называемые турбинами с изменяемой геометрией или сокращенно VGT или VNT) имеют небольшие лопасти, установленные на раме, которые открываются и направляют выхлопные газы к турбине во время работы на низких оборотах, помогая золотнику турбонагнетателя вращаться быстрее. Выхлопной газ также попадает на лопасти почти под прямым углом, что эффективно приводит к уменьшению площади корпуса, что также помогает раскручиваться и часто устраняет необходимость в вестгейте. Новый 4,5-литровый Duramax — хороший пример двигателя, в котором вместо перепускного клапана используется турбонагнетатель с изменяемой геометрией. DP

Trending Pages
  • New Patent Hints the Next Mazda 3 Sedan Could be a FWD EV
  • 2024 Audi Q8 E-Tron First Drive: Range Finder
  • 2022 Ford Expedition Timberline First Test: Готов ли он к поездке?
  • Hyundai Kona EV 2024 модельного года получил красивую монобровь Staria Van
  • Эксклюзивный первый взгляд! 3,6-литровый четырехцилиндровый двигатель LS с коробкой передач мощностью 340 л.

    с.

Trending Pages
  • Новый патент намекает, что следующим седаном Mazda 3 может стать FWD EV
  • Audi Q8 E-Tron 2024 года. Трейл-Готов?
  • Hyundai Kona EV 2024 модельного года получил красивую монобровь Staria Van
  • Эксклюзивный первый взгляд! 3,6-литровый четырехцилиндровый двигатель LS с коробкой передач мощностью 340 л.с.

Системы повышения давления

Системы повышения давления

Ханну Яаскеляйнен

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.

Резюме : Использование турбонаддува в бензиновых двигателях, исторически ограниченное автомобилями с высокими характеристиками, стало стандартной практикой в ​​двигателях уменьшенного размера, где наддув позволяет существенно увеличить удельный крутящий момент. Существуют значительные различия в требованиях к системе наддува бензиновых и дизельных двигателей легковых автомобилей. В дизелях для заданного расхода топлива требуется больший поток воздуха и более высокое давление наддува, а вестгейт и двухступенчатые системы наддува требуются при более низкой плотности крутящего момента по сравнению с бензиновыми двигателями.

  • Системы наддува бензиновых двигателей малой грузоподъемности
  • Системы наддува дизельных двигателей
  • Регулятор давления наддува

Хотя турбокомпрессоры применялись в серийных бензиновых двигателях на протяжении многих десятилетий, в основном они использовались на автомобилях с высокими характеристиками, за которые клиенты были готовы платить дополнительные расходы. Объемы производства этих автомобилей обычно были относительно небольшими. С появлением бензиновых двигателей с непосредственным впрыском уменьшенного размера, чтобы соответствовать различным нормативным ограничениям по выбросам парниковых газов и экономии топлива, ситуация изменилась. Объемы бензиновых двигателей с турбонаддувом быстро росли, в то время как готовность клиентов платить за производительность, возможно, изменилась не так сильно. Это сочетание увеличенных объемов, стремления снизить затраты, а также сочетание относительно новых технологий двигателей резко изменило подход к внедрению турбокомпрессора в серийный бензиновый двигатель за относительно короткое время.

Рисунок 1 . Кривые удельного крутящего момента при полной нагрузке для нескольких бензиновых двигателей с турбонаддувом и непосредственным впрыском

Чтобы лучше понять, как развивалась и куда движется современная технология турбонаддува для бензиновых двигателей уменьшенного объема, полезно изучить несколько примеров кривых крутящего момента при полной нагрузке для некоторых бензиновых двигателей с наддувом в категории менее 2,0 л. Рисунок 1.

Сначала рассмотрим два примера двигателей с одинарным турбокомпрессором середины 2000-х: Volkswagen 2,0 л FSI (280 Нм/147 кВт) и 1,4 л FSI (200 Нм/90 кВт). Эти двигатели имели максимальное BMEP около 1,8 МПа и удельную мощность менее 75 кВт / л. Обратите также внимание на то, что существует компромисс между удельной мощностью и минимальной частотой вращения двигателя, при которой достигается максимальный крутящий момент. Эти значения образуют удобную базовую линию, отражающую технологию, доступную производителям двигателей для экономичного массового производства бензиновых двигателей с непосредственным впрыском топлива в этот период. Для достижения более высокого BMEP 2,2 МПа, широкого диапазона частоты вращения двигателя с максимальным крутящим моментом и более высокой удельной мощности 90 кВт/л в середине 2000-х годов требовало двух компрессоров, что отражено на примере двигателя Volkswagen 1,4 л TSI (240 Нм/125 кВт), в котором использовалась комбинация нагнетателя и турбонагнетателя.

К началу второго десятилетия 21 века ситуация существенно изменилась. В 2011 году Ford объявил о своем 1,0-литровом двигателе EcoBoost (170 Нм/93 кВт), чьи значения крутящего момента в установившемся режиме и мощности были очень близки к значениям для 1,4-литрового TSI Volkswagen, но для этого требовался только один турбокомпрессор с перепускным клапаном (в при переходной работе этот 1,0-литровый EcoBoost развивал крутящий момент 200 Нм).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *