Рубрики
Разное

Что такое фазы газораспределения: что это такое и как они работают

Что такое фазы газораспределения

На распределительных валах расположены кулачки, которые открывают и  закрывают впускные и выпускные клапана.

Фазы газораспределения обеспечивают нужный момент открытия и закрытия клапанов в зависимости от положения коленчатого вала. В следствии фазы газораспределения обозначаются градусами поворота коленчатого вала.

Распределительный вал приводится в действие от ведущей шестерни коленчатого вала или через специальный зубчатый ремень. Рабочий цикл в двигателе происходит за 4 такта и такие двигатели называются четырехтактными. Это говорит о том, что для совершения рабочего цикла необходимо два оборота коленчатого вала, а частота распределительного вала в два раза меньше. То есть передаточное число коленчатый вал — распределительный вал составляет 2 к 1. На рисунке мы с вами увидим фазы открытия и закрытия клапанов (впускных и выпускных).


 Устройство современного двигателя

Как устроен двигатель автомобиля?

Устройство современного дизельного двигателя

Что такое фазы газораспределения?

a — такт впуска, b — такт сжатия c рабочий такт d такт выпуска

 


 Что такое тепловой зазор?

В процессе работы двигателя клапаны и

детали привода клапана нагреваются,

длина их увеличивается. В результате

1. Распределительный вал привода выпускных клапанов (кулачки)

2. Свеча зажигания

3. Распределитель­ный вал привода впускных клапанов

4. Форсунка

5. Впускной клапан

6. Выпускной клапан

7. Камера сгорания

8. Поршень

9. Цилиндр

10. Шатун

11. Коленчатый вал

М крутящий момент,  а — угол поворота коленчатого вала, s  — ход поршня, Vhрабочий объем цилиндра, Vcобъем сжатия.


Устройство клапанного механизма

Клапанный механизм включает в себя

следующие детали: клапаны, на­правляющие

втулки, седла клапанов, возвратные пружины,

опорные тарел­ки, сухари, механизм вращения клапана.

Диаграмма фаз газораспределения 4-х тактного двигателя.

1. Фазы газораспределения

2. Распределение горючей смеси

3. Принцип работы двигателя автомобиля

4. Тепловой зазор

5. Клапанный механизм

6. Газораспределительный механизм

Ошибка

  • Автомобиль — модели, марки
  • Устройство автомобиля
  • Ремонт и обслуживание
  • Тюнинг
  • Аксессуары и оборудование
  • Компоненты
  • Безопасность
  • Физика процесса
  • Новичкам в помощь
  • Приглашение
  • Официоз (компании)
  • Пригородные маршруты
  • Персоны
  • Наши люди
  • ТЮВ
  • Эмблемы
  •  
  • А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ё
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ъ
  • Ы
  • Ь
  • Э
  • Ю
  • Я
Навигация
  • Заглавная страница
  • Сообщество
  • Текущие события
  • Свежие правки
  • Случайная статья
  • Справка
Личные инструменты
  • Представиться системе
Инструменты
  • Спецстраницы
Пространства имён
  • Служебная страница
Просмотры

    Перейти к: навигация,
    поиск

    Запрашиваемое название страницы неправильно, пусто, либо неправильно указано межъязыковое или интервики название. Возможно, в названии используются недопустимые символы.

    Возврат к странице Заглавная страница.

    Если Вы обнаружили ошибку или хотите дополнить статью, выделите ту часть текста статьи, которая нуждается в редакции, и нажмите Ctrl+Enter. Далее следуйте простой инструкции.

    Время работы клапана и производительность

    Время работы клапана и производительность

    Если вы увлекаетесь гонками или увлекаетесь автомобилестроением,
    тогда вы, скорее всего, не боитесь менять местами распредвалы в своем двигателе. Однако,
    Хитрость в том, чтобы сделать вашу машину быстрее, заключается не только в замене кулачка, но и в
    замена его на «правильный» распредвал. Вот где твой
    понимание фаз газораспределения становится решающим при выборе правильного кулачка. К
    помочь вам лучше понять фазы газораспределения, эта страница будет охватывать перекрытие продувки
    и эффект барана.

    ПРОДУВКА
    В рабочем такте сгорание толкает поршень в цилиндре вниз.
    Во время этого такта необходимо открыть выпускной клапан до того, как поршень
    доходит до дна цилиндра. Это позволит создать избыточное давление в
    цилиндр «выпустить воздух» как раз перед тем, как поршень достигнет дна
    инсульт. Термин «Blow Down» используется для описания этого события.

    Такая синхронизация выпускного клапана гарантирует отсутствие давления
    остается в цилиндре, чтобы давить на поршень в такте выпуска.
    В противном случае на поршень может давить 20 фунтов на квадратный дюйм (или около того).
    запускает цилиндр. Это потребует некоторой мощности вашего двигателя только для того, чтобы
    вытолкнуть выхлоп из цилиндра!

    Двигатели с высокими оборотами должны открывать выпускной клапан раньше
    поэтому давление имеет больше шансов выйти из цилиндра. Однако при более низких оборотах слишком раннее открытие выпускного клапана означает, что вы не
    использовать все преимущества рабочего хода.

    ПЕРЕКРЫТИЕ
    Когда двигатель работает, есть период, когда впускной и выпускной клапаны
    открыты одновременно. Эта фаза газораспределения известна как «перекрытие».
    Думайте об этом как о циклах выхлопа и впуска, накладывающихся друг на друга.

    Клапаны синхронизированы, поэтому впускной клапан слегка открывается
    до того, как поршень достигнет верхней мертвой точки (ВМТ) в такте выпуска.
    Точно так же выпускной клапан закрывается сразу после того, как поршень начинает опускаться.
    на такте впуска.

    Цель перекрытия – отработавшие газы, которые
    уже течет по выхлопной трубе, чтобы создать эффект сифона и
    закачать свежую смесь в камеру сгорания. В противном случае небольшое количество
    сгоревшие газы останутся в камере сгорания и разбавят поступающий
    смеси на такте впуска. Эта фаза газораспределения является продуктом кулачка
    характеристики продолжительности и разделения.

    Наука, связанная с перекрытием, довольно сложна.
    Давление, длина рабочего колеса, температура и многие другие аспекты влияют на то, как
    ну эффект перекрытия работает.

    ЭФФЕКТ РАМН
    Когда поршень достигает дна цилиндра на такте впуска,
    впускной клапан не закрывается сразу. впускной клапан остался
    открыт, даже если поршень запускает цилиндр на сжатие
    Инсульт. Для описания этого события используется выражение «эффект барана».

    Такая синхронизация впускного клапана позволяет
    количество свежей смеси, которое необходимо набить в цилиндр. Эффект очень
    похоже на гидроудар в сантехнике. Что происходит, так это то, что во время приема
    ход свежая смесь течет достаточно быстро по впускному коллектору и
    в цилиндр, что он не может мгновенно остановиться при остановке поршня в
    нижней части такта впуска. Подобно эффекту гидравлического удара, входящий
    смесь набивается в цилиндр, хотя поршень может запускаться
    на такте сжатия.

    Двигатели с высокими оборотами могут иметь впускной клапан открытым
    дольше, чтобы воспользоваться этим эффектом барана. Однако на низких оборотах эффект тарана недостаточно силен, и поршень
    начнет выталкивать свежую смесь обратно из цилиндра. Из всех
    различные эффекты фаз газораспределения, этот может оказать наибольшее влияние на ваш
    производительность двигателя.

    Copyright AutoWare 1998

     

    События фаз газораспределения и порядок важности

    Роликовые подъемники могут работать с более крутыми наклонами кулачков, чем кулачки с плоскими толкателями. Более высокая скорость открытия и закрытия увеличивает воздушный поток и мощность.

    Если вы помните, в январском номере мы подробно рассказали о том, что делает распредвал «правильным». В этом выпуске мы продолжим обучение. Кэм-класс снова в работе!

    Нажмите здесь, чтобы узнать больше

    Помните, что распределительный вал совершает один полный оборот (360°), а коленчатый вал совершает два оборота (720°) за полный цикл двигателя. Время распредвала обычно выражается в градусах коленчатого вала относительно положения поршня в цилиндре, что соответствует ВМТ и НМТ. Это означает, что четыре хода поршня, которые происходят при повороте коленчатого вала на 720°, приводят поршень в положение дважды как в ВМТ, так и в НМТ.

    Прежде чем мы решим изменить точку открытия или закрытия лепестка либо путем добавления длительности, либо путем продвижения лепестка, поймите, что эффект также пропорционально проявляется на другой стороне лепестка. Как и в большинстве решений по сборке двигателя, должна существовать гармония между всеми параметрами. Если мы изменим одно событие фазы газораспределения, существует вероятность того, что последовательность последствий может заметно повлиять на работу двигателя положительно или отрицательно.

    События фаз газораспределения можно настроить несколькими способами. Первый вариант — продолжительность можно добавить или вычесть. Если к лепестку добавляется продолжительность, клапан открывается и закрывается позже. И наоборот, удаление продолжительности приводит к обратным результатам.

    Другой метод — опережение или замедление распределительного вала. Выдвижение кулачка вперед открывает и закрывает клапан раньше, в то время как замедление кулачка приводит к противоположному результату. Добавление длительности и перемещение лепестка в одном или другом направлении сохраняет исходное открытие или закрытие, в то же время применяя добавленную длительность к противоположному наклону лепестка. Выполнение любой из перечисленных возможностей влечет за собой разветвления, которые могут быть полезными или противоречивыми.

    Взаимосвязь кулачка

    • Если распределительный вал запаздывает – Лучшее дыхание на высоких оборотах, но нестабильный холостой ход и снижение мощности при низких оборотах высокие обороты

    События синхронизации

    События синхронизации клапана происходят в этом порядке важности (ну, это спорно, несколько).

    1. Закрытие впускного клапана (IVC)

    2. Открытие впускного клапана (IVO)

    3. Закрытие выпускного клапана (EVC)

    4. Открытие выпускного клапана (EVO)

    Установка фаз газораспределения в верхнем положении может вызывать затруднения на некоторых двигателях. Всегда обращайтесь к процедуре синхронизации OEM, чтобы знать, как должны быть совмещены метки синхронизации. На некоторых двигателях вам нужно посчитать звенья цепи между звездочками, чтобы получить правильное выравнивание.

    Впускной клапан

    Вы заметите, что события впускного клапана расположены в первых двух позициях по важности. События впуска, как правило, менее терпимы к изменениям, чем события выхлопа. Даже небольшие изменения в конструкции двигателя могут иметь серьезные последствия. Существуют серьезные споры о том, какое событие (IVO или IVC) является фундаментальным аспектом производства электроэнергии. Для целей этой статьи мы будем использовать IVC как наиболее важный.

    Продолжительность конструкции впускного патрубка имеет решающее значение для наращивания мощности. Увеличенная продолжительность позволяет большему количеству воздуха заполнить цилиндр, что крайне важно при высоких оборотах. Чтобы использовать дополнительную продолжительность, также необходимо увеличить число оборотов в минуту. Цилиндры содержат одинаковый объем воздуха независимо от оборотов.

    Пример: двигатель мощностью 650 лошадиных сил потребляет примерно такое же количество воздуха, как и на холостом ходу. При увеличении оборотов происходит соответствующее уменьшение времени открытия клапана. Клапан открыт на то же количество градусов, но время открытия уменьшается по мере увеличения оборотов. Все двигатели в конечном итоге «выходят из строя», поскольку механическое движение становится слишком быстрым, чтобы поток воздуха мог заполнить цилиндр. Просто увеличивая продолжительность (миллисекунды), добавляется время, помогающее эффективно заполнить цилиндр.

    При добавлении длительности точка открытия и закрытия клапана увеличивается. Это улучшает дыхание, поскольку в начале такта всасывания клапан находится на более высоком, более полезном подъеме. Увеличение продолжительности также увеличивает чувствительность воздушно-топливной смеси к положению поршня. При высоких оборотах инерция воздушного заряда продолжает заполнять цилиндр ABDC по мере того, как поршень начинает подниматься в канале ствола.

    Старые распредвалы часто изнашиваются распредвалы. Если лепестки не совпадают, не используйте кулачок повторно. Также никогда не используйте новые подъемники с изношенным кулачком или наоборот. Новые детали плохо сочетаются с изношенными поверхностями.

    Воздушный поток впускного клапана

    Этот показатель основан на времени в миллисекундах и имеет решающее значение для производства энергии. Давайте посмотрим, как воздух на самом деле проходит через безнаддувный двигатель и почему правильный распределительный вал может помочь в заполнении цилиндров для выбранного диапазона оборотов. Угол шатунной шейки имеет решающее значение, поскольку воздух, поступающий в цилиндр, не достигает максимальной скорости до тех пор, пока шатунная шейка не приблизится к 45° после верхней мертвой точки (ВМТ). Таким образом, большая часть потока воздуха в цилиндр должна происходить где-то между 45° и 135° ATDC.

    Чтобы рассчитать продолжительность любого события синхронизации впускного клапана, добавьте 180° ко времени открытия и закрытия впускного клапана. Например, если впускной клапан открывается за 12° до верхней мертвой точки (ВМТ) и закрывается за 40° после нижней мертвой точки (ABDC), продолжительность события синхронизации клапана составляет 232°. Время выхлопа следует аналогичному расчету.

    Столб воздуха, содержащийся во впускном отверстии и направляющей коллектора, имеет инерцию, что означает, что он имеет тенденцию оставаться в состоянии покоя или оставаться в движении. Столб воздуха, содержащийся во впускном отверстии, также должен постоянно ускоряться и замедляться по отношению к открытию и закрытию впускного клапана.

    По мере увеличения скорости поршня у цилиндра остается меньше времени для полного заполнения до того, как поршень достигнет НМТ, что ограничивает число оборотов и надлежащее дыхание двигателя. Небольшое открытие впускного клапана до того, как поршень достигнет ВМТ, может повысить объемный КПД на высоких скоростях. Быстрое движение поршня создает как более быстрое перемещение воздушного заряда, так и перепад давления в цилиндре. Тем не менее быстрое движение поршня превосходит скорость воздушного заряда. При более высоких оборотах первоначальный впускной заряд отстает до набора скорости после открытия клапана. После перемещения заряд набирает скорость и продолжает быстро двигаться. Удерживая клапан открытым дольше, ABDC использует инерцию быстро движущегося заряда, чтобы компенсировать медленное начальное заполнение. Помните, что если движение воздушного потока достаточно быстрое, мы можем наполнить цилиндр большим количеством воздуха по инерции, чем поршень мог бы «втянуть» сам по себе.

    Инерционная заправка

    Зарядка используется для облегчения наполнения цилиндров при более высоких оборотах. Закрытие клапана позже, намного позже нижней мертвой точки (ABDC), позволяет использовать преимущества воздушного потока с высокой скоростью, обеспечивая последний глоток воздуха, когда он проходит мимо закрывающегося впускного клапана. Чем выше число оборотов в минуту, тем позже должно произойти закрытие впускного клапана, чтобы обеспечить надлежащий заряд цилиндра в такте сжатия. Гоночные двигатели с высокими оборотами очень выигрывают от продолжения потока воздуха (инерционного заряда) в цилиндр, когда впускной клапан закрывается, а поршень начинает двигаться вверх на такте сжатия. Это происходит из-за того, что скорость поршня увеличивает скорость воздушного потока (волны давления), которому нелегко воспрепятствовать во время движения

    За счет максимизации кинетической энергии потока воздуха в цилиндры с эффектом инерционного наддува объемный КПД улучшается вместе с мощностью двигателя. Подобно принудительной индукции, инерционная зарядка на сбалансированном двигателе может увеличить VE более чем на 100%. В то время как использование высоких оборотов выигрывает от инерционной наддувки, работа в диапазоне низких и средних оборотов может снижаться, поскольку давление в цилиндре возвращается во впускной коллектор.

    Динамическое сжатие (DCR)

    Динамическое сжатие представляет собой математическое уравнение, полученное из измеренных или рассчитанных значений, которые представляют собой фактические размеры двигателя, включая ход поршня, длину шатуна и закрытие впускного клапана. Динамическая степень сжатия рассчитывается путем сравнения положения поршня в канале с закрытием впускного клапана. Это отличается от статической степени сжатия (SCR), которая показана с поршнем в НМТ.

    Динамическое сжатие всегда ниже статического. Фактическое динамическое сжатие никогда не меняется, несмотря на влияние числа оборотов на давление в цилиндре. Динамическую степень сжатия не следует путать с давлением в цилиндре. Давление в цилиндрах изменяется почти непрерывно из-за многих факторов, включая число оборотов в минуту, конструкцию впускного коллектора, объем и эффективность отверстия головки, перекрытие, конструкцию выхлопа, фазы газораспределения, положение дроссельной заслонки и ряд других факторов. Следовательно, если не используется переменная синхронизация фаз газораспределения, как и статическая степень сжатия, DCR фиксируется при сборке двигателя и никогда не изменяется во время работы двигателя.

    Закрытие впускного клапана (IVC)

    Многие считают, что IVC является наиболее важным событием синхронизации, влияющим как на производительность (пиковый крутящий момент), так и на экономичность. IVC является основным компонентом объемной эффективности. Количество заряда воздуха/топлива в основном контролируется IVC. Закрытие впускного клапана регулирует как эффективную степень сжатия, так и диапазон оборотов, ограничивая воздушно-топливную смесь, поступающую в цилиндр.

    Максимальный крутящий момент создается, когда цилиндр имеет наибольшую массу свежего воздуха/топливного заряда, который может быть захвачен. Использование волн давления, возникающих во впускной системе, обычно способствует наполнению цилиндров даже после достижения НМТ. Оптимальное время IVC зависит от оборотов двигателя. По мере увеличения числа оборотов в минуту синхронизация IVC еще больше отклоняется от НМТ, чтобы получить наилучший результат от волн давления.

    Обычно IVC находится в диапазоне 50° – 60° ABDC, что является уступкой между высокими и низкими требованиями к скорости вращения. Раннее или позднее закрытие впускного клапана в течение заданного идеального периода времени приведет к соответствующему падению заряда воздуха, оставшегося в цилиндре. Раннее закрытие впускного клапана снижает количество воздуха, поступающего в цилиндр. Если клапан закрывается с опозданием, заряд воздуха будет поступать обратно во впускной коллектор. Любое из этих событий, не соответствующее идеальному периоду времени, приведет к соответствующему попаданию топливовоздушной смеси в цилиндр.

    Настройка IVC для двигателя, предназначенного для работы в диапазоне средних и низких оборотов, полезно раннее закрытие впускного клапана. Раннее закрытие захватывает и сжимает как можно больше воздуха, увеличивая давление в цилиндре. Кроме того, низкие обороты снижают преимущество инерции, поскольку воздушный поток соответствует более медленной скорости поршня, что позволяет циклу индукции использовать раннее закрытие клапана.

    Однако заполнение баллона более чем на 100 % маловероятно из-за медленно движущегося воздуха. Ранний IVC продвигает следующее; низкий крутящий момент, отзывчивость дроссельной заслонки, снижение выбросов, повышенная экономия топлива и расширение кривой мощности.

    Предупреждение: раннее закрытие НПВ в сочетании с высокой компрессией (10,0:1 и выше) увеличивает насосные потери и может привести к возможному выходу из строя прокладки головки или поршня. При более высоких оборотах раннее закрытие (около 50° ABDC) уменьшает заряд цилиндра, тем самым снижая мощность.

    Для настройки более высоких оборотов выберите позднее закрытие впускного клапана с помощью инерционного наддува. Закрытие клапана позже дает преимущества при потоке воздуха на высоких оборотах, позволяя сделать последний глоток воздуха; но ограничивает мощность на низких оборотах, поскольку давление в цилиндре возвращается во впускной коллектор, а динамическое давление в цилиндре ниже. Чем выше число оборотов, тем позже должно произойти закрытие впускного клапана, чтобы обеспечить надлежащий заряд цилиндра. Однако, если слишком поздно, это может привести к реверсии. Это разбавляет заряд выхлопными газами. Закрытие клапана после приблизительно 75° НМТ может уменьшить большую часть крутящего момента двигателя на низких оборотах. На двигателях с низкой степенью сжатия (ниже 8,5:1) позднее закрытие может помешать вашему двигателю достичь максимальной мощности, так что имейте в виду.

    Открытие впускного клапана (IVO)

    IVO имеет решающее значение для полного цикла впуска и является вторым по важности событием по времени. IVO имеет решающее значение для установления перекрытия клапанов (второй параметр) и обычно является основным фактором для определения сроков сборки двигателя.

    Высокопроизводительные двигатели выигрывают от смещения как центральной линии впускных лепестков, так и открытия клапана. Эта комбинация приводит к тому, что клапан поднимается дальше от седла в более выгодное положение по отношению к положению поршня. Более раннее открытие IVO также увеличивает перекрытие клапана. Сочетание этих двух событий увеличивает поток воздуха на ранних стадиях индукционного цикла. Как и во всех решениях, связанных с распределительным валом, преимущества раннего IVO могут создавать проблемы во всем диапазоне оборотов. Помните, что больше — не всегда лучше.

    IVO необходим для отклика дроссельной заслонки на низких оборотах, качества холостого хода (вакуума), выбросов и экономии топлива. IVO достигает этого, устанавливая перекрытие клапанов и выполняя две важные задачи.

    Подъем клапана и продолжительность зависят не только от размера и формы кулачков, но также от коэффициента подъема коромысла, зазора клапана и изгиба толкателя. Продолжительность можно добавить или вычесть. Если к лепестку добавляется продолжительность, клапан открывается и закрывается позже. И наоборот, удаление продолжительности приводит к обратным результатам.

    Событие 1: Впускной клапан начинает подниматься со своего седла, что запускает Событие 2 , цикл очистки. Открытие впускного клапана в идеале должно соответствовать скорости поршня. Реальность доказывает, что максимальная скорость поршня достигается до того, как полностью откроется клапан, ограничивающий максимальное всасывание воздуха/топлива в цилиндр. Типичный IVO составляет около 0-10 ° до ВМТ, сохраняя перекрытие клапанов достаточно сбалансированным вокруг ВМТ.

    Впускной клапан не достигает максимального открытия примерно до 105°–115° ВМТ (осевая линия), тогда как максимальное заполнение воздухом/топливом происходит между 70°–80° ВМТ. Как добиться идеального заполнения в такой ситуации?

    Можно использовать два метода. Во-первых, больший подъем клапана может привести к нежелательным последствиям. Для распределительных валов с большим подъемом требуются жесткие пружины в сочетании с острым выступом кулачка, что может значительно сократить срок службы (распредвал без роликов).

    Другой вариант — увеличенная скорость подъема. Высокая скорость подъема выводит клапан из положения, препятствующего потоку, что соответствует высокоскоростному движению заряда.

    Высокие обороты требуют дополнительной заправки воздухом. Это требует, чтобы IVO был раньше, что дает больше времени для заполнения цилиндра. Более раннее открытие, как обсуждалось ранее, позволяет очистить цилиндр, чтобы помочь заполнить цилиндр и вытолкнуть оставшиеся выхлопные газы. Расход топлива может увеличиться, так как часть заряда может пройти через цилиндр и выйти прямо через открытый выпускной клапан.

    Ранний IVO увеличивает перекрытие клапана и позволяет клапану открываться дальше, когда поршень достигает максимальной скорости, увеличивая VE. Применение, зависящее от раннего открытия, также может привести к вялости двигателя, поскольку выхлопные газы разбавляют всасываемый заряд (EGR). Это снижает максимальную мощность, поскольку выхлопные газы занимают пространство цилиндра, что уменьшает количество свежего воздуха для сгорания.

    Если IVO выходит позже, перекрытие уменьшается, улучшая качество холостого хода и крутящий момент на низких оборотах, а также достаточный вакуум в двигателе. Более позднее открытие впускного клапана уменьшает количество всасываемого заряда, вызывая падение давления в цилиндре по мере того, как поршень опускается из ВМТ.

    Настройка IVO

    Для выполнения этой функции можно использовать два метода. Добавление длительности или продвижение кулачка. Добавление продолжительности расширяет диапазон оборотов и открывает клапан раньше. Диапазон оборотов изменяется по мере того, как клапан дольше удерживается открытым и закрывается позже ABDC. Регулировка синхронизации кулачка создает изменения как на стороне открытия, так и на стороне закрытия. Поэтому, если клапан открыть раньше, он и закроется раньше, немного снизив обороты.

    Продвижение лепестка можно использовать, когда ограничения числа оборотов сборки не позволяют добавлять любое дальнейшее увеличение продолжительности. Когда кулачок выдвигается вперед, клапан не только поднимается дальше от своего седла в начале цикла впуска, но также помогает приблизить центр лепестка, чтобы соответствовать максимальному натяжению поршня.

    Одна школа мысли, которая существует в мире двигателестроения, состоит в том, чтобы сначала добавить столько времени, сколько необходимо для сборки, чтобы достичь запланированных целей при применимых оборотах в минуту.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *