Рубрики
Разное

Автомобильный генератор устройство и принцип работы: Генератор автомобиля: устройство и принцип работы

Содержание

Автомобильный генератор — как работает, из чего состоит и устройство

Генератор — основной источник электроэнергии машины. Расскажем подробно как работает, из чего состоит и его устройство внутри. Информация подойдет для начинающих и опытных автолюбителей.

Как работает

При пуске двигателя автомобиля основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения.

Генератор авто является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.

На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит

Любой генератор автомобиля содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках.

Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а «компактной» конструкции — еще на цилиндрической части над лобовыми сторонами обмотки статора.

На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора

1 — сердечник, 2 — обмотка, 3 — пазовый клин, 4 — паз, 5 — вывод для соединения с выпрямителем

Статор набирается из стальных листов толщиной 0. 8…1 мм, но чаще выполняется навивкой «на ребро». При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор генератора

а — в сборе; б — полюсная система в разобранном виде; 1,3- полюсные половины; 2 — обмотка возбуждения; 4 — контактные кольца; 5 — вал

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали. Но при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора, когда необходимо снять шкив и вентилятор.

Щеточный узел

Это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы

Применяются двух типов. Это пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя или конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т. к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы

Это радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец — обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колец — скользящая, со стороны привода — плотная.

Охлаждение генератора авто осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения.

Система охлаждения: а — устройства обычной конструкции; б — для повышенной температуры в подкапотном пространстве; в — устройства компактной конструкции. Стрелками показано направление воздушных потоков
На автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Для чего нужен регулятор напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов имеют ручные переключатели уровня напряжения (зима/лето).

Принцип работы автомобильного генератора, схема

Генератор — один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор — главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны — около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:

  • Ротор — стальной элемент, имеющий одну обмотку и, по сути, представляющий собой электромагнит. Ротор находится на валу, а сверху обмотки установлены втулки клювообразной формы. Ток подается с помощью медных колец, которые расположены на валу и объединены с обмоткой через специальные щетки.
  • Обмотка — устройство, изготовленное из медной проволоки и закрепленное в пазы сердечника. Сам сердечник выполнен в форме окружности и изготавливается с применением специального материала, обладающего улучшенными магнитными качествами. В электротехнике металл носит название «трансформаторное железо». У статора есть три обмотки, связанные между собой и объединенные в звезду или треугольник. В точке объединения установлен диодный мост, обеспечивающий выпрямление напряжения. Обмотка изготовлена из специальной проволоки, имеющей двойную термоустойчивую изоляцию, покрытую специальным лаком.
  • Реле-регулятор — ключевой элемент установки, обеспечивающий стабильное напряжение на выходе устройства. Монтаж регулятора может производиться в кожухе генератора или снаружи. В первом случае он находится возле графитных щеток, а во втором — там, где щетки крепятся к щеткодержателю (но в разных моделях авто монтаж может осуществляться по-разному). Ниже представлены реле-регуляторы с щеточным узлом.
  • Выпрямительный мост — элемент, предназначенный для преобразования переменного тока на выходе статора в постоянное напряжение. Выпрямитель состоит из трех пар диодов, которые установлены на токопроводящем основании и попарно объединяются друг с дружкой. В среде автовладельцев и мастеров СТО диодный мост часто называется «подковой» из-за схожести с этим предметом.

Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Полезно почитать: Взорвался аккумулятор, причины и что делать.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь — сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным — возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах — «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

Регулятор напряжения — функции, типы, контрольная лампа

Ключевым элементом генераторной установки является регулятор напряжения — устройство, поддерживающее безопасный уровень U на выходе статора.

Такие изделия бывают двух типов:

  • Гибридные — регуляторы, электрическая схема которых включает в себя как электронные приборы, так и радиодетали.
  • Интегральные — устройства, в основе которых лежит тонкопленочная микроэлектронная технология. В современных автомобилях наибольшее распространение получил именно этот вариант.

Не менее важный элемент — контрольная лампа, смонтированная на приборной панели, по которой можно делать вывод о наличии проблем с регулятором.

Зажигание лампочки в момент пуска мотора должно быть кратковременным. Если же она горит постоянно (когда генераторная установка в работе), это свидетельствует о поломке регулятора или самого узла, а также необходимости ремонта.

Тонкости крепления

Фиксация генераторной установки производится при помощи специального кронштейна и болтового соединения.

Сам узел крепится в передней части двигателя, благодаря специальным лапам и проушинам.

Если на автомобильном генераторе предусмотрены специальные лапы, последние находятся на крышках мотора.

В случае применения только одной фиксирующей лапы, последняя ставится только на передней крышке.

В лапе, установленной в задней части, как правило, предусмотрено отверстие с установленной в нем дистанционной втулкой.

Задача последней заключается в устранении зазора, созданного между упором и креплением.

Крепление генератора Audi A8.

А так агрегат крепиться на ВАЗ 21124.

Неисправности генератора и способы их устранения

Электрооборудование автомобиля имеет свойство ломаться. При этом наибольшие проблемы возникают с АКБ и генератором.

В случае выхода из строя любого из этих элементов эксплуатация ТС в нормальном режиме работы становится невозможной или же авто оказывается вовсе обездвиженным.

Все поломки генератора условно делятся на две категории:

  • Механические. В этом случае проблемы возникают целостностью корпуса, пружин, ременным приводом и прочими элементами, которые не связаны с электрической составляющей.
  • Электрические. Сюда относятся неисправности диодного моста, износ щеток, замыкание в обмотках, поломки реле регулятора и прочие.

Теперь рассмотрим список неисправностей и симптомы более подробно.

1. На выходе недостаточный уровень зарядного тока:

  • Пробуксовка приводного ремня. Решение — натянуть ремень и проверить подшипники на факт исправности, симптомы – свист ремня генератора.
  • Зависание щеток. Для начала стоит вычистить щеткодержатель и щетки от загрязнений и убедиться в достаточности усилия.
  • Обрыв цепочки возбуждения, подгорание контактных колес. Первая проблема решается путем поиска и устранения обрыва, а вторая — посредством зачистки и проточки контактных колец (если это требуется).
  • Выход из строя регулятора напряжения.
  • Задевание ротором статорного полюса.
  • Обрыв цепочки, объединяющий генератор и АКБ.

2. Вторая ситуация.

Когда автомобильный генератор выдает необходимый уровень тока, но АКБ все равно не заряжается.

Причины могут быть разными:

  • Низкое качество протяжки контакта «массы» между регулятором и основным узлом. В этом случае проверьте качество контактного соединения.
  • Выход из строя реле напряжения — проверьте и поменяйте его.
  • Износились или зависли щетки — замените или очистите от грязи.
  • Сработало защитное реле регулятора из-за наличия замыкания на «массу». Решение — отыскать место повреждения и убрать проблему.
  • Прочие причины — замасливание контактов, поломка регулятора напряжения, витковое замыкание в обмотках статора, плохое натяжение ремня.

3. Генератор работает, но издает повышенный шум.

Вероятные неисправности:

  • Замыкание между витками статора.
  • Износ места для посадки подшипника.
  • Послабление шкивной гайки.
  • Разрушение подшипника.

Ремонт генератора автомобиля всегда должен начинаться с точной диагностики проблемы, после чего причина устраняется путем профилактических мер или замены вышедшего из строя узла.

Рекомендации по замене

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA и Лада Гранта .Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

Полезные советы в помощь

В завершение рассказа об автомобильных генераторах стоит выделить ряд советов, что необходимо, а чего нельзя делать автовладельцам в процессе эксплуатации.

Главный момент — установка, в процессе которой важно с предельным вниманием подойти к подключению полярности.

Если ошибиться в этом вопросе, выпрямительное устройство поломается и возрастает риск возгорания.

Аналогичную опасность несет и пуск двигателя при некорректно подключенных проводах.

Чтобы избежать проблем в процессе эксплуатации, стоит придерживаться ряда правил:

  • Следите за чистотой контактов и контролируйте исправность электрической проводки автомобиля. Отдельное внимание уделите надежности соединения. В случае применения плохих контактных проводов уровень бортового напряжения выйдет за допустимый предел.
  • Следите за натяжкой генератора. В случае слабого натяжения источник питания не сможет выполнять поставленные задачи. Если же перетянуть ремень, это чревато быстрым износом подшипников.
  • Отбрасывайте провода от генератора и АКБ при выполнении электросварочных работ.
  • Если контрольная лампочка загорается и продолжает гореть после пуска мотора, выясните и устраните причину.

Отдельное внимание стоит уделить реле-регулятору, а также проверке напряжения на выходе источника питания. В режиме заряда этот параметр должен быть на уровне 13,9-14,5 Вольт.

Кроме того, время от времени проверяйте износ и достаточность усилия щеток генератора, состояние подшипников и контактных колец.

Высота щеток должна измеряться при демонтированном держателе. Если последний износился до 8-10 мм, требуется замена.

Что касается усилия пружин, удерживающих щетки, оно должно быть на уровне 4,2 Н (для ВАЗ). При этом осматривайте контактные кольца — на них не должно быть следов масла.

Также автовладелец должен запомнить и ряд запретов, а именно:

  • Не оставляйте машину с подключенной АКБ, если имеются подозрения поломки диодного моста. В противном случае аккумулятор быстро разрядится, и возрастает риск воспламенения проводки.
  • Не проверяйте правильность работы генератора путем перемыкания его выводов или отключения АКБ при работающем двигателе. В этом случае возможна поломка электронных элементов, бортового компьютера или регулятора напряжения.
  • Не допускайте попадания технических жидкостей на генератор.
  • Не оставляйте включенным узел в случае, если клеммы АКБ были сняты. В противном случае это может привести к поломке регулятора напряжения и электрооборудования авто.
  • Своевременно проводите замену ремня генератора.

Зная особенности работы генератора, нюансы его конструкции, основные неисправности и тонкости ремонта, можно избежать многих проблем с проводкой и АКБ.

Помните, что генератор — сложный узел, требующий особого подхода к эксплуатации.

Важно постоянно следить за ним, своевременно проводить профилактические мероприятия и замену деталей (при наличии такой необходимости).

При таком подходе источник питания и сам автомобиль прослужат очень долго.

Как работают автомобильные генераторы?

Пол Фаворс

Динамо

Автомобильный генератор — это динамо. Он способен производить электричество за счет вращения плотно намотанных тонких проводов в магнитном поле. Это магнитное поле поддерживается фиксированным расположением магнитов или электромагнитов, окружающих вращающиеся обмотки проволоки. Ток и напряжение зависят от скорости вращения проводов и силы магнитного поля.

Якорь

Скручивание и намотка проводов в автомобильном генераторе называется якорем. Этот компонент вращается с помощью ремней и шкивов, соединенных с двигателем автомобиля. Таким образом, скорость вращения регулируется скоростью двигателя. Автомобильный генератор может выдать максимальную мощность только при минимальной частоте вращения двигателя или выше ее.

Коммутатор

Коллектор присоединен к якорю, и основная цель этого устройства заключается в преобразовании переменного тока (AC), генерируемого вращающимся якорем, в постоянный ток (DC). Этот шаг необходим, потому что другие электрические устройства автомобиля, такие как фары и звуковой сигнал, работают только от постоянного тока. В собранной конструкции коллектора и якоря находятся две подпружиненные щетки, которые скользят по поверхности коллектора. Когда сборка вращается, эти щетки касаются различных точек контакта на коммутаторе, и именно благодаря этому механическому действию происходит преобразование тока.

Соединения

Автомобильный генератор имеет три соединения: возбуждение, якорь и землю. Как и во всех электрических системах, заземление предназначено для защиты всей системы от чрезмерного напряжения. В электрической системе автомобиля, и особенно в автомобильном генераторе, это само собой разумеющееся, так как большинство компонентов сделаны из металла. Соединение якоря, обозначенное буквой «А», является основным звеном и несет электрический выход генератора. Полевое соединение, помеченное буквой «F», представляет собой звено меньшего размера, и оно подает питание на электромагниты, окружающие якорь, и регулирует силу магнитного поля. Все три соединения подключаются к регулятору автомобиля.

Регулятор

Регулятор обычно располагается во внутреннем крыле автомобиля, и его функция заключается в регулировании электрической мощности генератора, чтобы постоянно поддерживать надлежащее напряжение. Он делает это, контролируя силу магнитного поля в генераторе. Старые устройства функционируют механически, быстро замыкая и размыкая ряд реле до тех пор, пока не будет достигнуто правильное напряжение.

Генератор переменного тока

Генератор переменного тока является усовершенствованием автомобильного генератора. Современные модели автомобилей больше не используют генераторы. В генераторе переменного тока структура обратная. Вместо того, чтобы вращать намотанные провода в фиксированном магнитном поле, магниты вращаются внутри обмотки. В этой конструкции больше не нужен коммутатор, а используются диоды. Это твердотельные устройства, которые позволяют электричеству двигаться только в одном направлении, успешно добиваясь преобразования переменного тока в постоянный. Генераторы более эффективны, потому что они могут выдавать больше мощности даже при низких оборотах двигателя, а это означает, что они могут заряжать автомобильный аккумулятор, даже когда автомобиль работает на холостом ходу, а автомобильный генератор не способен выполнять эту функцию.

Писатель Биография

Пол Фейворс (Paul Favors) работает штатным SEO-консультантом и внештатным писателем, который управляет частной веб-консалтинговой фирмой. Пол имеет степень бакалавра гуманитарных наук. получил степень доктора коммуникационных исследований в Университете Алабамы в Бирмингеме и был профессиональным писателем в течение 3 лет, два из которых были постоянными участниками Demand Studios.

Другие статьи

Автомобильный генератор — инженерное мышление

Узнайте, как работает генератор. Это устройство является неотъемлемой частью электрической системы каждого автомобиля с двигателем внутреннего сгорания. Итак, что он делает и как он работает. В этой статье мы рассмотрим типичный автомобильный генератор, чтобы понять, как он работает, основные части, а также почему и где мы их используем.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube.

Что такое генератор переменного тока

Генератор переменного тока выглядит примерно так. Мы находим генератор в моторном отсеке автомобиля.

Генератор

Вал генератора соединен с двигателем через ремень и шкив. Когда двигатель работает, вал генератора вынужден вращаться, это вращение вырабатывает электричество.

Объяснение генератора переменного тока

Генератор переменного тока производит тип электричества, известный как переменный ток, поэтому он называется генератором переменного тока. При переменном токе ток электронов постоянно течет вперед и назад. Это тот же тип электричества, который вы найдете в розетках в своих домах, но напряжение в ваших домах намного выше.

Однако все электрические компоненты автомобиля используют другой тип электричества, известный как постоянный или постоянный ток. С этим типом электричества электроны движутся только в одном направлении, это то же самое, что и электричество, которое вы получаете от батареи.

Выпрямитель

Таким образом, генератор переменного тока преобразует переменный ток в постоянный через выпрямитель. Выходное напряжение генератора переменного тока зависит от скорости автомобиля, поэтому в генераторе переменного тока также используется регулятор, чтобы ограничить его и поддерживать почти постоянную выходную мощность.

Зачем нужен генератор переменного тока

Каждому современному транспортному средству для работы требуется электричество, которое используется для питания таких вещей, как освещение, музыкальная система, электрические стеклоподъемники, стеклоочистители и т. д.

Электрические компоненты используют постоянный ток

Двигатель сжигает топливо. Это используется для вращения коленчатого вала и движения автомобиля вперед. Двигатель обеспечивает только механическую силу, он не производит электричество. Итак, нам нужен способ питания всех электрических устройств в автомобиле, и здесь на помощь приходит генератор переменного тока.

В моторном отсеке мы также находим 12-вольтовый свинцово-кислотный автомобильный аккумулятор. Это хранит энергию в виде химической энергии, а не электричество.

Автомобильный аккумулятор

Кстати, мы подробно рассмотрели, как работает автомобильный аккумулятор. ЗДЕСЬ

Когда двигатель выключен, аккумулятор питает электрические компоненты автомобиля. Хотя это разрядит батарею.

Когда автомобиль заводится, аккумулятор подает большой ток на стартер, который вращает маховик и запускает двигатель. Аккумулятор снова частично разряжается во время запуска из-за большого тока, необходимого для включения стартера.

Запуск двигателя

Когда двигатель работает, генератор используется для подзарядки аккумулятора, чтобы в нем накопилось достаточно энергии для повторного запуска двигателя в будущем. Генератор переменного тока также питает электрические устройства автомобиля при работающем двигателе.

Двигатель работает

Если аккумулятор слишком долго разряжается, он не сможет обеспечить большой ток, необходимый для запуска стартера, и автомобиль необходимо будет запустить от внешнего источника.

Двигатель выключен

  Основные части

Давайте посмотрим на основные части генератора. В передней части агрегата находим шкив. Это колесо с прорезанными в нем канавками, которые помогают захватывать ремень, обеспечивающий вращательное усилие от двигателя.

Шкив

Шкив крепится к валу, проходящему по всей длине генератора.

Внутренние компоненты удерживаются внутри основного корпуса. Корпус состоит из 2-х частей, передней и задней скобы. В корпусе есть несколько прорезей, через которые проходит воздух и отводится нежелательное тепло.

Корпус

В задней части устройства находятся электрические разъемы. Существует множество различных конструкций, но это пример простой 3-проводной схемы с внутренним регулятором и выпрямителем со следующими клеммами:

Клемма B. Это выход, который заряжает аккумулятор.
S терминал. Это позволяет регулятору определять напряжение.
F клемма. Он подключен к зажиганию и обеспечивает начальную мощность электромагнита при запуске.

Терминалы

Чтобы замкнуть цепь, электричество течет обратно через раму автомобиля к отрицательной клемме аккумулятора или от нее.

Поскольку это устройство имеет внутренний регулятор и выпрямитель, мы находим эти компоненты на задней панели устройства, обычно под защитной крышкой. Вскоре мы увидим их более подробно.

Сняв корпус мы можем заглянуть внутрь блока. Первое, что мы видим, это статор. Статор неподвижен и не вращается.

Статор

Состоит из нескольких ламинированных листов с прорезями по внутреннему краю.

Ламинированный лист

Затем находим 3 отдельных комплекта медных проводов, которые намотаны между этими пазами в определенном порядке. Один конец каждой катушки соединен вместе, образуя нейтральную точку, это конфигурация звезды.

Конфигурация звезды

Каждый набор катушек будет производить одну фазу переменного тока, всего 3 фазы. Другой конец каждой катушки проходит через корпус и прикрепляется к выпрямителю.

Генератор переменного тока вырабатывает переменный ток, но аккумулятору и электрическим устройствам автомобиля нужен постоянный ток. Таким образом, выпрямитель будет преобразовывать переменный ток в постоянный ток.

В центре генератора мы находим еще одну катушку провода, которая намотана на железный сердечник и соединена с валом. На валу также установлены два контактных кольца. Контактные кольца соединены с противоположными концами катушки. В задней части корпуса мы находим несколько щеток. Это подпружиненные углеродные блоки, которые выталкиваются наружу, чтобы тереться о контактные кольца, образуя электрическое соединение. Автомобильный аккумулятор изначально подает электричество на катушку через щетки. Когда электричество проходит через катушку, оно генерирует электромагнитное поле.

Центр Генератора

Чтобы усилить это электромагнитное поле, на каждом конце катушки размещены две железные клешни, которые сцепляются друг с другом. Один конец станет северным полюсом, другой станет южным полюсом.

Электромагнитное поле

Поскольку электромагнит прикреплен к валу ротора. Когда двигатель вращает вал, он также вращает электромагнит вокруг катушек статора. Это заставит катушки статора генерировать ток, и таким образом вырабатывается электричество.

Когда генератор переменного тока вырабатывает электричество, генератор переменного тока может самостоятельно питать электромагнит через трио диодов, которые преобразуют 3-фазное электричество переменного тока в постоянное.

Напряжение и ток, вырабатываемые генератором переменного тока, изменяются в зависимости от скорости автомобиля: чем быстрее движется автомобиль, тем быстрее вращается коленчатый вал и, следовательно, тем быстрее вращается генератор, что увеличивает напряжение и ток. Для управления этим используется другой компонент, называемый регулятором, который устанавливается на задней панели устройства.

Это плата с интегральной схемой, которая контролирует выходную мощность генератора переменного тока и изменяет ток, протекающий через электромагнит, для управления его силой. Сила электромагнита может использоваться для изменения выходной мощности генератора переменного тока.

Регулятор

Как генерируется электричество в генераторе переменного тока

Электричество — это поток электронов в проводе. Медная проволока состоит из миллионов и миллионов атомов меди. У каждого атома есть свободный электрон. Это электрон, который может свободно перемещаться между другими атомами. Он движется к другим атомам сам по себе, но это происходит случайным образом во всех направлениях, что бесполезно для нас.

Нам нужно, чтобы много электронов двигались в одном направлении, и мы делаем это, применяя разность потенциалов на двух концах провода. Это заставляет электроны течь. Если мы перевернем батарею, электроны текут в противоположном направлении.

Когда электричество проходит по проводу, вокруг провода создается электромагнитное поле. Если мы поместим циркуль вокруг провода и пропустим через него ток, циркуль выровняется с магнитным полем. Если мы изменим направление тока, магнитное поле изменится на противоположное, и компас изменит направление.

Если проволоку свернуть в катушку, магнитное поле станет сильнее. Каждое поперечное сечение провода по-прежнему создает электромагнитное поле, но они объединяются, чтобы сформировать большее и сильное магнитное поле. Электромагнит создает северный и южный полюса, точно так же, как постоянный магнит, и мы можем увидеть это, снова используя компас. Если мы увеличим ток в катушке, электромагнитное поле увеличится.

Можно и наоборот. Если мы пропускаем магнит через катушку с проволокой, в катушке возникает ток. Циферблат на амперметре показывает, что ток течет в прямом направлении, следовательно, это генерирует постоянный или постоянный ток. Когда магнит перестает двигаться, циферблат возвращается к нулю. Когда магнит перемещается в противоположном направлении, ток течет в противоположном направлении, и циферблат показывает обратный ток.

Если мы несколько раз перемещаем магнит внутрь и наружу, ток будет чередоваться то вперед, то назад. Так генерируется переменный или переменный ток. Ток переменный по направлению.

Если мы двигаем магнит быстрее, генерируется более сильный ток.

Если мы используем более сильный магнит, то ток также увеличивается.

Если мы используем большую катушку с большим количеством витков, то это также будет генерировать больший ток.

Вместо постоянного магнита мы могли бы использовать электромагнит. Когда мы перемещаем его внутрь и наружу, он также будет генерировать переменный ток в катушке. Но с электромагнитом мы можем регулировать ток и напряжение, чтобы изменять силу магнитного поля, это позволяет нам контролировать, сколько тока генерируется в катушке.

Вместо того, чтобы перемещать магнит в катушке и из нее, мы можем гораздо проще генерировать ток, вращая магнит и размещая вокруг него катушки. Самая сильная часть магнитного поля находится на концах, где сходятся силовые линии магнитного поля. Вы можете увидеть линии магнитного поля, посыпав магнит железными опилками.

Железные опилки над магнитом

Когда магнит находится между двумя катушками, ток не генерируется, но когда магнит начинает вращаться, самая сильная часть магнитного поля становится все ближе и ближе к катушке. Катушка испытывает изменяющуюся интенсивность магнитного поля, это заставит все больше и больше электронов выталкиваться вперед до достижения максимальной интенсивности. Затем магнит начинает удаляться от катушки, поэтому магнитное поле начинает уменьшаться, а вместе с ним и ток электронов, пока снова не достигнет нуля. Теперь противоположный конец магнита начинает приближаться к катушке, и это тянет электроны в противоположном направлении, снова до точки максимума, а затем снова уменьшается до нуля. Итак, если мы нанесем этот ток на график, мы получим синусоидальную волну с током, протекающим в положительной, а затем в отрицательной областях. Эта установка дает нам однофазное питание переменного тока.

Синусоида

Но у нас есть все это пустое пространство между катушками, которое кажется пустой тратой времени. Итак, что мы можем сделать с этим пространством? Что ж, мы можем добавить больше катушек и создать больше фаз, чтобы обеспечить еще большую мощность.

Если мы поместим еще одну катушку с поворотом на 120 градусов от первой фазы, это даст нам вторую фазу. Почему? Поскольку катушка находится под другим углом, она испытает изменение напряженности магнитного поля в разное время. Таким образом, ток будет течь вперед и назад в разное время. Это дает нам еще одну синусоиду, которая возникает в другое время.

Вторая фаза

У нас все еще есть пустое место, поэтому мы можем добавить еще один набор катушек на 120 градусов от предыдущего, чтобы создать третью фазу.

Если бы мы использовали только одну фазу, то для каждого оборота магнита половина времени ток течет вперед и половина времени ток течет назад. Но с тремя фазами у нас всегда есть фаза, которая течет вперед, и всегда есть фаза, которая течет назад. Это означает, что мы можем использовать это, чтобы обеспечить больше энергии.

Трехфазный

Вместо 3 отдельных катушек и 6 проводов, поскольку фазы всегда переключаются между прямым и обратным направлением, мы можем соединить концы катушек вместе. Затем ток будет свободно течь между каждой катушкой, поскольку он меняет направление.

Теперь мы производим 3-фазное электричество переменного тока. Но все наши электрические цепи и компоненты в автомобиле используют постоянный или постоянный ток. Итак, нам нужно преобразовать переменный ток в постоянный, и для этого мы используем мостовой выпрямитель.

Это всего лишь 6 диодов, соединенных попарно и соединенных параллельно. Если вы не знаете, диоды пропускают ток только в одном направлении и блокируют ток в обратном направлении. Таким образом, при однофазном питании при каждом обороте магнита ток будет течь только на половине оборота, а другая половина будет полностью заблокирована.

Full Bridge Rectifier

Если мы каждую из 3-х фаз подключили отдельно к диоду, то ток будет течь или блокироваться в разное время. Следовательно, мы можем объединить фазы в блок диодов, и будет пропущена только фаза, ближайшая к ее максимуму. Давая нам немного грубый выход постоянного тока. Чтобы сгладить это, мы можем подключить конденсатор, который в основном будет поглощать электроны, а затем автоматически выбрасывать электроны, чтобы поддерживать постоянный выход. Это дает нам постоянный источник постоянного тока.

Кстати, о диодах, конденсаторах и инверторах мы уже подробно рассказывали ранее. Проверьте это здесь — ДИОДЫ, КОНДЕНСАТОРЫ, ПРЕОБРАЗОВАТЕЛИ ПИТАНИЯ.

Итак, теперь у нас есть выход постоянного тока. Но если магнит подсоединить к двигателю и машина разгоняется, то магнит будет вращаться быстрее, что увеличит выходное напряжение и ток. Мы не хотим этого, потому что это убьет все наши электронные компоненты в автомобиле. Итак, нам нужен способ регулирования напряжения.

Если вы помните, мы видели, что с помощью электромагнита мы можем увеличивать или уменьшать напряженность электромагнитного поля, изменяя напряжение. И, изменяя силу магнита, мы можем изменять напряжение и ток, генерируемые в катушке.

Вот почему в генераторе переменного тока используется электромагнит, чтобы он мог управлять выходной мощностью. Автомобильный аккумулятор питает электромагнит. Хотя в большинстве современных генераторов переменного тока будет использоваться трио диодов, которое преобразует переменный ток генератора переменного тока в постоянный ток и питает электромагнит через регулятор напряжения, когда генератор переменного тока вырабатывает электричество.

В блоке питания электромагнита внутри регулятора мы находим компонент, известный как транзистор. Датчик напряжения также подключен к регулятору.

Транзистор

Транзистор представляет собой тип электронного переключателя, который может включаться и выключаться тысячи раз в секунду с помощью контроллера. Это можно использовать для контроля количества протекающего тока.

Если мы представим, что ток, протекающий через катушку от батареи, находится на максимальном уровне в течение заданного периода времени, тогда мы получим 100%-й ток и электромагнит на 100%-ной силе. Но если мы теперь используем переключатель, чтобы электричество текло только половину времени, то мы получаем 50% тока и, следовательно, электромагнит имеет только 50% своей силы.

Таким образом, измеряя выходную мощность генератора переменного тока, а затем изменяя время открытия и закрытия транзисторного ключа, мы можем контролировать ток, протекающий через катушку, и силу электромагнита. Это контролирует, сколько электроэнергии вырабатывается генератором для поддержания постоянной мощности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *