Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

Принцип работы турбины. Турбина устройство и принцип работы


Устройство и принцип работы турбины

Практически для каждого человека, который интересуется автомобилями и их устройством, важно понимание устройства и основных принципов работы турбины. Тем более, что в настоящее время появляется все больше и больше серийных образцов автомобилей, оснащенных турбонагнетателями.

 

Даже Mercedes, традиционно преданный механическим нагнетателям, осознав плюсы турбонаддува, оснащает этой системой большинство своих моделей, не говоря уже о BMW, и японских авто-производителях!

 

Можно сколько угодно повторять эту истину в многочисленых статьях про турбины, но это все будет не больше чем наша интерпретация общеизвестных фактов. Мы получили информацию от одного из ведущих производителей турбин фирмы Garrett и внесли немного дополнительной информации.

Начнем,

Какое устройство и принцип работы турбины ? 

 

Мощность двигателя пропорциональна объему воздуха и топлива, способного войти в цилиндры. При прочих сходствах, большие двигатели потребляют больший поток воздуха и как результат, дают большУю мощность. Если мы хотим чтобы наш мотор работал также как двигатель-богатырь, или если нам надо, чтобы уже не маленький двигатель выдавал еще большую мощность, наша цель «впихнуть» больше воздуха в цилиндр. Установив турбонагнетатель мы имеем возможность резко увеличить характеристики двигателя.

Каким же образом турбонагнетатель «запихивает» больше воздуха в двигатель? Давайте для начала обратимся к схеме ниже:

  1. Входное отверстие «холодной части» турбокомпрессора (она же — compressor)
  2. Выход «холодной части» турбокомпрессора (она же — compressor)
  3. Промежуточный охладитель воздуха (интеркулер — intercooler)
  4. Впускной клапан ГБЦ
  5. Выпускной клапан ГБЦ
  6. Входное отверстие «горячей части» турбокомпрессора (она же — turbine)
  7. Выход «горячей части» турбокомпрессора (она же – turbine)

Устройство и принцип работы турбины

Компоненты, составляющие типичную систему турбонаддува.

* Воздушный фильтр (не показан), через который атмосферный воздух проходит прежде чем попасть в турбокомпрессор (1)

* Воздух который превышает величину плотности атмосферного воздуха (масса/ единица объема) является сжатым. (2)

* У большинства современных оснащенных турбонаддувом, есть промежуточный охладитель воздуха (интеркулер) (3), который охлаждает сжатый воздух, дабы далее увеличить его плотность и уменьшить склонность к детонации

* После прохождения через впускной коллектор (4), воздух входит в цилиндры двигателя, которые содержат фиксированный объем. Так как вошедший воздух большей плотности, каждый цилиндр может работать с большим массовым расходом воздуха. В свою очередь, более высокий массовый расход воздуха позволяет загнать в цилиндр больше топлива (с неизменным коэффициентом воздух/топливо — air/fuel). Воспламеняясь, воздушно — топливная смесь большего объема приводит к увеличению мощности, производимой данным размером, или по другому — объемом цилиндра

* Объем газов, полученный в результате сожжения топлива в цилиндре, выходит, в такте выхлопа, в выпускной коллектор (5)

* Газ высокой температуры на большей скорости направляется прямиком в «горячую часть» турбокомпрессора — турбине (6) и давят на крыльчатку. Турбина создает противодавление на двигателе, что означает что давление выхлопных газов двигателя выше чем атмосферное давление

* Снижение давления и температуры происходит во время прохождения через турбину (7), которая (как и все гениальное) просто использует бесплатную энергию выхлопных газов для привода компрессора и нагнетания давления

 

Компоненты, составляющие конструкцию турбокомпрессора

Устройство и принцип работы турбины

В дополнение нужно отметить что температура выхлопных газов бензиновых двигателей гораздо выше этого параметра у дизелей, а как следствие — турбокомпрессоры для дизельных двигателей, при схожей конструкции сделаны из более дешевых, но менее жаропрочных материалов. Так что использование дизельных турбокомпрессоров на бензиновом двигателе мы не рекомендуем — выкинете деньги…

Другие компоненты системы турбонаддува.

Вестгейты (Wastegates)

Вестгейт, также как и блоуофф, является средством управления наддувом, только со стороны выхлопа. Некоторые коммерческие дизельные системы турбонаддува вовсе обходятся без оного (т.н. система свободно плавающего турбонагнетателя). Однако, использование турбонаддува на бензиновых двигателях требует применения этого компонента.

Существуют две разновидности вестгейтов — внутренний и внешний. И тот и другой обеспечивают обход выхлопных газов мимо колеса турбины. Обход газов колеса, как вы уже понимаете, уменьшает мощность турбокомпрессора, позволяя турбине соответствовать мощности, требуемой для данного уровня наддува. Аналогично блоуоффам, вестгейты используют в своей конструкции силу пружины, для регулировки потока, проходящего в обход турбины.

Внутренние вестгейты встроены в корпус турбины и состоят из клапана «хлопушки», тяги, наконечника, и пневматического привода (актюатора).

Очень важно подсоединить актюатор исключительно к давлению наддува, т.к. механизм не работает с вакуумом и не может относиться к впускному коллектору.

Устройство и принцип работы турбины

Внешние вестгейты монтируются на специально изготавливаемом для них приливе на коллекторе. Преимущество внешнего вестгейта заключается в том, что обойдя турбину, поток воздуха может быть повторно включен в поток газов, идущий ниже по течению турбины. Это позволяет улучшить производительность турбины. Для гоночной техники, этот поток может быть выведен прямиком в атмосферу.

Вестгейт. Устройство и принцип работы турбины

Втулки против шариковых подшипников

Втулки долгое время были основой для турбокомпрессоров. Они дешевы, практичны, но шарикоподшипник является новой эхой в постройке турбокомпрессоров и несет с собой существенное улучшение их характеристик.

Массовое появление турбин на шарикоподшипниках началось в результате участия группы Garrett Motorsports в нескольких гоночных сериях, где получило название «картридж подшипник»

Картридж — это корпус где стоят однородные втулки, который содержит ряд шарикоподшипников с каждой стороны, в то время как традиционная система подшипника содержит набор втулок и подшипник осевого давления втулки.

Устройство и принцип работы турбины

Шарикоподшипники, картридж

Ремонт турбин (шарикоподшипник турбины)

Использование шарикоподшипников положительно сказывается на отклике турбины, а это в свою очередь хорошо сказывается на динамике автомобиля.

 

Читайте также:

ИЗМЕНЯЕМАЯ ГЕОМЕТРИЯ ТУРБОКОМПРЕССОРА>>>

ЧТО ТАКОЕ ДАТЧИК (КЛАПАН) N75 И ЗАЧЕМ ЕГО МЕНЯТЬ>>>

tdturbo.ru

Устройство и принцип работы турбины

Все обладатели новых авто с турбонаддувом в восторге от ощущений его преимуществ. Особенно, если им есть с чем сравнивать. И все, кто ищет автомобиль на вторичном рынке, особенно тщательно проверяют именно этот узел автомобиля. Чем же интересен турбонаддув?

Мощность двигателя внутреннего сгорания напрямую зависит от количества топлива, сжигаемого в единицу времени. Хотим увеличить мощность — подаём больше топлива в камеру сгорания. Но не всё так просто. Для горения необходим кислород, реально — воздух, который засасывается в камеру сгорания из-за разности атмосферного давления и разрежения внутри камеры. Причём в воздушно-топливной смеси объёма воздуха примерно в 14 раз больше объёма топлива. Больше топлива — больше воздуха — больше объём камеры сгорания, а это увеличение габаритов и массы двигателя. Так и поступали американцы, в период расцвета экономики строившие огромные прожорливые легковые автомобили. Пока проблемы истощения природных ресурсов не заставили задуматься об экономичности и уменьшении габаритов автомобилей.

Задача первая

Как увеличить количества подаваемого воздуха при прежних габаритах камеры сгорания? Ответ простой — принудительно, под давлением. Первым предложил закачивать сжатый воздух с помощью компрессора Готтлиб Вильгельм Даймлер в 1885 году, причём компрессор приводился в движение двигателем, забирая у него часть мощности. Не очень изящное решение, надо признать.

Всё гениальное просто. Альберт Эйнштейн.

Революционным оказалось изобретение Альфред Бюхи. В 1905 году он предложил в качестве привода нагнетателя воздуха использовать энергию выхлопных газов двигателя. С небольшими изменениями его запатентованная схема используется и до сих пор. Выхлопные газы вращают лопатки ротора турбины, сидящего на одном валу с компрессором, закачивающим воздух в цилиндры. Никакого вала отбора мощности! Просто и изящно.

Задача вторая

Как ещё можно увеличить количество подаваемого воздуха, помимо давления? Из основного закона термодинамики — охлаждением. Охлаждённый воздух плотнее, значит, его количество в одном и том же объёме цилиндра больше. Поэтому на пути воздуха от компрессора к цилиндрам ставят интеркулер — радиатор, которому воздух отдаёт тепло и поступает в цилиндры уже охлаждённым.

Таким образом, одну и ту же мощность можно получить при меньшем объёме двигателя, а это меньший вес автомобиля, выше его экономичность.

Задача третья: реализация

Теоретически всё просто, как было описано. Но реально для создания требуемого нагнетания воздуха компрессором необходима скорость ротора до 200 тыс. об/мин. А вместе температурой выхлопных газов (до 1000 гр. С) это создаёт огромные технические трудности для реализации замысла. Вот поэтому впервые эффективные турбокомпрессоры были реализованы только в годы второй мировой войны в авиации. На военные нужды, ради победы, денег не жалеют. А первые турбокомпрессоры в легковых автомобилях появились только в начале 60-х годов.

Задача четвёртая: стабилизация эффекта турбонаддува

Первые модели турбокомпрессоров могли обеспечить эффект повышения мощности только при приближении оборотов двигателя к 3000. Именно в этот момент турбина раскручивалась, и количество нагнетаемого воздуха давало ощутимый эффект. Двигатель «выстреливает», резво набирая мощность.

Состояние до этого эффекта называют турбоямой (газу дал, а реакции никакой из-за высокой инерции турбины), особенно характерной для двигателей большой мощности (с турбинами высокого давления).

Есть несколько конструктивных способов исправить ситуацию:

  • Последовательное включение двух турбин: на низких оборотах включается малая турбина, на высоких — турбина высокого давления. При этом во всём диапазоне оборотов двигателя водитель чувствует обратную связь на увеличение подачи топлива. По такому принципу устроены турбодизели BMW и Land Rover.
  • Одна турбина с двумя идентичными «улитками» (twin-scroll), подключенными к разным блокам цилиндров.
  • Две одинаковые турбины, подключенные к разным блокам цилиндров (применяется в V-образных турбомоторах).
  • И последнее слово в турбодвигателях — турбины с изменяемой геометрией рабочей части. Внутри улитки есть подвижные лопатки, которые меняют своё положение в зависимости от скорости вращения. Таки образом, одна турбина эффективно раскручивается как на малых, так и на высоких оборотах двигателя.

Сегодня автомобили с турбонаддувом прошли этап «детских болезней». Они надёжны, экономичны, экологичны. Особенно популярны среди любителей активного драйва турбодизели.

www.remont-turbin-spb.ru

Как работают и где используются турбины и что такое турбонаддув?

Самые мощные двигатели в мире машин — это турбины. Они различаются по конструкции, роду рабочего вещества и принципу работы. Что же представляют собой эти уникальные агрегаты, каковы их конструкционные особенности, способы приведения в действие и области применения?

Что же такое турбина и маленький экскурс в их историю

Очень упрощенно турбину можно представить себе как колесо с лопастями, приводимое во вращение потоком пара, газа или воды.

Упрошённая схема турбины.

Её далеким прообразом является Александрийский шар, о котором уже шла речь в докладе о двигателях.

По мере накопления знаний и технического опыта появлялись более совершенные модели этих устройств. Например, водяное колесо. Если расположить по его ободу лопасти или черпаки и поставить вертикально под поток льющейся воды, колесо придет во вращение. Таким образом приводились в движение жернова на водяных мельницах. На этом же принципе работают и ветряные мельницы, использующие энергию ветра.

Начиная с XVI века, создатели турбин в качестве рабочего тела стали использовать пар, выходящий из специального сопла. Всего за 2 десятка лет были запатентованы несколько сотен изобретений относящихся к паровым турбинам. Но только шведскому инженеру Густаву Лавалю удалось создать такую модель, которую можно было реально использовать в промышленности.

Шведский инженер Густав Лаваль.

Струя пара, исходящая из расширяющегося сопла, оказывала давление на лопатки, закрепленные на ободе колеса. Это воздействие и приводило колесо (ротор) во вращение. Отработанный пар конденсировался, и полученная вода возвращалась в паровой котел. Такие турбины получили название активных.

Промышленная активная турбина.

В отличие от них существуют реактивные турбины, где лопасти снабжены специальными каналами. Перемещаясь в них, рабочее тело расширяется и создает реактивную силу, вращающую ротор турбины.

Про изобретение паровых двигателей →

Газовые турбины отличаются от паровых тем, что в качестве рабочего вещества в них используется газ, образующийся при сгорании топлива. Первые патенты на них были получены лишь в начале XX века.

Турбины XXI века

Турбины с любым видом рабочего вещества используются для приведения в действие все возможных машин. Для этого вал турбины соединяют с валом рабочей машины. В зависимости от назначения этой машины турбина может быть использована в различных областях народного хозяйства: энергетике, металлургии, на транспорте и т. д.

Паровые турбины вместе со вспомогательным оборудованием представляют собой паротурбинную установку. Именно они являются основным типом двигателя на современных атомных и тепловых электростанциях, на которых вырабатывается до 95% всей электроэнергии в мире.

Установка ротора на тепловой электроснции.

Свежий пар приводит во вращение турбину, которая вращает ротор генератора электрического тока. А отработанный пар охлаждается и конденсируется в специальном конденсаторе. Полученный конденсат насосами перекачивается в котельный агрегат и используется для получения новой порции пара.

Подобным образом работают и гидравлические турбины, которые устанавливают на гидроэлектростанциях (ГЭС). Их обычно строят на реках, а для получения необходимого напора воды, сооружают плотины и водохранилища. Рабочее колесо турбины, взаимодействуя с водным потоком, приходит во вращение, приводя в действие генератор электрического тока.

ГЭС относятся к возобновляемым и экологичным источникам энергии, поскольку они не дают вредных выбросов в атмосферу.

Схема гидроэлектростанции.

В газовых турбинах рабочее вещество представляет собой газ, образующийся при сгорании самого разнообразного топлива — нефтепродуктов и даже измельченного угля. Обычно эти турбины входят в состав газотурбинных установок и газотурбинных двигателей.

Применение газовых турбин

Газотурбинные установки используют, в основном, для получения электроэнергии. Рабочее колесо турбины приводится во вращение потоком раскаленных газов. Это вращение передается на ротор генератора электрического тока. Вырабатываемое им электричество поставляется к потребителю. Специальное оборудование позволяет использовать отработанные горячие газы для отопления помещений и других нужд. Т.е. газотурбинная установка выполняет функции теплоэлектроцентрали.

Весьма важным аспектом применения турбин является турбонаддув. Эта функция позволяет увеличить мощность и динамичность двигателя. Она заключается в подаче воздуха в цилиндры двигателя под давлением. Для создания необходимого давления используется тепловая энергия выхлопных газов. Перед выбросом в атмосферу они попадают на турбину, приводят её во вращение. На одном валу с колесом турбины находится компрессор, который засасывает воздух из атмосферы и подает его в цилиндры двигателя.

Принцип работы турбонаддува.

Применение турбонаддува — эффективное средство для повышения мощности двигателя. Он с успехом применяется как на бензиновых, так и на дизельных двигателях. Причём для дизелей он более эффективен, поскольку они допускают бОльшую степень сжатия.

Управление давлением нагнетаемого воздуха осуществляется с помощью специального клапана, который может стравливать избыток давления в атмосферу.

Турбины в авиации

Столь эффективный метод, повышающий эффективность работы двигателя не мог пройти мимо авиации. Ещё в первой мировой войне для достижения достаточного давления в двигателях на больших высотах, где воздух разряжен, использовали турбонаддув.

В настоящее время газовые турбины используются в авиации как важнейший компонент двигателя. Так в вертолетах и турбовинтовых самолетах они используются для приведения в действие воздушного винта.

В тридцатых годах прошлого столетия одного умного английского инженера посетила мысль создать авиационный двигатель без пропеллера. Тогда многие посчитали его идею безумной. Но этот принцип и ныне используется в современных турбореактивных двигателях (ТРД.)

Современная турбина самолёта.

В газотурбинном (турбореактивном) двигателе самолета турбина приводит в действие компрессор, а оставшаяся энергия вместе с газовой струей выбрасывается через сопло, создавая реактивную тягу.

Самые…

Каждый вид турбин имеет свою сферу применения и свои плюсы и минусы. Максимальная мощность паровых турбин, используемых на АЭС, достигает 1700 МВт. Однако она несравненно меньше, чем мощность двигателей космических кораблей, достигающая 27 млрд. Вт.

Столь глобальное применение турбин не исключает её применение при совершении тонких медицинских манипуляций.

Так, при сверлении зубов, сверло приводится во вращение маленькой воздушной турбинкой, на которую подается струя сжатого воздуха. Эта миниатюрная деталька, вращаясь со скоростью 250 000 об/мин, сокращает время неприятной операции в несколько раз.

С развитием новых технологий и отраслей промышленности сфера применения турбин постоянно расширяется. Так появился интереснейший проект TESLA1, разработчиками которого явилась интернациональная группа конструкторов и дизайнеров.

Они предлагают встроить в автомобиль 5 турбин. Четыре — в колёса, они будут работать за счёт энергии ветра возникающего при вращении колес от двигателя. А пятое — предполагается расположить в задней части машины, где сходятся все воздушные потоки от «колесных» турбин. Эта, пятая турбина, также будет создавать дополнительную реактивную тягу.

Данный проект предполагается осуществить к 2030 году, когда будут проводиться 24 часовые гонки Ле-Мана. Что ж поживем — увидим….

Автор: Драчёва Светлана Семёновна

Если это сообщение тебе пригодилось, буда рада видеть тебя в группе ВКонтакте. А ещё — спасибо, если ты нажмёшь на одну из кнопочек «лайков»:

Вы можете оставить комментарий к докладу.

www.doklad-na-temu.ru


Станции

Районы

Округа

RoadPart | Все права защищены © 2018 | Карта сайта