Что такое степень сжатия двигателя? Степень сжатия двигателя это
Степень сжатия - это... Что такое Степень сжатия?
Степень сжатия — отношение объёма надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке (НМТ) (полный объем цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке (ВМТ), то есть к объёму камеры сгорания.
, где: = диаметр цилиндра; = ход поршня; = объём камеры сгорания, то есть, объём, занимаемый бензовоздушной смесью в конце такта сжатия, непосредственно перед поджиганием искрой; часто определяется не расчётом, а непосредственно измерением из-за сложной формы камеры сгорания.Увеличение степени сжатия требует использования топлива с более высоким октановым числом (для бензиновых ДВС) во избежание детонации. Повышение степени сжатия в общем случае повышает его мощность, кроме того, увеличивает КПД двигателя как тепловой машины, то есть, способствует снижению расхода топлива.
Степень сжатия, обозначаемая греческой буквой ε, есть величина безразмерная. Связанная с ней величина компрессия зависит от степени сжатия, от природы сжимаемого газа и от условий сжатия. При адиабатическом процессе сжатия воздуха зависимость эта выглядит так: P=Pο*ε^γ, где
γ=1,4 — показатель адиабаты для двухатомных газов (в том числе воздуха), Pο — начальное давление, как правило, принимается равным 1.Из-за неадиабатичности сжатия в двигателе внутреннего сгорания (теплообмен со стенками, утечки части газа через неплотности, присутствия в нем бензина)сжатие газа считают политропным с показателем политропы n=1,2.
При ε=10 компрессия в лучшем случае должна быть 10^1,2=15,8
Детонация в двигателе — изохорный самоускоряющийся процесс перехода горения топливо-воздушной смеси в детонационный взрыв без совершения работы с переходом энергии сгорания топлива в температуру и давление газов.
Фронт пламени распространяется со скоростью взрыва, то есть превышает скорость распространения звука в данной среде и приводит к сильным ударным нагрузкам на детали цилиндро-поршневой и кривошипно-шатунной групп и вызывает тем самым усиленный износ этих деталей. Высокая температура газов приводит к прогоранию днища поршней и обгоранию клапанов.Понятие степени сжатия не следует путать с понятием компрессия, которое обозначает (при определённой конструктивно обусловленной степени сжатия) максимальное давление, создаваемое в цилиндре при движении поршня от нижней мёртвой точки (НМТ) до верхней мёртвой точки (ВМТ) (например: степень сжатия — 10:1, компрессия — 14 атм.).
Интересные факты
Двигатели гоночных автомобилей, работающих на метаноле, имеют степень сжатия, превышающую 15:1[источник?]; в то время как в обычном карбюраторном ДВС степень сжатия для неэтилированного бензина как правило не превышает 11,1:1.
В 1950-60-е года одной из тенденций двигателестроения, особенно в Южной Америке, было повышение степени сжатия, которая к началу 1970-х на американских двигателях нередко достигала 11-13:1. Однако, это требовало соответствующего бензина с высоким октановым числом, что в те годы могло быть получено лишь добавлением ядовитого тетраэтилсвинца. Введение в начале 1970-х годов экологических стандартов в большинстве стран привело к остановке роста и даже снижению степени сжатия на серийных двигателях.
dic.academic.ru
Степень сжатия двигателя - обзорная статья
В достижении наилучших эксплуатационных характеристик двигателя внутреннего сгорания (ДВС) нужно быть хорошо подкованным в вопросах принципов его работы и возможностей повышения мощности. Но далеко не каждый автовладелец и даже тот, кто увлекается техническим тюнингом, способен похвастаться такими знаниями. Охватить нужную информацию в рамках одной статьи, конечно же, невозможно, поэтому предлагаю начать с азов и для начала разобраться: что такое степень сжатия и как она влияет на эффективность работы ДВС?
Начнем с определения.
Степенью сжатия двигателя в теории автомобилей называют отношение полного объема цилиндра к объему камеры сгорания этого цилиндра, или, иными словами, отношение максимального его объема к минимальному.
А поскольку данное понятие характеризует отношение объема смеси при подаче в цилиндр к объему, при котором эта смесь воспламеняется, то очевидна зависимость: чем большей является степень сжатия, тем более высокое давление имеет воспламеняющаяся смесь.
В то же время вполне логично, что бесконечно увеличивать такое давление невозможно – велик риск возникновения проблем с мотором при заправке некачественным топливом. Да и чем активнее работает устройство, тем короче будет его «жизнь». Поэтому всего должно быть в меру.
На сегодняшний день эта мера (в отношении степени сжатия) уже давно определена и составляет у бензиновых двигателей от 8 до 12 единиц, а у дизельных – от 14 до 18, точное число зависит от задач, поставленных перед тем или иным движком, а точнее транспортным средством, на которое тот установлен.
Видео.
Рекомендую прочитать:
autoepoch.ru
Степень сжатия — WiKi
Степень сжатия — отношение полного объёма цилиндра (надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке, НМТ) к объёму камеры сгорания (надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке, ВМТ).
=Vh+VcVc{\displaystyle \;={\frac {V_{h}+V_{c}}{V_{c}}}}, где Vh{\displaystyle V_{h}} — объём хода поршня, Vc{\displaystyle V_{c}} — объём камеры сгорания.Увеличение степени сжатия требует использования топлива с более высоким октановым числом (для бензиновых ДВС) во избежание детонации. Повышение степени сжатия в общем случае повышает его мощность, кроме того, увеличивает КПД двигателя как тепловой машины, то есть, способствует снижению расхода топлива.
Степень сжатия, обозначаемая греческой буквой ε{\displaystyle \varepsilon }, есть величина безразмерная. Связанная с ней величина — компрессия — зависит от степени сжатия, от природы сжимаемого газа и от условий сжатия. При адиабатическом процессе сжатия воздуха зависимость эта выглядит так:
P=P0∗εγ{\displaystyle P=P_{0}*\varepsilon _{\gamma }}, где γ=1,4{\displaystyle \gamma =1,4} — показатель адиабаты для двухатомных газов (в том числе воздуха), P=P0{\displaystyle P=P_{0}} — начальное давление, как правило, принимается равным 1.Из-за неадиабатичности сжатия в двигателе внутреннего сгорания (теплообмен со стенками, утечки части газа через неплотности, присутствия в нём бензина) сжатие газа считают политропным с показателем политропы n=1,2.
При ε{\displaystyle \varepsilon }=10 компрессия в лучшем случае должна быть 101,2=15,8
Детонация в двигателе — изохорный самоускоряющийся процесс перехода горения топливо-воздушной смеси в детонационный взрыв без совершения работы с переходом энергии сгорания топлива в температуру и давление газов. Фронт пламени распространяется со скоростью взрыва, то есть превышает скорость распространения звука в данной среде и приводит к сильным ударным нагрузкам на детали цилиндро-поршневой и кривошипно-шатунной групп и вызывает тем самым усиленный износ этих деталей. Высокая температура газов приводит к прогоранию днища поршней и обгоранию клапанов.
Понятие степени сжатия не следует путать с понятием компрессия[1], которое обозначает (при определённой конструктивно обусловленной степени сжатия) максимальное давление, создаваемое в цилиндре при движении поршня от нижней мёртвой точки (НМТ) до верхней мёртвой точки (ВМТ) (например: степень сжатия — 10:1, компрессия — 15,8 атм.).
Двигатели гоночных автомобилей, работающих на метаноле, имеют степень сжатия, превышающую 15:1[источник не указан 2035 дней]; в то время как в обычном карбюраторном ДВС степень сжатия для неэтилированного бензина как правило не превышает 11,1:1.
В настоящее время только компания Mazda серийно производит бензиновые двигатели Skyactiv-G со степенью сжатия 14:1, которые устанавливаются на такие автомобили, как Mazda CX-5 и Mazda 6. Однако необходимо понимать, что это геометрическая степень сжатия, фактическая же примерно равна 12, так как двигатель работает по циклу Аткинсона, то есть смесь начинает сжиматься после позднего закрытия клапанов и сжимается в 12 раз. Эффективность такого мотора по мощности и крутящему моменту обуславливается таким понятием как степень расширения, которая обратна геометрической степени сжатия.
В 1950-60-е года одной из тенденций двигателестроения, особенно в Северной Америке, было повышение степени сжатия, которая к началу 1970-х на американских двигателях нередко достигала 11-13:1. Однако, это требовало соответствующего бензина с высоким октановым числом, что в те годы могло быть получено лишь добавлением ядовитого тетраэтилсвинца. Введение в начале 1970-х годов экологических стандартов в большинстве стран привело к остановке роста и даже снижению степени сжатия на серийных двигателях.
ru-wiki.org
Степень сжатия дизельного двигателя - что это такое?
В этой статье речь пойдет об процессах, происходящих внутри камер сгорания мотора. Наверное, большинство из Вас имеет хотя бы общее приставление о принципе работы двигателя, но дело в том, что данный элемент не является универсальным устройством и на сегодняшний день выделяют несколько его видов: бензиновый, дизельный, газовый, газодизельный, роторно-поршневый.
Еще до недавнего времени, наиболее распространенными были первых два варианта, но с ростом цен на соответствующие топливо, довольно большое количество автолюбителей, перевели свои автомобили на газовое потребление.
Однако, говорить о том, что газ полностью вытеснил бензин и дизельное топливо, конечно же не приходится, а значит информация касающееся работы таких моторов не будет лишней. Говоря конкретнее, речь пойдет о процессе сжатия, которое происходит внутри камеры сгорания конкретно дизельного двигателя. Начнем с теоретической стороны этого вопроса.
Изучаем теорию – что происходит внутри камеры сгорания
Дизельный двигатель внутреннего сгорания (дизель) являет собой поршневую систему, работающую благодаря воздействию сжатого воздуха на распыленное топливо, которое впоследствии самовоспламеняется. В качестве такого топлива используют довольно широкий вариативный ряд веществ: продукты нефтеперегонки (керосин, мазут), а также некоторые продукты имеющие природное происхождение, в том числе: фритюрный жир, пальмовое и рапсовое масла. В теории дизельный двигатель может работать даже на сырой нефти, но гарантировать полную успешность этого процесса сложно.
Давайте же посмотрим каким образом дизтопливо заставляет мотор работать. Весь процесс деятельности дизельного двигателя можно разделить на четыре взаимосвязанных этапа (четырехтактная система): этап впрыска (впуска), этап сжатия, этап расширения (его еще называют «рабочий ход»), этап выпуска отработанного газа. Повторение, раз за разом, такого цикла обеспечивает движение автомобиля. Но сегодня мы не будем детально разбирать каждый этап и сосредоточим свое внимание в основном лишь на процессе сжатия.
В теории, степень сжатия характеризуется соотношением объемов пространства над рабочим поршнем, в процессе прохождения им нижней и верхней мертвой точки. Иными словами, данное понятие выражает разницу давления в камеры сгорания, когда топливо впрыскивается в цилиндр, соответственно относится исключительно к поршневым двигателям, обладающими такой камерой. Степень сжатия чем то схоже с понятием «компрессии», некоторые их даже путают, хотя на деле они совершенно разные.
Компрессия характеризуется размеренностью давления и ее можно измерить в Атмосферах, Барах или Паскалях, чего нельзя сказать про степень сжатия, так как это величина относительная, представляющая собой соотношение объема полного цилиндра и объема камеры сгорания. Данный параметр не меняется на протяжении всего строка службы двигателя и чаще всего его указывают в технических характеристиках.
Практически измерить степень сжатия невозможно, но многие автолюбители прибегают для этого к математическим расчетам (например 10:1). Оптимальным соотношением для дизельных двигателей считается 18-22:1, при котором мотор способен работать наиболее эффективно. Со степенью сжатия напрямую связано качественное использование дизельного топлива, ведь чем выше поднимается давление в камере (повышается сжатие), тем меньше расходуется топливо, что совсем не означает снижение мощности, даже наоборот — она может увеличиваться.
Степень сжатия на практике – как это происходит
Как мы уже знаем, работа двигателя стает возможной благодаря воспламенению образующейся смеси паров топлива и воздуха. Такая горючая смесь расширяется, толкая поршень, который, в свою очередь, вращает каленной вал. Давление в камере при этом значительно возрастает и двигатель совершает один такт работы.
Если степень сжатия возрастает — увеличивается и сила давления на поршень, заставляя мотор совершать больше полезной работы. На дизельных двигателях, для большей эффективности использования высокой степени сжатия, не используют дроссельную заслонку.
Вместо этого, мощность мотора регулируется количеством топлива, которое впрыскивается в цилиндр. Это способствует сильному сжатию воздуха в цилиндре, даже при низкой мощности (например когда в камеру сгорания впрыскивается незначительное количество топлива), при чем выделяется достаточное количество тепла для воспламенения и очень обедненной смеси.
Однако, увеличив степень сжатия Вы не всегда сможете добиться увеличения мощности. В случае, когда статистическая степень сжатия находится близко к пределу детонации для конкретно используемого топлива, то продолжение возрастания сжатия способно ухудшить надежность и мощность двигателя.
Казалось бы, что происходящие процессы должны влиять на безопасность окружающих, так как получающаяся смесь обладает повышенной взрывоопасностью, но на практике практически ничто и никогда не взрывается, как же так? Все дело в том, что в камеру сгорания топливо впрыскивается после того как в ней сжимается чистый воздух, при чем общее количество топлива в топливно-воздушной смеси не меняется, а за счет большого количества воздуха оно сгорает со значительно высоким уровнем коэффициента полезного действия.
Сегодня производители практически сняли с производства дизельные двигатели, имеющие низкую степень сжатия, так как в условиях нынешней рыночной экономики все большее количество людей стремятся к накоплению денежных средств, а расход большего количества топлива никак этому не способствует. Их место заняли высокооборотные дизельные двигатели с возможностью большей степени сжатия. Также практически исчезло из рынка низкооктановое топливо, так как потребность в нем отпала вместе с ограничением выпуска моторов для которых оно было предназначено.
Изменение степени сжатия – как улучшить показатели
Понятно, что смесь, попадающая в камеру сгорания должна равномерно гореть сопровождая процесс движения поршня вниз и ни в коем случае не взрываться, ведь только при соблюдении подобного условия, можно говорить про максимально эффективный расход топлива и равномерное изнашивание деталей поршневой системы. Проблема состоит в скорости, с которой такая смесь сгорает, так как это происходит быстрее, чем поршень успевает пройти свой путь.
В этом кроется главная сложность увеличения степени сжатия, встающая на пути водителей, задавшихся этой целью. В такой ситуации, увеличение давления повлияет на самопроизвольное возгорание смеси (преждевременное воспламенение), когда поршень еще не успел полностью завершить начатую фазу сжатия. Энергия, при этом, образует ненужное сопротивление и попусту растрачивается.
Еще одной проблемой можно назвать выделение слишком большого количества энергии, что приводит к взрыву (детонации). О том, какие последствия может иметь это явление говорить, лишний раз, не приходится.
Как видите, увеличение степени сжатия не только сложный, но и опасный процесс, тем не менее находятся смельчаки, которые все же решаются на это. Делается это двумя основными способами:
Устанавливается более тонкая прокладка двигателя, но так как при этом клапана и поршни могут столкнуться, необходимо все тщательно рассчитать. Возможен, также, вариант установки новых поршней с большими углублениями для клапанов. Нужно учитывать и тот факт, что при применении данного способа, нужно будет заново настраивать фазы газораспределения, которые непременно изменятся.
Растачиваются цилиндры двигателя, при чем поршни нужно будет заменить. Такой метод не только повышает степень сжатия, но и увеличивает рабочий объем двигателя. Благодаря соотношению прежнего объема камеры (он не меняется) и увеличеного объема цилиндра в большую сторону меняется степень сжатия.
Повысив степень сжатия, Вы не всегда можете получить желаемую прибавку в мощности. Чем под большую степень сжатия двигатель настроен изначально, тем меньшей будет прибавка. Другими словами, повышение мощности Вашего автомобиля, с изначальным показателем сжатия 8 будет более эффективным, чем у Вашего соседа, обладающим двигателем с аналогичным показателем в 13.
Если самостоятельно страшно вносить какие либо изменения в работу двигателя, а увеличить общую мощность автомобиля все-таки хочется, на помощь Вам придет альтернативный вариант повышения давления в камере сгорания и называется он «турбо-нагнетатель». Установив на транспортное средство такое устройство, объем камеры сгорания не изменится, но мощность существенно увеличится (иногда на 50% от изначальных показателей).
Еще одним преимуществом данного изобретения является относительная легкость монтажа, не требующее вмешательства специалистов, а значит не придется совершать лишние растраты. Правда, многие автолюбители все же предпочитают обращаться в сервисные центры, что может самое верное решение.
Принцип работы всех нагнетателей базируется на подачи большего количества воздуха и горючего на впуске, при чем объем камеры сгорания не меняется. Благодаря этому, при сгорании увеличивается количество энергии и возрастает мощность двигателя.
Как бы не хотелось увеличить степень сжатия дизельного двигателя своего автомобиля, всем автолюбителям стоит учитывать и дополнительную нагрузку на детали, которая возрастает вместе с увеличением количества энергии тепла. В следствии этого быстрее изнашиваются клапаны, прогорают поршни и выходит из строя система охлаждения. Также, несмотря на то, что турбонадув можно установить самостоятельно, демонтировать его, даже профессионалы не всегда смогут Вам помочь, а в особо тяжелых случаях двигатель может просто взорваться, причем страховка тут уже не поможет.
Так что, стоит или не стоит вмешиваться в предусмотренную производителем конструкцию мотора — решать Вам, но всегда помните о возможных последствиях. Тем более, на многих, выпускаемых сегодня, автомобилях устанавливают интеркулеры, позволяющие увеличивать наполнение цилиндров до 20%, что также значительно повышает мощность.
Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.
Была ли эта статья полезна?Да Нет
auto.today
Двигатели степень сжатия - Справочник химика 21
Наибольщее влияние оказывает степень сжатия и диаметр цилиндра. С повыщением степени сжатия резко возрастает температура, при которой протекают предпламенные реакции, а с увеличением диаметра цилиндра длительность пребывания последних порций топлива в камере сгорания становится больше. Найдена эмпирическая зависимость между октановым числом топлива 04, необходимым для бездетонационной работы двигателя, степенью сжатия е и диаметром цилиндра (О) [c.13]
Детонационные свойства — важная характеристика бензинов. В цилиндр двигателя внутреннего сгорания поступает смесь паров бензина с воздухом, которая сжимается поршнем и зажигается от запальной свечи (искры). Образующиеся при горении газы двигают поршень. Чем больше степень сжатия смеси в цилиндре, тем выше КПД двигателя. Степень сжатия ограничивается характером горения смесн в цилиндре. При нормальном горении скорость распространения пламени равна 10—15 м/с, однако при некоторых степенях сжатия наступает детонация, при которой пламя распространяется со скоростью 1500—2500 м/с. [c.56]
Бензин А-66 выпускается для большинства уже применяющихся автомобильных двигателей, степень сжатия которых не превышает [c.365]
Из гептана и изооктана можно получить смеси с октановым числом от О до 100. Если сжигать такие смеси в испытательном двигателе, изменяя степень сжатия, то чем больше доля изооктана в смеси, следовательно, чем выше октановое число соответствующего горючего, тем при более высокой степени сжатия будет зарегистрирован стук. Каждому октановому числу соответствует определенная степень сжатия, и наоборот. При определении октанового числа неизвестного горючего в испытательном двигателе степень сжатия определяют в тот момент, когда стук слышен наиболее отчетливо. На сегодня октановое число установлено практически у всех жидкостей, которые могут быть компонентами горючего. В отдельных случаях это число выше, чем у вещества, взятого для верхней точки шкалы, и, следовательно, больше 100. [c.82]
Для испытаний используется установка, применяемая при определении октановых чисел топлив по моторному методу, переоборудованная по типу дизеля путем замены головки карбюраторного двигателя дизельной головкой. Вместо индикатора со-сложной оптической настройкой и нокметром используются обычные индикаторы, которые фиксируют моменты впрыска и воспламенения безинерционными лампами, находящимися на маховике двигателя и связанными с индикаторами впрыска и воспламенения. Для наблюдения за безинерционными лампами с целью установления моментов впрыска и воспламенения имеется визирная трубка, смонтированная на кронштейне над маховиком двигателя. Степень сжатия двигателя изменяется специальным поршнем в пределах от 7 до 23. Топливо подается в камеру сгорания топливным насосом через форсунку. [c.105]
Зажигание смеси в карбюраторных двигателях осуществляется с помощью запальных свечей. Их конструкции разнообразны и зависят от типа двигателя, степени сжатия и прочих характеристик. При переходе с бензина на СНГ характеристики двигателя могут быть улучшены за счет использования свечи малого теплового радиуса, или холодной свечи, но при этом необходимо повысить степень сжатия из-за малого размера зазора между электродами в свече. Пропуски зажигания из-за отложения на электродах нагара при работе на СНГ весьма редки, они встречаются лишь после длительной эксплуатации. [c.216]
Комбинированная установка состоит из ряда элементов карбюраторного двигателя (степень сжатия 8 1, рабочий объем 1,6 л), оборудованного системой утилизации тепла выхлопных газов, антифриза и картерного масла центробежного компрессора, приводимого в движение от вала двигателя холодильной установки, в которой с помощью компрессора рабочая жидкость проходит все обычные стадии сжатия паров, утилизации тепла и конденсации паров расширителя жидкости и холодильника теплообменника — испарителя жидкости, работающего на низкопотенциальном тепле. Источниками такого тепла могут быть воздух, вода, тепло грунта, а также тепло, отбираемое в конденсаторе. Этот источник может быть объединен с теплом, аккумулированным в двигателе водой или воздухом. Наиболее вероятные сферы применения комбинированной установки — обогрев помещений горячим воздухом или водой, обогрев плавательных бассейнов, оранжерей и теплиц, различные установки для сушки зерна. Многие из них уже освоены в промышленно-коммерческих масштабах. [c.375]
Поэтому в карбюраторных двигателях степень сжатия, определяемая соотношением максимального объема камеры сгорания при нижнем положении к минимальному объему (принимаемому за 1) — при верхнем положении поршня, имеет определенные пределы, не превышающие соотношения 8 1. [c.199]
Детонационная стойкость является основным показателем качества авиа- и автобензинов, она характеризует способность бензина сгорать в ДВС с воспламенением от искры без детонации. Детонацией называется особый ненормальный режим сгорания карбюраторного топлива в двигателе, при зтом только часть рабочей смеси после воспламенения от искры сгорает нормально с обычной скоростью. Последняя порция несгоревшей рабочей смеси, находящаяся перед фронтом пламени, мгновенно самовоспламеняется, в результате скорость распространения пламени возрастает до 1500 - 2000 м/с, а давление нарастает не плавно, а резкими скачками. Этот резкий перепад давления создает ударную детонационную волну, распространяющуюся со сверхзвуковой скоростью. Удар такой волны о стенки цилиндра и ее многократное отражение от них приводит к вибрации и вызывает характерный звонкий металлический стук высоких тонов. При детонационном сгорании двигатель перегревается, появляются повышенные износы цилиндро-поршневой группы, увеличивается дымность отработавших газов. При длительной работе на режиме интенсивной детонации возможны и аварийные последствия. Особенно опасна детонация в авиационных двигателях. На характер сгорания бензина и вероятность возникновения детонации в карбюраторных двигателях оказывают влияние как конструктивные особенности двигателя (степень сжатия, диаметр цилиндра, форма камеры сгорания, расположение свечей, материал, из которого изготовлены поршни, цилиндры и головка блока цилиндра, число оборотов коленчатого вала, угол опережения зажигания, коэффициент избытка и влажность воздуха, нагарообразование, тепловой режим в блоке цилиндров и др.), так и качество применяемого топлива. [c.123]
На эффективность процесса сгорания существенно влияют состав смеси (коэффициент избытка воздуха а), нагрузка двигателя, степень сжатия, частота вращения коленчатого вала, а также форма камеры сгорания. Минимальные значения ф , 01, 02 и максимальные Рг достигаются при а= 0,85 0,9,. при котором наблюдаются наибольшие скорости распространения пламени и интенсивность тепловыделения, а следовательно, и наибольшая мощность, развиваемая двигателем. Такой состав смеси называется мощностным. При а> >,0,9 возрастает Ог, 02 изменяется незначительно, но максимальное давление Рг снижается в связи с меньшим энерговыделением при сгорании смеси. Соответственно уменьшается значение с1Р1с1(р. [c.150]
Впервые она была предложена в 1865 г. для повышения выхода осветительного керосина, в то время являвшегося самым ценным нефтепродуктом. После появления осветительного газа и электричества попытки осуществить крекинг нефти снова прекратились. Только с развитием автомобильной промышленности, вызвавшим непрерывный рост потребления бензина, началось быстрое развитие крекинг-процесса. При создании новых конструкций автомобилей со все более мощными двигателями степень сжатия горючего непрерывно увеличивалась и требования к антидетонационным свойствам бензинов все более повышались. Этим требованиям удовлетворял крекинг-бензин. Начиная с 1936 г., стали применять также термический и каталитический крекинг газообразных низкомолекулярных углеводородов для получения непредельных углеводородов, используемых в качестве исходного сырья при получении так называемых полимеризационных бензинов и изопарафинов. В дальнейше . крекинг стали применять также для получения низковязках масел и снижения температуры их застывания. [c.140]
Общепринятой является прямая зависимость между количеством гидроперекисей в топливе и интенсивностью последующего детонационного сгорания. Известно, что при переходе с нормального режима работы двигателя (степень сжатия е = 7,0) на детонационный (при 8=9,9) до момента появления горячего пламени количество перекисей увеличивается в три раза [25]. [c.26]
При этом и возникает детонационный шум . Монщость двигателя в результате детонации сильно снижается. К тому же детонация тем сильнее, чем больше у двигателя степень сжатия (отношение начального объема смеси к конечному при ходе поршня). Но, с другой стороны, с увеличением степени сжатия возрастает мощность двигателя. Известно, что с двадцатых годов до настоящего времени мощность бензиновых двигателей значительно увеличилась. Это достигнуто за счет повышения степени сжатия смеси от 4.1 до 9 1 в результате улучшения детонационной стойкости бензинов. [c.39]
Иногда работа карбюраторного двигателя сопровождается громким стуком и другими неполадками, называемыми детонацией. Детонация приводит к перегреву двигателя, снижению его мощности, разрушению деталей шатунно-поршневой группы и т. д. Причиной детонации могут быть различные факторы, связанные с химическим составом топлива, конструктивными особенностями двигателя, степенью сжатия и т. д. Из жидких углеводородов, входящих в состав бензинов, наибольшей способностью вызывать детонацию обладают парафиновые углеводороды нормального строения. Парафиновые углеводороды изостроения и ароматические углеводороды, наоборот, характеризуются наивысшей антидетонационной способностью, нафтены и олефины занимают промежуточное положение. [c.101]
При конструировании принимают следующие величины ход поршня 5 длину поршня 1 относительный вес поршня (вес на 1 см площади поршня) отношение давлений в цилиндре компрессора относительную величину мертвого пространства параметры воздуха на всасывании коэффициент избытка воздуха в двигателе теплоемкость топлива полезный ход (после определения размеров, формы и размещения отверстий для всасывания и выхлопа в цилиндре двигателя) степень сжатия в двигателе (отношение объемов) параметры воздуха в начале сжатия в буферной полости и отношение площади поршня буферной полости. к площади поршня компрессора. [c.307]
Наиболее мощные дизельные двигатели характеризуются большими габаритами и низким числом-оборотов (до [00 об мин). Маломощные двигатели нйиболее высоко- оборотные (до 3000 об/мин). В современных дизельных двигателях степень сжатия находится в пределах 12—20. Средний расход топлива составляет 160—200 гКл.сл). Дизельные Двигатели отличаются высоким моторесурсом. [c.24]
Степень сжатия, открытие дросселя, угол опережения зажигания, число оборотов, наддув и т. п. являются параметрами, посредством которых можно воздействовать на появление детонации в двигателе. Следовательно, ими можно пользоваться в качестве параметров для оценки топлива. Используя один из параметров двигателя — степень сжатия, Рикардо впервые произвел оценку склонности различных топлив к детонации на двигателях собственной копструкцин Е-35 и Е-5 с переменной степенью сжатия. [c.606]
Коренные и шатунные подшипники должны передавать силовые импульсы от сгорающего в камерах сгорания топлива на коленчатый вал, вращающийся со скоростью 500—4000 об1мин и должны при этом противостоять высоким механическим напряжениям в деталях двигателя. Если учесть, что небольшое количество подшипников должно испытывать от 3000 до 10 ООО толчков в 1 мин. и что полная мощность, развиваемая двигателями в 60—200 л. с. и более, должна быть передана этими немногими квадратными сантиметрами рабочей плошади подшипников, становятся очевидными тяжелые условия их работы. Число оборотов двигателей, степень сжатия и мощность на валу сильно возросли за последнее десятилетие, в то время как размеры и вес двигателей, так же как и подшипников, мало или вовсе не увеличились.. В результате нагрузка и напряжение на подшипниках современных двигателей ограничены, поэтому подшипники должны устанавливаться с большой точностью, чтобы они работали исиравно-и без преждевременного износа. Значение вопросов конструкции,, установки и работы подшипников освещены в обширной литературе, небольшая часть которой приведена в конце главы [1 — 14]. [c.398]
При конвертации дизеля RABA MAN, D2156HM6U в газовый реализована схема организации рабочего процесса с внешним смесеобразованием, обеспечиваемым эжекционной системой подачи газа в газовоздушный смеситель, смешанным регулированием при использовании рычажно-механического управления дроссельными заслонками смесителя, бесконтактно-транзисторной (БСЗ) системой зажигания, имеющей катушку зажигания и датчик-распределитель искрового разряда по цилиндрам двигателя. Степень сжатия понижается до Е =13. [c.57]
Тип двигателя Степень сжатия Г азосме-ситель-ное устройство Сжиженные газы Сжатый газ [c.121]
chem21.info
Что такое степень сжатия? - Автомобильный журнал «Турбо»
Скажете ли вы на память, какая степень сжатия у двигателя вашего авто? Допустим, 9,8; не слишком ли много? А может, наоборот, – мало?
Непростой вопрос, ведь конструкторы моторов с искровым зажиганием [Мы обычно говорим бензиновый, хотя знаем, что автомобильные двигатели прекрасно работают и на газе. А также на спирте – метиловом или этиловом… Так что лучше выражаться: с искровым зажиганием. Или Отто (по имени создателя такой конструкции Николауса Отто) – в отличие от Дизеля. Хоть и странновато звучит, но точнее.] всячески стремятся повысить степень сжатия. А создатели двигателей с воспламенением от сжатия наоборот – стараются ее понизить…
Своеобразная характеристика д.в.с., вокруг которой бытует немало недоразумений. Причем одна из ключевых – от степени сжатия зависит многое. Хотя, на первый взгляд, нет ничего проще: отношение полного объема цилиндра к объему камеры сгорания. Или иначе: частное от деления объема надпоршневого пространства в н.м.т. на него же – в.м.т. То есть, геометрическая степень сжатия показывает, во сколько раз сжимается топливовоздушная смесь (воздух в цилиндрах дизеля) при движении поршня от н.м.т. к в.м.т. Геометрическая; а в жизни, естественно, получается не всегда так, как в геометрии…
Объемы 4-тактного поршневого двигателя: Vk – объем камеры сгорания; Vp – рабочий объем цилиндра; Vo – полный объем цилиндра; ВМТ – верхняя мертвая точка; НМТ – нижняя мертвая точка.Вперед и выше
На заре автомобилизма степень сжатия двигателей Отто (а собственно, других 100 лет назад и не знали) делали невысокой – 4-5. Чтобы при работе на низкооктановом бензине (гнали как умели) не возникала детонация [Кто не слышал детонационные звуки в цилиндрах? Как говорится, «пальцы стучат». При слишком высокой (по качеству горючего) степени сжатия, горение топливовоздушной смеси после ее воспламенения от искры нарушается. Оно приобретает взрывной характер, в камере сгорания возникают ударные волны, от которых мотору не поздоровится.]. Скажем, при рабочем объеме цилиндра в 400 «кубиков» объем камеры сгорания – 100 миллилитров. То есть, геометрическая степень сжатия у нашего двигателя
e = (400+100)/100 = 5.
Если же объем камеры сгорания уменьшить – при прочих равных – до 40 см3 (технически несложно), то степень сжатия повысится до
e = (400+40)/40 = 11.
Замечательно – и что? А то, что термический к.п.д. двигателя увеличится почти в 1,3 раза. И если 6-цилиндровый 2,4-литровый мотор развивает со степенью сжатия 5 мощность в 100 л.с., то со степенью сжатия 11 она повысится до без малого 130. Причем при неизменном расходе горючего! Иными словами, расход топлива в расчете на 1 л.с. в час сокращается на 22,7%.
Короткоходный 3,8-литровый двигатель Porsche 911 со степенью сжатия 11,8! Объем камеры сгорания настолько мал (59 см3), что трудно устроить углубления в днище поршня под головки клапановПоразительный результат – самыми простыми средствами. Не слишком ли хорошо, чтобы быть правдой? Никакой мистики: чем выше степень сжатия, тем ниже температура отработанных газов, идущих на выхлоп. При e = 11 мы попросту заметно меньше обогреваем атмосферу, чем при степени 5; вот и все.
Азы теплотехники
Автомобильные двигатели – разновидность тепловых машин, которые подчиняются законам термодинамики. Еще в 1-й половине XIX в. замечательный французский физик и инженер Сади Карно заложил основы теории тепловых машин – в том числе и д.в.с. Так вот, по Карно, к.п.д. двигателя внутреннего сгорания тем выше, чем больше разница между температурой газов (рабочего тела) к концу горения топливовоздушной смеси – и их температурой на выпуске. А разница температур зависит от e – вернее, от степени расширения рабочих газов в цилиндрах.
Sadi Carnot (1796-1832)Да, тут есть нюанс: по Карно, для термического к.п.д. важна не степень сжатия, а именно степень расширения. Чем сильнее расширяются горячие газы на рабочем ходу, тем ниже падает их температура – естественно. Просто в обычных конструкциях д.в.с. степень расширения геометрически совпадает со степенью сжатия; вот мы и привыкли говорить. Тем более что детонация зависит как раз от e – то есть от компрессии. Чем сильнее сжимается топливовоздушная смесь в цилиндрах двигателя Отто [Именно Отто, дизели детонации не знают. Почему – отдельный разговор.], чем выше давление и температура к моменту искрообразования, тем вероятнее возникновение ударных волн в камере сгорания.
Взрывное горение, детонация. Она-то и ограничивает степень сжатия, но степень расширения рабочих газов здесь ни при чем. Вот если каким-то образом отделить одну степень от другой – чтобы при умеренной компрессии добиться сильного расширения рабочих газов…
Пятитактный цикл
Pourquoi бы и не pas; ведь уже полвека с лишним известен так называемый 5-тактный цикл Atkinson’а/Miller’а. Он как раз и разводит степень сжатия и степень расширения по разные стороны.
Представьте, что у вашего 1,5-литрового 16-клапанника ВАЗ-2112 впуск заканчивается не на 36° после н.м.т. (по углу поворота коленчатого вала), а очень поздно – на 81°. То есть, при 3 тыс. оборотов поршень на своем ходе к в.м.т. вытесняет часть топливовоздушной смеси через открытые клапаны обратно во впускной коллектор (не беспокойтесь, она там не пропадет). Иными словами, такт сжатия начинается только где-то на 75° после н.м.т., а до того имеет место своеобразный такт обратного вытеснения смеси.
Тактов теперь не 4, а 5: впуск, обратное вытеснение, сжатие, рабочий ход, выпуск. На первый взгляд, идиотская схема: зачем гонять смесь туда-обратно? На первый взгляд и Солнце обращается вокруг Земли… Следите за моими руками: допустим, обратно вытесняется 20% топливовоздушной смеси, уже попавшей в цилиндр, и сжимается только 80%. И пусть геометрическая e равна 13 – исключительно высокая для Отто. Однако реальная степень сжатия, компрессия гораздо ниже: при 20-процентном обратном вытеснении смеси она равна 10,6. Что и требовалось доказать.
У конструкции с реальной степенью сжатия 10,6 (вполне допустимо для товарного бензина) степень расширения рабочих газов – 13. Термический к.п.д. двигателя по факту в 1,0518 раза выше, чем по его реальной степени сжатия; не так много, но моторостроители годами бьются ради 5-процентной экономии горючего. Двигатели пассажирских автомобилей уже вовсю работают по 5-тактному циклу. Возьмите 1,5-литровую тойотовскую «четверку» 1NZ-FXE (для Prius) или фордовскую 2,26-литровую (для Escape hybrid). Вроде блестящее решение, однако у медали есть и оборотная сторона.
Тойотовская «четверка» 1NZ-FXE: тоже 5-тактный цикл. На глаз заметно, насколько профиль впускного кулачка шире выпускного: крайне позднее закрытие впускных клапановГеометрическая e (степень расширения рабочих газов) у 1NZ-FXE – 13, реальная степень сжатия – около 10,5. Печаль в том, что из-за обратного вытеснения смеси 1,5-литровый мотор по крутящему моменту и мощности опускается примерно до 1,2-литрового; выигрываем в термическом к.п.д. – ценой потери реального литража. Так что с одной стороны – с другой стороны.
Мало того, двигатель с поздним закрытием впускных клапанов совсем не тянет «на низах». Поэтому 5-тактный цикл годится в «гибридных» силовых агрегатах, где тяговый электромотор как раз и принимает на себя нагрузку при самых низких оборотах. А потом подхватывает д.в.с.; так или иначе, 5-тактный цикл позволяет повысить степень расширения рабочих газов и термический к.п.д. двигателя.
У двигателя Honda, работающего по 5-тактному циклу, часть топливовоздушной смеси вытесняется поршнем обратно во впускные каналы 1 – впуск; 2 – обратный выброс топливовоздушной смеси; 3 – пятый такт: сжатие.А вот наддув – наоборот – вынуждает понижать степень сжатия. При подаче топливовоздушной смеси под избыточным давлением, реальная компрессия в цилиндрах оказывается слишком высокой – даже при умеренной геометрической e. Приходится отступать; отсюда снижение термического к.п.д. и повышенный расход бензина у двигателей с наддувом, если не применять спецгорючее.
На спирту
Чем больше октановое число бензина, тем выше допустимая (по условиям детонации) степень сжатия, тем эффективнее работает мотор. Так ведь не бензином единым… Исключительно высокую e допускает в роли горючего газ – нефтяной или природный. Без наддува 13-14 не вопрос, с компрессором – 10-11. Водород тоже отличается стойкостью против детонации. И еще спирт – метиловый или этиловый: потрясающие антидетонационные качества. Вдобавок у спирта высокая теплота испарения; испаряясь, он сильно охлаждает топливовоздушную смесь (а заодно и поверхность камеры сгорания). Холодная смесь плотнее, и в цилиндр ее – по весу – входит заметно больше; реальный коэффициент наполнения оказывается выше. Крутящий момент, мощность. Так и говорят: «компрессорный» эффект спиртового горючего.
Мощность, термический к.п.д. – все удовольствия сразу. Кроме того, этиловый (питьевой!) спирт еще и экологичен; что еще пожелать? Правда, расход спиртового топлива в литрах оказывается гораздо выше, чем бензина, поскольку теплотворная способность метанола и этанола невысока. Как водка и «сушняк»; равнять литр на литр тут бессмысленно. А вот в энергетическом эквиваленте спирт заметно эффективнее бензина – благодаря высокой степени сжатия (расширения). Так что в перспективе – спиртовое топливо, чистое или в смеси с бензином. Скажем, E85: на 85% этанол и на 15% бензин. И лет через 25 нефть потеряет свое значение в мире…
Истина в мере
В перспективе, а пока повысить степень сжатия ВАЗовского 16-клапанника с 10,5 до 11,5 – на 92-м бензине от местной АЗС – ой как непросто. Скажем, применить впрыск бензина непосредственно в камеры сгорания – вместо впускных каналов. Испарение бензина не на впуске, а в цилиндрах – тот же самый «компрессорный» эффект. Или организовать 2-искровое зажигание – с 2 свечами на цилиндр; кое-что дает. А также поставить выпускные клапаны с внутренним (натриевым) охлаждением; раскаленные тарелки провоцируют детонацию. Очистить поверхность камеры сгорания от нагара – и отполировать ее.
Влияет конфигурация камеры сгорания – и скорость вихревого движения топливовоздушной смеси. Есть много способов борьбы с детонацией – хороших и разных.
А до какого уровня есть смысл поднимать e двигателя Отто? Тут вот что: термический к.п.д. нарастает с повышением степени сжатия (расширения!), но не линейно. То есть, рост к.п.д. замедляется: если от 5 до 10 он повышается в 1,265 раза, то от 10 до 20 – только в 1,157 раза. Зато быстро накапливаются побочные заморочки, которых лучше избегать. Поэтому степень сжатия 13-14 – разумный компромисс, к которому и следует стремиться. Только оставьте окончательное решение за инженерами-конструкторами; они знают лучше.
turbonsk.ru
03.1428 Обновлены наличие цены на контрактные агрегаты Обновлены наличие цены на контрактные агрегаты 06.1324 На сайте выложено уникальное видео падения метеорита в озеро Чебаркуль. Премьерный показ уникального видео падения метеорита в озеро Чебаркуль. 04.1309 Устройство АКПП На сайте выложены схемы внутреннего устройства АКПП Toyota 03.1309 Выложен новый прайс на двигатели автомобилей европейского производства 03.1303 Обновлен лист цен Обновлен прайс-лист 04.03.2013 |
Степень сжатия - отношение полного объёма цилиндра двигателя внутреннего сгорания к объёму камеры сгорания. Степень сжатия дизелей 12-20, карбюраторных двигателей 5-10. Повышение степени сжатия (до определённого предела) увеличивает кпд двигателя. ЭффективностьТермическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обеднённой смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается. Высокая степень сжатия увеличивает мощность. Приведённые данные предполагают, что увеличение степени сжатия не создаёт проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идёт вверх, то при каждом увеличении прирост мощности будет всё меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%). Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путём установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определённых путём математических расчётов из фиксированного объёма), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объёмная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объёмной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надёжность двигателя. Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надёжность двигателя. Это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объёмной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель. Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объём цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путём уменьшения объёма камеры сгорания или путём увеличения размера выпуклости поршня (это наиболее распространённые методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объём — рабочий объём двигателя не изменялся. Но изменили общий объём цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объёмную эффективность двигателя.
ПримерВоспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объём (нерабочий объём) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объём, создаваемый поршнем при одном такте плюс объём камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объём над поршнем, находящимся в ВМТ должен составлять половину от общего объёма цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объёма плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объёма цилиндра). Даже при 3.278 см3 во всём цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объём поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания. Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смеси в цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце [Четырёхтактный двигатель|такта впуска]] и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объём камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объём цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объём смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объёмная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.
ОбобщениеМногие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объёмную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объёме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей. Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования, как правило, работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1, мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.
Для общего развития |
=============================== ===============================
===============================
Наши посетители: неактивные точки - прошлые визиты. активные точки - сейчас на сайте. =============================
Наши цены
============================= ============================= |
avto74.com