1. Принципы работы автогенератора. Принцип работы автогенератора
1. Принципы работы автогенератора
Введение
Для передачи сигналов электросвязи необходимо иметь генератор электрических колебаний высокой частоты- устройство, преобразующее энергию источника постоянного напряжения в энергию колебаний. Существуют генераторы с внешним возбуждением, в которых незатухающие колебания получают от внешнего источника, и генераторы с самовозбуждением (автогенераторы), для которых внешний источник не нужен. Колебания, получаемые в автогенераторах, называют автоколебаниями. Эти колебания могут быть гармоническими (синусоидальными) или релаксационными (несинусоидальными). Автогенераторы применяют не только в передающей, но и в приемной аппаратуре: в преобразователях частоты, демодуляторах и т.д. Независимо от назначения автогенераторов, они должны удовлетворять следующим общим требованиям: иметь достаточно высокое постоянство (стабильность) частоты колебаний и выходной мощности, а также возможно близкую с синусоидальной форму выходного напряжения. Для выполнения этих требований в схемах автогенераторов применяют ряд специальных мер.
1.1 Структурная схема автогенератора
В простейшем случае высокочастотные колебания можно получать с помощью обычного колебательного контура. Предположим, что контур получил от постоянного источника некоторый первоначальный запас энергии. При этом в нем возникают свободные (собственные) затухающие колебания. Чтобы сделать их незатухающими, необходимо все время пополнять запас энергии в контуре, поскольку часть её процессе колебаний необратимо преобразовать в тепло.
Реализовать источник энергии, необходимый для получения незатухающих колебаний в контуре, можно с помощью устройства рис. №1
Рис.№1. Структурная схема LC-автогенератора
Схема содержит усилительный элемент 1 (электронную лампу или транзистор), нагрузкой которого является колебательная система 2, например, колебательный контур с сосредоточенными параметрами. Часть напряжения с контура через цепь обратной связи 3 поступает на вход усилительного элемента. Устройство получает питание от источника напряжения 4.
Напряжение свободных колебаний, поступающих через элемент 3 на вход элемента 1, усиливается им и вновь подается на колебательную систему. Это напряжение должно быть после усиления достаточным для компенсации потерь в контуре. Кроме этого, цепь обратной связи должна вызывать такой сдвиг фазы колебаний, поступающих на вход элемента 1, при котором контур будет своевременно, т.е. в такт со свободными колебаниями в нем, получать энергию. При одновременном выполнении указанных условий данное устройство создает (генерирует) незатухающие колебания, т.е. представляет собой автогенератор.
1.2 Процесс самовозбуждения
В момент включения источника питания во всех цепях генератора проходят кратковременные импульсы токов. Так как одиночный импульс образует сплошной спектр колебаний, частота одного из них обязательно совпадает с собственной частотой колебательной системы генератора. Это колебание возбудит колебательную систему, и по цепи обратной связи на управляющий электрод усилительного элемента поступит напряжение данной частоты. Под действием этого напряжения выходной ток усилительного элемента станет изменяться с той же частотой. Переменная составляющая тока, проходя через колебательную систему, будет усиливать возникшие в ней колебания. Амплитуда колебаний будет нарастать до тех пор, пока энергия, поступающая в колебательную систему, станет равной энергии потерь, после чего схема переходит в стационарный режим, характеризующийся постоянной или стационарной амплитудой колебаний.
Если контуру сообщить некоторый первоначальный запас энергии, в нем возникают затухающие колебания. При подключении к контуру нагрузки, имеющий активное сопротивление, скорость затухания колебаний увеличивается, что свидетельствует об увеличении потерь в нем. Следовательно, можно считать, что если энергия потребляется от контура, в него как бы вноситься положительное активное сопротивление R+, увеличивающее сопротивление потерь контура Rп. Если же энергия поступает в контур, это эквивалентно уменьшению потерь в контуре, т.е. как бы внесению в него отрицательного активного сопротивления R-.
В колебательную систему автогенератора энергия поступает от усилительного элемента (отрицательное сопротивление) и одновременно потребляется цепью обратной связи и нагрузкой (положительное сопротивление). Следовательно, в колебательную систему вноситься некоторое эквивалентное сопротивление Rэк=R+ - R-. Если же знак этого сопротивления положительный (Rэк>0), потери в колебательной системе увеличиваются и колебания быстро затухают; если знак отрицательный (Rэк<0) и кроме этого < Rп, происходит частичная компенсация потерь и скорость затухания колебаний уменьшается. При Rэк<0 и > Rп энергия, поступающая в колебательную систему, больше энергии потерь, что приводит к непрерывному росту амплитуды колебаний. В стационарном режиме работы автогенератора отрицательное вносимое сопротивление становиться равным (по модулю) сопротивлению потерь колебательной системы. Это означает, что поступающая в неё энергия полностью компенсирует потери, вследствие чего амплитуда автоколебаний становится постоянной.
studfiles.net
Устройство и принцип действия генераторов гармонических колебаний
Принцип действия. Функциональная схема автогенератора состоит из колебательной системы КС (обычно контура), в которой возбуждаются требуемые незатухающие колебания; источника электрической энергии ИЭ (источника питания), благодаря которому в контуре поддерживаются незатухающие колебания; усилительного элемента УЭ (транзистора или лампы), с помощью которого регулируется подача энергии от источника в контур; элемента обратной связи ЭОС, который осуществляет подачу возбуждающего переменного напряжения из выходной цепи во входную.
По способу осуществления обратной связи различают автогенераторы с
- индуктивной (трансформаторной или автотрансформаторной)
- емкостной ОС.
Применяют также схемы двухконтурных генераторов с электронной связью и обратной связью через междуэлектродные емкости.Схемы автогенераторов с индуктивной (трансформаторной) обратной связью. При включении источников питания в коллекторной (анодной) цепи транзистора (лампы) возникает ток коллектора, который заряжает конденсатор колебательного контура. После заряда конденсатор разряжается на катушку, В результате в контуре LK CK возникают свободные колебания с частотой fо = 1/(2п\/ LKCK), индуктирующие в катушке связи Lc переменное напряжение той же частоты, с которой происходят колебания в контуре. Это напряжение вызывает пульсацию тока коллектора (анода). Переменная составляющая тока восполняет потери энергии в контуре, создавая на нем усиленное тран« зистором переменное напряжение.
Процесс возникновения колебаний в генераторе. В начальный момент (при включении источника питания) свободные колебания в контуре имеют малую амплитуду, поэтому индуктированное этими колебаниями напряжение возбуждения на базе транзистора Uб или сетке лампы Uc невелико. После усиления сигнала усилительным элементом ток в контуре iK(i*) возрастает, в результате чего увеличивается амплитуда напряжения возбуждения U6(Ue), а следовательно, и амплитуда тока в контуре. В установившемся режиме рост тока в контуре ограничивается сопротивлением потерь контура а также затуханием, вносимым в контур за счет прохождения тока по обмотке ОС. Незатухающие колебания в контуре автогенератора установятся лишь при выполнении фазового (баланс фаз) и амплитудного (баланс амплитуд) условий самовозбуждения генератора. Фазовое условие сводится к тому, что в схеме генератора должна быть установлена положительная ОС между выходной и входной цепями транзистора (лампы). В этом режиме обеспечивается восполнение потерь энергии в контуре. Фазовое условие самовозбуждения выполняется, если суммарный сдвиг фаз усилительной цепи К и цепи обратной связи 0 составляет 2лп, где-n=0, 1, 2... Фазовое условие удовлетворяется, если переменное напряжение на входе усилительного элемента изменяется в про-тивофазе с переменным напряжением на« контуре выходной цепи. Обычно резонансное сопротивление параллельного контура име« ет чисто активный характер. При воздействии»на базу (сетку) сигнала с частотой, равной частоте резонанса, напряжение на коллекторе (аноде) будет сдвинуто по фазе на 180° (как в обычном резиг сторном каскаде усиления). Напряжение, индуктируемое в обмотке обратной связи Lc за счет тока Iк, проходящего через контурную катушку LK, равно Uр=±jw0MIк, где М — коэффициент взаимоиндукции между катушками. Правильная фазировка колебаний достигается соответствующим включением в схему концов катушки ОС, при котором U$ = — jwоМIк. В этом случае общий фазовый сдвиг в схеме фк+фр =0, т. е. установится положительная ОС.
Амплитудное условие самовозбуждения схемы состоит в том, что для возникновения автоколебательного режима затухание сигнала, вносимое цепью ОС, должно компенсироваться усилителем. Глубина положительной ОС должна быть такой, чтобы полностью восполнялись потери энергии в контуре. При положительной ОС коэффициент усиления k$ =K/(1 — pK). Коэффициент передачи цепи ОС, показывающий, какая часть переменного напряжения контура подается на базу (сетку) усилительного элемента в установившемся режиме работы генератора. Учитывая, что усилитель с положительной ОС переходит в режим генерации при условии k$ >1, коэффициент передачи цепи ОС, при котором обеспечивается самовозбуждение, р>1/Kуст. Для транзисторной схемы коэффициент усиления на резонансной частоте в установившемся режиме где S, Ri, м — статические параметры лампы. При удовлетворении условий баланса фаз и амплитуд в схеме автогенератора возможно установление колебательного режима.
Режимы возбуждения. Генерация колебаний зависит от выбора параметров контура и усилительного элемента, а также от начального режима работы. При выборе исходной рабочей точки на прямолинейной части характеристики получаем мягкий режим самовозбуждения, при котором достаточно небольшого изменения тока, чтобы развивались колебания. Если рабочая точка выбрана в области нижнего изгиба характеристик (при большом напряжении смещения), то крутизна может оказаться недостаточной для обеспечения генерации при выбранном значении коэффициента взаимоиндукции М. В этом режиме, называемом режимом жесткого самовозбуждения, возбуждение генератора возможно лишь при большой амплитуде напряжения возбуждения. В транзисторной схеме автогенератора для получения мягкого режима самовозбуждения ,на базу транзистора относительно эмиттера подают- начальное напряжение смещения EСм= — ER2 с делителя R1R2. По мере нарасташш амплитуды колебаний начинает преобладать падение напряжения на резисторе Ra, поэтому в устанавившемся режиме смещение на базе станет положительным: EСм=IэRэ — ЕВ2. При этом генератор переходит в более экономичный жесткий колебательный режим с малыми углами отсечки коллекторного тока.
В ламповой схеме генератора мягкое самовозбуждение с последующим переходом от мягкого режима к жесткому осуществляется автоматически с помощью цепи Rc Cc, включаемой в цепь сетки. При этом лампа Л должна работать в режиме сеточных токов. В начальный момент смещение на сетке отсутствует, а крутизна велика. С ростом напряжения возбуждения появля-ется сеточный ток, который обеспечивает заданное смещение
Электропитание автогенераторов. Схемы автогенераторов являются схемами с последовательным питанием. поскольку транзистор (лампа) и колебательный контур LK CK по отношению к источнику £к или Е& включены последовательно и через них проходит постоянная составляющая коллекторного (анод* ного) тока. В этих схемах приближение руки к контуру LK CK (например, при настройке) влияет на его емкость, а следовательно, и частоту. Кроме того, в ламповой схеме контур относительно корпуса находится под сравнительно высоким напряжением анодного источника, что неудобно при обслуживании. Однако схема с последова-тельным питанием содержит меньше блокировочных элементов (конденсаторов, дросселей).
В схемах автогенераторов с параллельным питанием транзистор (лампа), контур LKCK и источник питания Ек(Еа) включены параллельно. Принцип действия генератора, собранного по этой схеме, в основном аналогичен принципу действия генератора с последовательным питанием. Разделение переменной и постоянной составляющих коллекторного (анодного) тока достигается заградительными дросселями L3 и конденсаторами Ср.. Переменная составляющая коллекторного (анодного) тока, для которой дроссель представляет большое, а конденсатор малое сопротивление, в основном проходит через транзистор (лампу) и контур, восполняя в нем потери энергии. Если бы в схеме не было дросселя L3, переменная составляющая тока, замыкаясь через источник, не поступала бы в контур и возникновение колебаний было бы невозможно. При отсутствии в схеме конденсатора Ср постоянный ток от источника ЕК(Е&), замыкаясь через дроссель L3 и катушку LK, мог бы заметно возрасти и вызвать перегрузку источника и недопустимый нагрев катушек L3 и LK.
audioakustika.ru
Устройство и принцип работы автомобильного генератора постоянного тока в составе велогенератора
Это завершающая статья о том, как из велосипеда и генератора от автомобиля сделать мощный электрический генератор своими руками. Предыдущая часть содержит инструкцию по эксплуатации велогенератора.
Технически грамотные могут прочитать дальше как работает автомобильный генератор постоянного тока.
Автомобильный генератор не совсем отвечает своему названию, так как устройство автомобильного генератора уже подразумевает наличие своего собственного выпрямителя и регулирующей схемы. Добавив только лампочку и выключатель, можно сделать самую простую заряжающую систему. Собственно генерирующая часть генератора с помощью неподвижной обмотки (называется статором) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.
Принцип работы автомобильного генератора постоянного тока вкратце можно объяснить так. Через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.
Во время первого запуска велогенератора мощность не сможет вернуться в обмотку возбуждения и генерация не запустится, пока не потечёт ток через индикаторную лампу заряда, которая выполняет гораздо больше функций, чем кажется. Протекающий через индикаторную лампочку ток проходит также и через обмотку возбуждения, обеспечивая ей небольшой ток, необходимый для запуска производства электроэнергии. С ростом оборотов ток усиливается, и через три маленьких диода мощность подаётся на обмотку возбуждения — индикаторная лампочка гаснет, тем самым сигнализируя о начале производства электричества. Изменяя параметры индикаторной лампочки, можно контролировать обороты генератора, необходимые для его включения. При первом же запуске генератора железный сердечник обмотки возбуждения постоянно намагничивается. При высокой частоте вращения этого магнетизма может оказаться достаточно для начала генерации и в случае отсутствия аккумулятора выходное напряжение может мгновенно достигнуть сотен вольт. Поэтому никогда не нужно крутить генератор с отключенным аккумулятором. Также предупредите об этой особенности окружающих.
Для механической защиты педального генератора идеально подойдёт старый пожарный кожух, который можно купить на рынке или найти на доске бесплатных объявлений.
Чтобы велогенератор ни за что не зацепился при его перевозке в автомобиле — сначала открутите педали, нанеся немного медной смазки на резьбу.
Вместо ненадёжного регулятора высоты седла на вертикальном генераторе можно просверлить 8-милиметровое отверстие через верхнюю трубу рамы и серию таких же отверстий в подседельном штыре. Тогда для регулировки высоты седла можно использовать ось, сделанную из бесрезьбовой части длинного болта M8.
velofun.ru