Многоступенчатый ускоритель с бегущим переключением соленоидов. Электромагниты соленоиды линейные
Соленоиды, электромагниты, катушки И привода с функцией линейного Pull Push, защелки, фиксации, хранения, самостоятельно провести би стабильной, двойной фиксации, вращающиеся, качели, в форме открытой раме, C или D Форма рамы, окна рамы, цилиндрический цилиндра, трубчатые трубы, движимый источника постоянного или переменного тока, из Китая, китайский производитель фабрика. Также Соленоидные вентили, клапаны соленоидов.
соленоида, соленоиды, электромагниты, электро магнит, электро-магнит, катушка, привода, линейные соленоида, прижаться, толчок, соленоиды, двухтактный, пускатели, двунаправленной, Б. направленности, защелки, фиксации, хранения, самостоятельно провести самоуправления провести UNI стабильной, би-стабильные, би стабильной, двойной фиксации, двухместный, откидные соленоиды, открытая рама, с-рамы, с кадра, D рамы, окна, трубчатые, цилиндрические, трубка, трубчатая соленоиды, форма, округ Колумбия, соленоиды, блин соленоида, короткие инсульта, бросок, ток, затенение катушки, вихревые токи, погруженной нефти, воздушный пакет, М-линии, зажим пластины, вращающиеся, качели, фабрика, Китай, китайский производитель, миниатюрные, малые, большие, свинец, длинный жизни, высокая надежность, высокую скорость, заказное, переменного тока, переменного тока, округ Колумбия, округ Колумбия, низкий профиль, низкая стоимость, высокая сила, клапаны, соленоиды, ламинированные, ламинированный, laminations, экспериментальные соленоиды, вентили операторов, пилотные клапана, компьютерное периферийное оборудование, тест оборудование, медицинское оборудование, офисная техника, возвращение весны, силы, инсульт, военного, аэрокосмического, постоянные магниты, по часовой стрелке, противотанковые по часовой стрелке, высокое количество, небольшое количество, большое количество, по инициативе соленоида, насосов, Соленоидные питания, привод, мощность, привод, Водитель
xn--d1abjklddt.com
Основные Продукции: | Выключатель Высокого Напряжения Цепи, Высоковольтный Трансформатор, Распределительном Шкафу, Распределительный Щит, Переключение Передач |
ru.made-in-china.com
Линейный электромагнит короткого действия? : Физика
dxdy.ru
Соленоид - это... Что такое Соленоид?
Солено́ид — разновидность электромагнитов. Соленоид — это односложная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра. Характеризуется значительным соотношением длины намотки к диаметру оправки, что позволяет создать внутри катушки относительно равномерное магнитное поле.
Соленоид почти всегда снабжается внешним магнитопроводом. Внутренний магнитопровод может быть подвижным или отсутствовать вовсе.
Соленоид на постоянном токе
Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно
(СИ),
(СГС),
где — магнитная проницаемость вакуума, — число витков N на единицу длины l (линейная плотность витков), — ток в обмотке.
При протекании тока соленоид запасает энергию, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна
При изменении тока в соленоиде возникает ЭДС самоиндукции, значение которой
Индуктивность соленоида
Индуктивность соленоида выражается следующим образом:
(СИ), (СГС),где — объём соленоида, — длина проводника, намотаннного на соленоид, — длина соленоида, — диаметр витка.
Без использования магнитного материала плотность магнитного потока в пределах катушки является фактически постоянной и равна
где − магнитная проницаемость вакуума, − число витков, — сила тока и — длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения и число витков :
Отсюда следует формула для индуктивности соленоида
эквивалентная предыдущим двум формулам.Соленоид на переменном токе
При переменном токе соленоид создаёт переменное магнитное поле. Если соленоид используется как электромагнит, то на переменном токе величина силы притяжения изменяется. В случае якоря из магнитомягкого материала направление силы притяжения не изменяется. В случае магнитного якоря направление силы меняется. На переменном токе соленоид имеет комплексное сопротивление, активная составляющая которого определяется активным сопротивлением обмотки, а реактивная составляющая определяется индуктивностью обмотки.
Применение
Соленоиды постоянного тока чаще всего применяются как поступательный силовой электропривод. В отличие от обычных электромагнитов обеспечивает большой ход. Силовая характеристика зависит от строения магнитной системы (сердечника и корпуса) и может быть близка к линейной.
Соленоиды приводят в движение ножницы для отрезания билетов и чеков в кассовых аппаратах, язычки замков, клапаны в двигателях, гидравлических системах и проч. Один из самых известных примеров — «тяговое реле» автомобильного стартёра.
Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.
См. также
biograf.academic.ru
Многоступенчатый ускоритель с бегущим переключением соленоидов
Изобретение относится к области вооружения, в частности к электромагнитным пусковым установкам. Многоступенчатый линейный электромагнитный ускоритель соленоидного типа содержит ферромагнитный снаряд, цилиндрический немагнитный ствол с соосно закрепленными на нем тяговыми соленоидами, средства коммутации обмоток соленоидов по сигналам управляющего устройства и конденсаторные источники энергии. Соленоиды объединены в группы с раздельным питанием. При выключении соленоида в одной группе его энергия самоиндукции направляется в конденсаторный источник питания другой группы. Соленоиды питаются посредством продольных силовых шин. Последовательный выбор соленоида в группе происходит автоматически по сигналам дополнительных сенсорных обмоток. Техническим результатом является повышение эффективности, компактности и помехозащищенности конструкций. 2 н.п. ф-лы, 1 ил.
В технике электромагнитного ускорения тел известны линейные многоступенчатые ускорители [1-4]. Общими недостатками ускорителей этого типа являются низкая эффективность и большое количество цепей управления и раздельного силового питания, усложняющих конструкцию и снижающих надежность ускорителя.
Развитие конструкций ускорителей идет по нескольким направлениям.
В [5] предложена более совершенная схема коммутации на основе матрицы ключей с диагональным полумостовым включением нагрузки. Такое решение позволяет упростить конструкцию за счет снижения общего количества примененных ключей. Полумостовое включение обмоток ускорителя обеспечивает повышенную эффективность работы благодаря возврату части энергии самоиндукции обратно в источник питания (рекуперации энергии). Недостатком полумостовой схемы является необходимость применения как нижних, так и верхних запираемых ключей. Управление нижними ключами относительно потенциала общего провода (земли) реализуется достаточно просто, а для управлениями верхними ключами относительно плавающего потенциала требуются более сложные схемотехнические решения.
Повысить эффективность ускорителя возможно путем увеличения числа ступеней при одновременном снижении мощности каждой ступени. Однако при компактной реализации такого ускорителя возникают технические трудности, связанные с размещением большого количества импульсных силовых электрических цепей в непосредственной близости от чувствительных цепей датчиков и их усилителей. Это требует дополнительных затрат на обеспечение достаточной помехозащищенности и надежности, что в свою очередь, еще больше усложняет конструкцию ускорителя.
Прототипом заявляемого ускорителя является электромагнитный ускоритель метаемого тела [6] с частичной рекуперацией энергии самоиндукции обмоток соленоидов с помощью трансформаторной связи между ступенями. Недостатком такой конструкции является применение магнитопроводов сложной формы и рекуперация энергии самоиндукции только при относительно слабых магнитных полях, не вызывающих насыщения магнитопроводов.
Основной задачей предложенного решения является построение эффективного ускорителя с большим количеством ступеней, обеспечивающего частичную рекуперацию энергии самоиндукции при сильных магнитных полях, позволяющего разместить соленоиды на стволе без промежутков между ступенями, имеющего высокую надежность и помехозащищенность при простой компактной конструкции и малом количестве силовых электрических цепей.
Данная техническая задача решается следующим образом:
Многоступенчатый линейный электромагнитный ускоритель соленоидного типа содержит ферромагнитный снаряд, цилиндрический немагнитный ствол с соосно закрепленными на нем тяговыми соленоидами, средства коммутации обмоток соленоидов по сигналам управляющего устройства и конденсаторный источник энергии.
Изобретение имеет следующие новые признаки, отличающие его от известных:
1. Последовательно расположенные отдельные ускоряющие соленоиды с тиристорными ключами объединены шинами питания и шинами коммутации в группы с чередованием так, что соседние соленоиды входят в разные группы. При этом каждый соленоид включается своим тиристорным ключом, а группа соленоидов дополнительно включается и выключается через шину коммутации групповым транзисторным ключом по сигналам управляющего устройства. Включение тока в соленоиде происходит при одновременном открытии тиристорного ключа соленоида и транзисторного группового ключа, выключение тока в соленоиде происходит путем закрытия группового ключа, после чего ток в обмотке соленоида прекращается, что вызывает автоматическое запирание тиристорного ключа соленоида. Каждый соленоид, кроме основной обмотки, содержит дополнительную сенсорную обмотку. Дополнительная обмотка подключена к управляющему выводу тиристорного ключа следующей включающейся ступени. В момент выключения тока в основной обмотке соленоида ее ЭДС самоиндукции наводит в дополнительной обмотке импульс, открывающий тиристор следующей включающейся ступени ускорителя.
2. Каждая группа соленоидов питается от своего накопительного конденсатора посредством отдельной шины питания. В момент выключения тока в обмотке любого соленоида из одной группы его энергия самоиндукции направляется через цепь рекуперации в конденсатор другой группы и заряжает его, обеспечивая повторное использование части энергии самоиндукции соленоидов.
На чертеже показана схема соединения основных частей ускорителя с двумя поочередно включаемыми группами соленоидов.
Цифрами на схеме обозначены:
1 - ферромагнитный снаряд;
2 - ствол;
3 - тяговый соленоид с основной силовой обмоткой;
4 - дополнительная сенсорная обмотка тягового соленоида;
5 - тиристорный ключ;
6 - силовые шины питания;
7 - управляющее устройство;
8 - транзисторный групповой ключ;
9 - силовые шины коммутации;
10 - цепь рекуперации энергии;
11 - конденсаторный источник энергии.
Многоступенчатый электромагнитный ускоритель устроен следующим образом: ферромагнитный снаряд 1 движется внутри цилиндрического немагнитного ствола 2 и ускоряется за счет магнитного поля тяговых соленоидов 3, соосно закрепленных на стволе. Соленоиды имеют дополнительные сенсорные обмотки 4, сигнал которых открывает тиристорные ключи 5 соленоидов. Питание соленоидов осуществляется посредством шин питания 6. Тиристорный ключ первой ступени управляется непосредственно сигналом управляющего устройства 7, а тиристорные ключи всех остальных ступеней управляются дополнительными обмотками. Нечетные и четные соленоиды с индивидуальными тиристорными ключами объединены в две группы. Управляющее устройство формирует сигналы для поочередного открытия и закрытия транзисторных групповых ключей 8. Каждый такой ключ коммутирует свою группу соленоидов через шины коммутации 9. При этом шины коммутации через рекуперационные цепи 10 соединены с конденсаторными источниками энергии 11 противоположной группы. Силовые шины питания и шины коммутации проложены вдоль ускорителя, а индивидуальные тиристорные ключи установлены рядом с каждой ступенью и подключены к сенсорным обмоткам предыдущих ступеней. Такая компоновка позволяет при увеличении числа ступеней ускорителя сохранить компактность и малое количество соединительных и силовых цепей.
Описание работы ускорителя.
В начальный момент по сигналу управляющего устройства включается транзисторный ключ первой группы соленоидов и подается открывающий импульс на тиристорный ключ соленоида первой ступени. Ток от конденсатора первой группы течет через первый соленоид. Через заданное время, необходимое для ускорения снаряда первым соленоидом, управляющее устройство выключает первый групповой транзисторный ключ и включает второй групповой ключ. В момент выключения тока в соленоиде в его обмотке возникает импульс ЭДС самоиндукции, трансформируемый через дополнительную обмотку к управляющему выводу тиристора второй ступени. Тиристорный ключ второй ступени открывается, транзисторный ключ второй группы в этот момент уже открыт сигналом управляющего устройства и через соленоид второй ступени начинает проходить ток от второго накопительного конденсатора. Энергия самоиндукции отключенной первой ступени через цепь рекуперации энергии подзаряжает накопительный конденсатор второй группы.
Цепь рекуперации построена на основе варистора с напряжением пробоя, незначительно превышающим исходное напряжение конденсаторного источника энергии. Импульс ЭДС самоиндукции ограничивается цепью рекуперации на уровне суммы напряжения конденсаторного источника и напряжения пробоя варистора. Поддержание ЭДС самоиндукции на этом уровне, более чем в два раза превышающем исходное напряжение на конденсаторе, вызывает быстрый спад тока в отключенном соленоиде, предотвращая эффект торможения снаряда остаточным магнитным полем выключаемого соленоида.
Поочередная коммутация двух групп соленоидов обеспечивает паузы между включением ступеней в каждой группе, достаточные для выключения тиристорных ключей в ступенях одной группы за время работы ступеней другой группы. Это позволяет разместить соленоиды на стволе непосредственно друг за другом, без значительных промежутков.
Дальнейшая работа ускорителя контролируется управляющим устройством, поочередно включающим и выключающим групповые транзисторные ключи в необходимые моменты времени. При этом последовательный поочередный выбор рабочей ступени ускорителя происходит автоматически, за счет открытия тиристора каждой следующей ступени импульсом ЭДС самоиндукции предыдущей ступени в момент ее выключения.
Применение предложенных технических решений позволяет снизить количество транзисторных ключей до одного на каждую группу соленоидов, сохраняя возможность поочередного включения и выключения всех соленоидов многоступенчатого ускорителя, повысить общую эффективность преобразования электрической энергии конденсаторов в кинетическую энергию снаряда посредством повторного использования части энергии самоиндукции соленоидов. При этом обеспечивается компактная конструкция многоступенчатого ускорителя за счет питания и коммутации ступеней посредством продольных силовых шин.
Источники информации
1. Патент США №2235201. Electrcic gun. US cl.: 124/3 89/8 310/14.
2. Патент США №1241333. Gun. US cl.: 124/3 89/8 310/14.
3. Патент США №5125321. Apparatus for and method of operating a cylindrical pulsed induction mass launcher. МПК: F41B 6/00.
4. Патент России №2258885. Электромагнитный ускоритель с вращением снаряда. МПК: F41B 6/00.
5. Патент США №5763812. Compact personal rail gun. МПК: F41F 1/00.
6. Патент России №2267074. Электромагнитный ускоритель метаемого тела. МПК: F41В 6/00.
1. Многоступенчатый линейный электромагнитный ускоритель соленоидного типа, содержащий ферромагнитный снаряд, цилиндрический немагнитный ствол с соосно закрепленными на нем и последовательно расположенными тяговыми соленоидами, средства коммутации обмоток соленоидов по сигналам управляющего устройства и конденсаторный источник энергии, отличающийся тем, что отдельные ускоряющие соленоиды с тиристорными ключами объединены шинами питания и шинами коммутации в две группы так, что соленоиды с нечетными номерами образуют первую группу, соленоиды с четными номерами образуют вторую группу, группы соленоидов поочередно включаются и выключаются через шины коммутации групповыми транзисторными ключами по сигналам управляющего устройства, включение тока в соленоиде происходит при одновременном открытии тиристорного ключа соленоида и транзисторного группового ключа, выключение тока в соленоиде происходит путем закрытия группового ключа, после чего ток в обмотке соленоида прекращается, что вызывает автоматическое запирание тиристора соленоида, каждый соленоид содержит две обмотки: основную силовую обмотку и дополнительную сенсорную, дополнительная обмотка подключена к управляющему выводу тиристорного ключа следующей ступени, в момент выключения тока в основной обмотке соленоида, ее ЭДС самоиндукции наводит в дополнительной сенсорной обмотке импульс, включающий тиристор следующей ступени ускорителя.
2. Многоступенчатый линейный электромагнитный ускоритель соленоидного типа, содержащий ферромагнитный снаряд, цилиндрический немагнитный ствол с соосно закрепленными на нем тяговыми соленоидами, средства коммутации обмоток соленоидов по сигналам управляющего устройства и конденсаторный источник энергии, отличающийся тем, что последовательно расположенные отдельные ускоряющие соленоиды объединены в две группы так, что соленоиды с нечетными номерами образуют первую группу, соленоиды с четными номерами образуют вторую группу, каждая группа соленоидов питается от своего накопительного конденсатора, в момент выключения тока в силовой обмотке любого соленоида из одной группы, его энергия самоиндукции направляется через цепь рекуперации в конденсатор другой группы и заряжает его, обеспечивая повторное использование части энергии самоиндукции соленоидов.
www.findpatent.ru
Электромагнитный линейный двигатель
Использование: в электромагнитных исполнительных устройствах в качестве линейного электропривода. Устройство содержит электромагнит в виде корпуса, цилиндрического магнитопровода, обмотки возбуждения, якоря, а также ведомое звено, пружины сжатия, направляющие с упорами и стопорные элементы. Якорь выполнен в виде двух ферромагнитных полых полуцилиндров, размещенных концентрично с зазором в осевом отверстии магнитопровода с одной из его сторон, обращенных друг к другу поверхностями, полученными при осевом разрезе полого цилиндра вдоль образующей, и прикрепленных к магнитопроводу в средней его части внутренними торцами с помощью пружин сжатия. Ведомое звено выполнено в виде немагнитной пластины, свободно размещенной в осевом отверстии магнитопровода между указанными поверхностями образующих якорь полуцилиндров и имеющей на боковых гранях стопорные элементы, контактирующие с упорами направляющих. Технический результат - упрощение конструкции и снижение потребления энергии. 3 ил.
Изобретение относится к электромагнитным исполнительным устройствам и может быть использовано в качестве линейного электропривода.
Известен линейный электродвигатель, содержащий источник магнитного поля с полюсами, подвижный гофрированный упругий элемент с жестко закрепленной на нем обмоткой, размещенной между полюсами источника, а также ведомое звено, выполненное в виде стержня, установленного с натягом между гофрами упругого элемента /см. а.с. СССР N 1365275, кл. H 02 K 33/10, 41/03, 1988 г./. Недостатками известного устройства являются сложность конструкции и сравнительно низкое тяговое усилие. Известен также электромагнитный линейный двигатель, содержащий два электромагнита с катушками, якорями и магнитопроводами с фиксаторами, взаимодействующими с зубчатой рейкой, причем, один электромагнит расположен внутри другого, а якорь каждого электромагнита жестко связан с магнитопроводом другого /см. а.с. СССР N 957366, кл. H 02 K 41/03, 1982 г./. Недостатками данного двигателя являются сложность конструкции, значительные вес и габариты, а также значительное потребление электроэнергии вследствие необходимости перемещения в процессе работы всего электродвигателя вместе с корпусом. Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является электромагнитный линейный двигатель, содержащий электромагнит в виде корпуса со стопорными элементами, входящими в зацепление с упорами направляющей, цилиндрического магнитопровода, обмотки возбуждения и якоря, соединенного с помощью стержней и пружины сжатия с ограничителем перемещения и фланцем /см. а.с. СССР N 1483563, кл. H 02 K 41/03, 1987 г./, принятый за прототип. Недостатками устройства - прототипа являются сложность конструкции вследствие необходимости перемещения якоря за два такта с поочередной фиксацией фланца и корпуса, а также значительное потребление электроэнергии вследствие необходимости перемещения в процессе работы большой массы, а именно всего двигателя вместе с корпусом. Сущность изобретения заключается в создании электромагнитного линейного двигателя, в котором однонаправленное интенсивное движение ведомого звена создается за счет обеспечения жесткого контакта с помощью магнитных сил ведомого звена с якорем в рабочие полупериоды движения якоря и разрыва этого контакта в нерабочие полупериоды. Технический результат - упрощение конструкции и снижение потребления электроэнергии. Указанный технический результат при осуществлении изобретения достигается тем, что в известном электромагнитном линейном двигателе, содержащем электромагнит в виде корпуса, цилиндрического магнитопровода, обмотки возбуждения, якоря, а также ведомое звено, пружины сжатия, направляющие с упорами и стопорные элементы, особенность заключается в том, что якорь выполнен в виде двух электромагнитных полых полуцилиндров, размещенных концентрично с зазором в осевом отверстии магнитопровода с одной из его сторон, обращенных друг к другу поверхностями, полученными при осевом разрезе полого цилиндра вдоль образующей, и прикрепленных к магнитопроводу в средней его части внутренними торцами с помощью пружин сжатия, а ведомое звено выполнено в виде немагнитной пластины, свободно размещенной в осевом отверстии магнитопровода между вышеуказанными поверхностями образующих якорь полуцилиндров и имеющей на боковых гранях стопорные элементы, контактирующие с упорами направляющих. Сущность изобретения поясняется чертежами, где на фиг. 1 схематично изображен предлагаемый двигатель, продольный разрез /без направляющих/; на фиг. 2 - вид А на фиг. 1; на фиг. 3 - вид Б на фиг. 1. Электромагнитный линейный двигатель содержит электромагнит в виде корпуса 1, цилиндрического магнитопровода 2 с центральной перемычкой 3, обмотки возбуждения 4, якоря 5, 6, а также ведомое звено 7, пружины сжатия 8, 9, направляющие 10 с упорами 11 и подпружиненные стопорные элементы 12. При этом якорь 5, 6 выполнен в виде двух ферромагнитных полых полуцилиндров 5 и 6, размещенных концентрично с зазором 13 в осевом отверстии 14 магнитопровода 2 с одной из его сторон, обращенных друг к другу поверхностями, полученными при осевом разрезе полого цилиндра вдоль образующей, и прикрепленных к перемычке 3 магнитопровода 2 с помощью пружин сжатия 8, 9, а ведомое звено 7 выполнено в виде немагнитной пластины, свободно размещенной в осевом отверстии 14 магнитопровода 2 между вышеуказанными поверхностями образующих якорь полуцилиндров 5, 6 и имеющей на боковых гранях подпружиненные стопорные элементы 12, контактирующие с упорами 11 направляющих 10. Работа двигателя осуществляется следующим образом. При выключенной обмотке 4 пружины 8, 9 недеформированы, полуцилиндры 5, 6 якоря выступают наружу из отверстия 14 магнитопровода 2, и между полуцилиндрами 5, 6 и пластиной 7 ведомого звена имеется зазор, то есть контакт отсутствует. При включении обмотки 4, то есть подачи в нее импульса тока ферромагнитные полуцилиндры 5, 6 втягиваются внутрь осевого зазора 14 магнитопровода 2 и пружины 8, 9 сжимаются. Одновременно со втягиванием полуцилиндры 5, 6 намагничиваются и притягиваются друг к другу. Этим притяжением они обеспечивают магнитному потоку в зазоре магнитопровода минимальное магнитное сопротивление. При этом полуцилиндры 5, 6 своими поверхностями, полученными при сечении цилиндра, плотно зажимают пластину 7, поэтому при втягивании полуцилиндров 5, 6 внутрь электромагнита пластина 7 смещается вместе с полуцилиндрами вправо. При выключении тока полуцилиндры 5, 6 размагничиваются и под действием пружин 8, 9 выталкиваются из отверстия 14 электромагнита частично наружу, а пластина 7 - из-за того, что полуцилиндры при обратном ходе расходятся друг от друга и соответственно разжимают пластину - остается в смещенном вправо положении. Сжатие полуцилиндров 5, 6 при их намагничивании объясняется максимальной плотностью силовых линий магнитного поля вблизи продольной оси катушки электромагнита. В результате при подаче в катушку 4 последовательности импульсов тока любой полярности пластина 7 /ведомое звено/ получает направленное поступательное движение вправо. При этом за счет взаимодействия упоров 11 на направляющих 10 с подпружиненными стопорными элементами 12 на боковых гранях пластины 7 удается получать поступательное движение с необходимой дискретностью позиционирования, то есть движение в шаговом режиме /данный вопрос подробно описан в известных конструкциях/. На фиг. 1 во избежание загромождения направляющие 10 поступательного движения пластины 7 не показаны. Эти направляющие показаны на виде сверху /вид Б/ на пластину 7 на фиг. 3 снаружи электромагнита. Очевидно, что предложенный двигатель отличается предельной простотой конструкции, а также простотой регулировки и эксплуатации. При подборе соответствующих электромагнитных и конструктивных параметров за счет значительных усилий втягивания якоря 5, 6 и зажатия полуцилиндрами 5 и 6 пластины 7 здесь можно легко добиться значительных тяговых усилий и большого диапазона перемещений. Так как подвижным элементом здесь является не весь двигатель в корпусе, как в известных вышеописанных конструкциях, а только пластина 7, то масса подвижной части мала, что позволяет снизить потребление электроэнергии на движение. Согласно принципу работы в двигателе исключены двойные циклы, когда, например, в первый полупериод движения часть двигателя /один магнитопровод с якорем/ смещается, второй магнитопровод - неподвижно фиксируется, а второй полупериод движения - наоборот. За счет этого удалось повысить надежность двигателя, упростить конструкцию, уменьшить массу и габариты.Формула изобретения
Электромагнитный линейный двигатель, содержащий электромагнит в виде корпуса, цилиндрического магнитопровода, обмотки возбуждения, якоря, а также ведомое звено, пружины сжатия, направляющие с упорами и стопорные элементы, отличающийся тем, что якорь выполнен в виде двух ферромагнитных полых полуцилиндров, размещенных концентрично с зазором в осевом отверстии магнитопровода с одной из его сторон, обращенных друг к другу поверхностями, полученными при осевом разрезе полого цилиндра вдоль образующей, и прикрепленных к магнитопроводу в средней его части внутренними торцами с помощью пружин сжатия, а ведомое звено выполнено в виде немагнитной пластины, свободно размещенной в осевом отверстии магнитопровода между указанными поверхностями образующих якорь полуцилиндров и имеющей на боковых гранях стопорные элементы, контактирующие с упорами направляющих.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3Похожие патенты:
Изобретение относится к электромагнитным исполнительным устройствам и может быть использовано в качестве линейного электропривода
Изобретение относится к синхронным электрическим двигателям
Изобретение относится к электрическим машинам, в частности, к линейным шаговым электродвигателям, которые находят широкое применение в дискретном электроприводе
Изобретение относится к электротехнике, а именно к приводам возвратно-поступательного движения
Изобретение относится к электротехнике, является электрической машиной, которая может найти применение в транспортных средствах, для транспортировки грузов и т.д
Изобретение относится к электротехнике, а именно к электротехническим устройствам, преобразующим сигналы электрического тока в механические и может быть использовано в приборостроении в качестве электродвигателя возвратно-поступательного движения, а также в качестве вибровозбудителя в строительном, горном и других видах оборудования
Изобретение относится к микромехатронике и микроробототехнике, в частности к шаговым линейным микроприводам
Изобретение относится к электромагнитным исполнительным устройствам и может быть использовано в качестве линейного электропривода
Изобретение относится к области электровибрационной техники, электромашиностроения и приборостроения, а именно к способам и устройствам управления электромагнитными двигателями, рабочий орган которых совершает вибрационное движение, в частности к способам и электромагнитным виброприводам возбуждения колебаний рабочего органа с переменной технологической нагрузкой, питаемого от источника постоянного тока ограниченной мощности, и может быть использовано в различных отраслях промышленности, например в виброкомпрессорных и насосных установках, вибропитателях, вибросмесителях, вибростолах, виброударных системах, стендах для вибрационных испытаний, виброраспылительных устройствах, виброприборах бытовой техники и т.д
Изобретение относится к области электротехники и может быть использовано для очистки проводов высоковольтных линий электропередач от гололеда
Изобретение относится к области ракетной техники и предназначено для приведения в действие электровоспламенителей пусковых и бортовых систем ракеты
Изобретение относится к области ракетной техники и предназначено для приведения в действие электровоспламенителей пусковых и бортовых систем ракеты
Изобретение относится к электротехнике и может быть использовано в устройствах ударного действия с линейным электромагнитным двигателем, в котором рабочий ход якоря осуществляется за счет единственной системы обмоток, а его возврат - под действием механического усилия, например под действием усилия возвратной пружины
Изобретение относится к электрическим машинам, в частности, к линейным шаговым электродвигателям, которые находят широкое применение в дискретном электроприводе
Изобретение относится к электротехнике, а именно к электрическим машинам, в частности, к электромагнитным двигателям, и может быть использовано в электромеханических устройствах с поступательным перемещением рабочего звена
Изобретение относится к электромеханическим линейным исполнительным механизмам с однонаправленной осевой нагрузкой и может быть использовано, например, в качестве привода штанговых насосов для откачки нефти из скважин
Изобретение относится к электрическим машинам и может быть использовано для создания электромагнитных прессов, молотов и других механизмов с поступательным движением рабочего органа
Изобретение относится к электромагнитным исполнительным устройствам и может быть использовано в качестве линейного электропривода
www.findpatent.ru