Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

Картер двигателя: назначение и особенности конструкции. Двс картер


Картер двигателя: назначение и особенности конструкции

Картер является главной неподвижной деталью ДВС, в нижней части которого установлен коленчатый вал, а в верхней части - блок цилиндров. Соединение верхней и нижней части картера осуществляется за счет крепежных болтов при помощи уплотнительной прокладки.Впрочем, для маленьких по размеру двигателей картеры могут делиться не в горизонтальной, а в вертикальной плоскости.

По сути, картер - это корпус двигателя, на котором держатся и в котором работают все детали двигателя. Помимо этого картер так же помогает в работе системе смазки и охлаждения двигателя.

Конструкция картера

Надо, конечно сказать, что картер бывает не только у двигателя, его имеют и редуктор, и коробка передач, и раздаточная коробка и прочие механизмы. Зачастую картер отливается из сверхпрочного и надежного алюминиевого сплава.

Снизу картер двигателя защищен специальным поддоном, изготовленным либо также из алюминиевого сплава, либо же из стали методом штамповки.

Основным назначением поддона картера является надежная защита КШМ от загрязнений и протечки масла. Дополнительно он выполняет функцию масляного резервуара, поэтому нижний отсек имеет специальное отверстие с небольшой пробкой для слива и замены моторного масла.

Чтобы увеличить жесткость всей конструкции, внутренние стенки картера имеют поперечные перегородки с углублениями, к которым крепятся подшипники коренных шеек всех валов - коленчатого и распределительного. Коренные подшипники оснащены съемными крышками, соединенными с картером болтами или шпильками.

Чтобы предотвратить утечку масла, на выступающих частях коленвала (задней и передней) предусмотрены специальные канавки и сальники, изготовленные из маслостойкой резины, войлока, кожи или пробки.

Для своевременного отвода масла, стремящегося вытечь наружу, в крышках подшипников и на стенках картера установлены отражатели масла и дренажные канавки.

Для установки дополнительных механизмов двигателя, например, бензинового и водяного насосов, стартера, генератора, в картере предусмотрено наличие специальных приливов.

В поддоне картера, служащего сборником и временным хранилищем масла, которое в данный момент времени не участвует в рабочем процессе двигателя, помимо масла скапливаются и различные частички металла - стружка, которая образуется в процессе работы двигателя от трения деталей друг о друга.

В некоторых двигателях для удержания этой стружки на дне или на стенках поддона устанавливаются магниты, притягивающие к себе металлические примеси.

Для защиты двигателя от стальной, алюминиевой стружки и прочих примесей масляный насос (его заборник), забирающий масло из поддона картера устанавливается не на самое его дно, а чуть выше, чтобы осевшая грязь не попадала в систему смазки.

Некоторые современные двигатели оснащены системой вентиляции картера. Эта система нужна для отвода газов из картера. Газы в картере - это смесь выхлопных газов (большая часть которых уходит через выхлопную систему), просачивающихся в картер из камер сгорания, пары бензина, масла. Накапливаясь, они оказывают негативное влияние на свойства и качество масла и состояние резиновых и металлических деталей двигателя.

Чтобы снизить негативное влияние картерных газов, их принудительно выкачивают из картера. За это как раз и отвечает система вентиляции картера.

Особенности картера двухтактного двигателя

Данный тип картера - это не просто корпус двигателя, это основная часть топливной системы транспортного средства. В данном случае картер отвечает за подготовку и своевременную подачу топливовоздушной смеси в цилиндры двигателя. Таким образом, обеспечивается надежная смазка всех основных деталей двигателя.

Передняя часть картера двухтактного двигателя оснащается кривошипной камерой, которая принимает участие в газораспределительном процессе.

Для надежной герметизации камеры в левой части картера предусмотрен резиновый уплотнительный сальник, который предотвращает попадание масла в камеру.

В правой части картера расположен уплотнительный сальник, основным назначением которого является предотвращение попадания в камеру внешнего воздуха.

Что такое сухой картер

Название "сухой картер", разумеется, появилось неслучайно и по нему легко догадаться, что раз картер сухой, то в нем нет масла, как в обычном картере, который служит резервуаром для сбора и хранения масла.

Отчасти это верно, но не совсем. В двигателе с сухим картером масло так же стекает в поддон, но вот задержаться ему там не дают насосы, которые сразу же откачивают это масло в специальный резервуар, который вынесен за переделы двигателя и может находиться, в общем-то, где угодно, но, как правило, неподалеку от двигателя или даже непосредственно на нем, но снаружи.

Такая система смазки двигателя применяется на спортивных, гоночных автомобилях, а так же на серьезных внедорожниках.

Необходимость в сухом картере возникает из-за того, что такие автомобили испытывают повышенные динамические и инерционные нагрузки, из-за которых масло в обычном картере очень сильно плескалось бы и пенилось.

В крутых затяжных поворотах или при преодолении крутых подъемов и спусков возможно оголение маслозаборника и как следствие - нарушение процесса смазки, которое ведет к работе двигателя с повышенной нагрузкой и может привести к поломке.

Система смазки "сухой картер" позволяет решить эту проблему. Масло подается из специального резервуара под давлением, и смазка двигателя обеспечивается в любых условиях его эксплуатации.

Вот такое непростое это устройство - картер двигателя, а на первый взгляд, всего лишь железяка :).

smotr.net

Картеры

Картер составляет один из элементов остова поршневых двига­телей. К его стенкам с внешней стороны крепятся цилиндры, а коленчатый вал с опорами занимает внутреннюю его полость. В картере размещают также основные устройства механизма газо­распределения, различные узлы системы смазки с ее сложной сетью каналов, а часто с емкостью для смазочного масла и другое вспомо­гательное оборудование. К одной из торцевых стенок картера в транспортных двигателях обычно крепится кожух маховика, к боковым — кронштейны или лапы для установки двигателя на подмоторную раму (фундамент). В двух­тактных двигателях с кривошипно-камерной продувкой цилиндров внутренняя полость картера используется для продувки цилинд­ров. Длина картера зависит от размера и числа цилиндров в ряду, а поперечное сечение его внутренней полости в основном определяется радиусом кривошипа и размерами шатуна.

В общем случае картер представляет собой сложную пространственную конструкцию коробчатой формы, которая воспринимает все силовые нагрузки, возникающие в процессе осуществления рабочего цикла и действующие на остов двигателя. Поэтому картеру придают возможно большую прочность и жесткость, о которой судят по величине деформации отдельных несущих элементов кар­тера (плоскостей на стыке цилиндров, на разъеме коренных опор коленчатого вала и др.). С этой целью внутреннюю полость картера многоцилиндровых двигателей снабжают поперечными перегород­ками, а в быстроходных двигателях автомобильного типа применяют также совместную отливку картера с блоком цилиндров. Одновре­менно с этим применяют и другие средства, уменьшающие возможную деформацию привалочных и несущих плоскостей картера (оребрение поперечных перегородок, наружных стенок и т. д.).

Картеры поршневых двигателей автомобильного типа делают разъемными и неразъемными. Наибольшее распространение полу­чили разъемные картеры с горизонтальной плоскостью разъема, параллельной оси коленчатого вала (см. рисунок б). Часть картера, расположенную над коленчатым валом 4, обычно называют верх­ней половиной, а вторую его часть — нижней половиной.

 

 

В крупных стационарных и судовых двигателях применяют картеры, выполненные из отдельных стоек 2, расположенных в пло­скости рамовых опор коленчатого вала (рисунок а). Стойки скре­пляют между собой болтами и получают общий картер. Сверху на привалочные плоскости 1 стоек устанавливают рабочие цилинд­ры, а нижним фланцем 3 они крепятся к фундаментной раме 5 и вместе с ней образуют замкнутые камеры, в которых вращаются колена вала.

В торцовых стенках и внутренних перегородках фундаментной рамы 5 делают гнезда 6 — постели, снабженные специальными подшипниками, на которых и покоятся коренные шейки коленчатого вала. Гнезда коренных или, как их называют в этом случае, рамо­вых опор сверху закрываются точно пригнанными крышками 9.

Фундаментные рамы выполняются особенно прочными и жестки­ми, так как они служат основой всего двигателя. С помощью лап 8, отливаемых заодно целое с рамой, последняя крепится на опорах 7 фундамента.

Верхнюю половину 2 картера в рассматриваемом случае назы­вают станиной. Её стойки изготовляют в виде отдельных отливок имеющих двутавровое или коробчатое сечение. Сверху на привалоч-ную плоскость 1 станин устанавливают цилиндры, а нижним фланцем 3 они крепятся к фундаментной раме 5 (см. рисунок а). В стационар­ных и судовых крейцкопфных двигателях к станинам крепят напра­вляющие для ползуна крейцкопфа.

Автомобильные, тракторные и другие аналогичные им быстро­ходные двигатели тронкового типа не имеют фундаментной рамы. Коренные шейки коленчатого вала размещают в них в верхней половине 2 картера (см. рисунок б) в сделанных для этого гнездах-постелях 6, снабженных крышками 9, которые крепят к гнезду на шпильках или болтах. Таким образом, коленчатый вал оказы­вается подвешенным на крышках 9, вследствие чего последние воспринимают усилия, действующие на коленчатый вал и через шпильки передают их верхней половине картера, являющейся в данном случае основанием двигателя. Крышки 9 коренных под­шипников отливаются массивными обычно из чугуна и усиливаются ребрами жесткости.

Для обеспечения необходимой соосности коренных опор в много-цилиндровых двигателях гнезда 6 (см. рисунок б) растачивают с одной установки и заодно с крышками 9. Крышки 9 надежно фиксируют относительно их гнезд штифтами или каким-либо другим способом, и после расточки крышки не меняют. При необходимости они снабжаются метками (нумеруются).

Установка двигателей на опоры 7 подмоторной рамы в рассма­триваемом случае осуществляется с помощью кронштейнов (лап) 8, которые крепят к боковым стенкам верхней половины 2 картера. Для этой цели используют также кожух маховика и переднюю торцовую стенку картера.

При размещении коленчатого вала в верхней половине картера нижняя его половина 5 (см. рисунок б) не несет никакой нагрузки, а выполняет только роль поддона, т. е. закрывает полость картера снизу. Чтобы поддон был легким, в автомобильных двигателях его делают штампованным из листовой стали или отливают из алюми­ниевых сплавов. В более тяже­лых тракторных двигателях поддоны отливают из чугуна. Поддоны служат маслосборниками, а в двигателях автомобильного типа они обычно используются как емкость для необходимого запаса смазоч­ного масла. В этом случае их снабжают легкими поперечными и про­дольными горизонтальными перегородками, которые предохраняют масло от разбрызгивания и вспенивания, но не мешают его перете­канию между отдельными полостями поддона. Стык поддона и верх­ней половины картера уплотняется пробковыми или иными проклад­ками. Часто в полости поддона крепят маслоприемники, сетчатые фильтры, датчики и другое легкое вспомогательное оборудование двигателя.

Для укладки коленчатого вала в гнезда верхней половины 2 картера (см. рисунок б) его переворачивают на плоскость 1 стыка с блоком цилиндров, а в случае совместной их отливки — на плос­кость разъема блок-картера с головкой цилиндров.

Плоскость стыка поддона с верхней половиной картера или сов­мещают с плоскостью разъема коренных опор, т. е. с осью колен­чатого вала или же несколько опускают ниже плоскости разъема коренных опор. В последнем случае общая высота верхней половины картера увеличена, что благоприятно сказывается на ее жесткости и на жесткости всей конструкции двигателя.

Чтобы повысить жесткость крепления узла коренных опор и пре­дотвратить возможное боковое раскачивание их крышек (подвесок), последние плотно устанавливаются между выступами, сделанными в стенках поперечных перегородок картера, что особенно необхо­димо в алюминиевых картерах V-образных двигателей.

Общая жесткость картера многоцилиндровых двигателей резко повышается, если опоры под коренные шейки коленчатого вала раз­мещают после каждого цилиндра. Количество коренных опор в этом случае равно i + 1, где i — число цилиндров двигателя. С целью повышения жесткости применяют неразъемные (цельные) коренные опоры, как, например, в двигателе автомобиля «Запоро­жец».

Картеры с неразъемными коренными опорами называются тун­нельными. Гнезда под коренные опоры растачивают в торцовых стен­ках и поперечных перегородках с таким расчетом, чтобы коленчатый вал, предварительно собранный с коренными подшипниками каче­ния, свободно устанавливался в эти гнезда через отверстие в одной из его торцовых стенок. Такое гнездо, предназначенное для монтажа и демонтажа коленчатого вала двигателя МеМЗ-966, расточенное в передней торцовой стенке картера 7.

Картер рассматриваемого двигателя снабжен съемным поддоном, что является типичным для автомобильных и трак­торных двигателей воздушного охлаждения, имеющих картер тун­нельного типа. При жидкостном охлаждении туннельные картеры иногда отливают вместе с блоком цилиндра и получают блок-картер повышенной жесткости.

Туннельные картеры одноцилиндровых и двухцилиндровых V-образных мотоциклетных и малых стационарных двигателей обычно отливают без съемного поддона, а с разъемом их по пло­скости параллельной оси цилиндров. Туннельные картеры повы­шают жесткость всей конструкции двигателя. Однако осмотр под­шипников кривошипно-шатунного механизма возможен при такой конструкции только через люки, сделанные в боковых стенках кар­тера. Для стационарных двигателей это очень удобно и совсем неприемлемо для автомобильных двигателей, в которых осмотр под­шипников в эксплуатации возможен только снизу при снятом под­доне. Поэтому туннельные неразъемные по горизонтальной оси картеры в автомобильных двигателях не получили распространения.

 

 

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г.

Newer news items:

Older news items:

azbukadvs.ru

Картер двигателя и необходимость его защиты

Опытные автомобилисты знают насколько важно защищать двигатель своего транспортного средства от повреждений механического характера. Дело в том, что не только плохое масло или бензин, или же загрязнение фильтров могут вывести мотор авто из строя. Так уж сложилось, что качество автомобильных дорог в нашей стране, мягко говоря, не слишком хорошее. Даже обыкновенный булыжник, случайно «повстречавшийся» на дороге способен нанести повреждение картеру двигателя. Именно поэтому надежная защита основного узла автомобиля – одно из основных условий его долговечности.

Опытные автослесари называют защиту мотора днищем. Прежде чем выбирать его, следует определиться с материалом изготовления:

  • стальное днище способно не только эффективно защитить двигатель от механических повреждений, но и прослужит достаточно долго;
  • исключить вибрацию защиты, которая может образоваться во время езды, может днище, изготовленное из алюминия, к тому же оно гораздо легче стальных изделий, а значит, снять и установить обратно его можно в самые короткие сроки;
  • оптимальный вариант – установить защиту мотора из композита, оснащенную резиновыми амортизаторами, а также шумопоглощающими накладками.

Автовладелец, установивший надежную и качественную защиту мотора, обеспечивает поддону картера безопасность. Благодаря этому, в двигатель не смогут проникнуть ни пыль, ни грязь, ни влага, вызывающая коррозию. Раньше считалось, что она необходима исключительно внедорожникам, однако сегодня днище устанавливаю даже те владельцы транспортных средств, которые довольно-таки редко выезжают за пределы города. Причем опасность на дороге может нести абсолютно любая мелочь, как то незакрытый канализационный люк, арматура, булыжники, ямы, кирпичи и тому подобное. Таким образом, своевременно установленная защитная деталь позволяет:

  • максимально уменьшить риск возникновения возможных опасных дорожных ситуаций, которые могут образоваться в процессе движения;
  • существенно сэкономить собственные финансовые средства на починку машины, ведь выход основного узла автомобиля из строя связан с достаточно большими затратами;
  • свести к минимуму уровень шума в салоне во время движения автомобиля, потому как днище, помимо защитной функции, еще имеет, и щумоизоляционную, которая приглушает шум двигателя.

Выбирать защиту картера двигателя каждый автовладелец волен по своему усмотрению. Единственный совет – лучше всего заранее проконсультироваться со специалистом.

ustroistvo-avtomobilya.ru

Картер (техника) — Википедия

Материал из Википедии — свободной энциклопедии

Блок-картер шестицилиндрового двигателя BMW Двигатель с отдельными от картера блоками цилиндров. Система смазки с «сухим» картером. Масляный бак (блестящий, с треугольным шильдиком жёлтого цвета) на мотоцикле Triumph (1951), двигатель с «сухим» картером. У этого термина существуют и другие значения, см. Картер.

Ка́ртер (от фамилии английского инженера Картера (англ. John Harrison Carter (1816—1896)), впервые предложившего кожух для защиты и смазки цепи велосипеда Sunbeam[en] в 1889 году[1]) — основная корпусная деталь машин или механизмов (двигателя, редуктора, например коробки передач), коробчатого строения, предназначенная для опоры рабочих деталей, их защиты и размещения запаса смазочного масла. Нижняя часть картера автомобильного двигателя — поддон — также используется как резервуар для моторного масла.

Картер двигателя внутреннего сгорания

Картер является основной корпусной деталью двигателя. Изолированное внутреннее пространство картера образует самую большую полость в двигателе, содержащую коленчатый вал. Верхняя часть картера содержит блок цилиндров.

В небольших двигателях, как бензиновых, так и дизельных, картер играет роль корпуса, объединяющего двигатель в единое целое, и представляет собой одну литую деталь (блок-картер). Часто в таком картере заодно отливаются и гильзы цилиндров.

Но уже в среднем двигателе отливка картера требуемых размеров как единой детали оказывается технически проблематичной задачей, в крупных двигателях — практически неразрешимой. Поэтому в таких двигателях основной несущий элемент — рама двигателя, а картер, как правило, представляет собой набор сварных или литых стоек, соединённых либо анкерными связями, либо болтами, а иногда — сваркой. Помимо рамовых подшипников в полости картера размещаются направляющие крейцкопфов.

В лёгком карбюраторном двухтактном двигателе картер не только является корпусом, но при наличии кривошипно-камерной продувки служит важнейшим элементом газораспределения. В картер подаётся горючая смесь, из него она под давлением, создаваемым движущимся вниз поршнем, подаётся через перепускные каналы в цилиндры. Поэтому лёгкий многоцилиндровый двухтактный двигатель имеет разделение полости картера на герметичные подцилиндровые секции («Wartburg», «Trabant», DKW), каждая из них связана индивидуальными продувочными каналами со своим цилиндром. Смазка двигателя в этом случае осуществляется за счёт специального масла, добавляемого в топливо (так называемая «двухтактная смесь»).

При увеличении габаритов двигателя ёмкость полости картера может исчисляться кубометрами. Поэтому уже в средних (двухтактные Д100, 14Д40, четырёхтактные М-756, семейства Д-49, В-2), а тем более в тяжёлых двигателях («Зульцер», ДКРН, «Бурмейстер и Вайн») используется циркуляционная система смазки с сухим картером, имеющая отдельный резервуар для масла (средние и тяжёлые двухтактные двигатели с прямоточной продувкой «Зульцер» и др.)

Данная схема получила распространение и в поршневой авиации. Моторное масло из поддона отсасывалось масляным насосом в масляный бак, который мог находиться в удобном месте и иметь очень большой объём (сотни литров, расход масла в дальних многочасовых перелётах мог быть очень велик, а также самолёты могли участвовать в воздушных боях, подвергаться обстрелу зенитных орудий, при этом получать пробоины в маслопроводах). Удалённый от двигателя маслобак не увеличивал габаритные размеры мотогондолы. Для подачи масла в двигатель служил второй масляный насос.

Ряд мотоциклетных двигателей также имеет систему смазки с «сухим картером», масляный бак может быть встроен в трубчатую раму. Данная схема применяется когда объёмный масляный поддон установить на двигатель затруднительно или когда мотоцикл эксплуатируется в сложных дорожных условиях, например эндуро. Если мотоцикл оказывается «лежащим на боку», двигатель не испытывает «масляного голодания».

Примечания

Видео по теме

Ссылки

wikipedia.green

Станина (картер)

Станину устанавливают на фундаментной раме, она служит опорой для цилиндров. Совместно с фундаментной рамой станина образует закрытую полость для движения кривошипно-шатупного механизма. В зависимости от конструкции двигателя станины мо­гут быть выполнены в виде отдельных колонн или стоек — для крейцкопфных двигателей большой мощности либо закрытого типа — для тронковых двигателей. Станина должна обладать до­статочной прочностью, жесткостью и герметичностью для паров масла и газов. Станины выполняют литыми чугунными (СЧ18-36, СЧ21-40, СЧ28-48) или стальными, а для уменьшения веса свар­ными стальными. Станины небольших быстроходных двигателей изготовляют из алюминиевых сплавов (AЛ4, АЛ5).

На рис. 131 показана А-образная станина крупного крейцкопфного двигателя. А-образные стойки выполняют коробчатого или двутаврового сечения, устанавливают в плоскости сечения рамовых подшипников на фундаментную раму, а вверху соединяют с бло­ком цилиндров. Пролеты между стойками герметически закры­ваются съемными щитами, в которых имеются люки для осмотра кривошипно-шатунного механизма. К стойкам на специальных приливах крепят параллели крейцкопфа.

На рис. 132 показана литая станина четырехцилиндрового тронкового двигателя. Фланцем 3 станину устанавливают на фун­даментную раму и соединяют с ней болтами; на верхнюю пло­скость 1 станины устанавливают цилиндры. Люки 2, закрываемые съемными щитами, обеспечивают доступ в кривошипно-шатунную полость станины. В последнее время для троиковых двигателей широко применяют станины, отлитые вместе с рубашками цилинд­ров или с фундаментной рамой.

При работе двигателя в картер могут прорываться газы из цилиндров, которые вместе с парами масла образуют взрывоопас­ную смесь. Во избежание взрыва на картере располагают предо­хранительный клапан 1 (рис. 133) с уплотнительным кольцом 2.

vdvizhke.ru

Картер (техника) Википедия

Блок-картер шестицилиндрового двигателя BMW Двигатель с отдельными от картера блоками цилиндров. Система смазки с «сухим» картером. Масляный бак (блестящий, с треугольным шильдиком жёлтого цвета) на мотоцикле Triumph (1951), двигатель с «сухим» картером. У этого термина существуют и другие значения, см. Картер.

Ка́ртер (от фамилии английского инженера Картера (англ. 

John Harrison Carter (1816—1896)), впервые предложившего кожух для защиты и смазки цепи велосипеда Sunbeam[en] в 1889 году[1]) — основная корпусная деталь машин или механизмов (двигателя, редуктора, например коробки передач), коробчатого строения, предназначенная для опоры рабочих деталей, их защиты и размещения запаса смазочного масла. Нижняя часть картера автомобильного двигателя — поддон — также используется как резервуар для моторного масла.

Картер двигателя внутреннего сгорания

Картер является основной корпусной деталью двигателя. Изолированное внутреннее пространство картера образует самую большую полость в двигателе, содержащую коленчатый вал. Верхняя часть картера содержит блок цилиндров.

В небольших двигателях, как бензиновых, так и дизельных, картер играет роль корпуса, объединяющего двигатель в единое целое, и представляет собой одну литую деталь (блок-картер). Часто в таком картере заодно отливаются и гильзы цилиндров.

Но уже в среднем двигателе отливка картера требуемых размеров как единой детали оказывается технически проблематичной задачей, в крупных двигателях — практически неразрешимой. Поэтому в таких двигателях основной несущий элемент — рама двигателя, а картер, как правило, представляет собой набор сварных или литых стоек, соединённых либо анкерными связями, либо болтами, а иногда — сваркой. Помимо рамовых подшипников в полости картера размещаются направляющие крейцкопфов.

В лёгком карбюраторном двухтактном двигателе картер не только является корпусом, но при наличии кривошипно-камерной продувки служит важнейшим элементом газораспределения. В картер подаётся горючая смесь, из него она под давлением, создаваемым движущимся вниз поршнем, подаётся через перепускные каналы в цилиндры. Поэтому лёгкий многоцилиндровый двухтактный двигатель имеет разделение полости картера на герметичные подцилиндровые секции («Wartburg», «Trabant», DKW), каждая из них связана индивидуальными продувочными каналами со своим цилиндром. Смазка двигателя в этом случае осуществляется за счёт специального масла, добавляемого в топливо (так называемая «двухтактная смесь»).

При увеличении габаритов двигателя ёмкость полости картера может исчисляться кубометрами. Поэтому уже в средних (двухтактные Д100, 14Д40, четырёхтактные М-756, семейства Д-49, В-2), а тем более в тяжёлых двигателях («Зульцер», ДКРН, «Бурмейстер и Вайн») используется циркуляционная система смазки с сухим картером, имеющая отдельный резервуар для масла (средние и тяжёлые двухтактные двигатели с прямоточной продувкой «Зульцер» и др.)

Данная схема получила распространение и в поршневой авиации. Моторное масло из поддона отсасывалось масляным насосом в масляный бак, который мог находиться в удобном месте и иметь очень большой объём (сотни литров, расход масла в дальних многочасовых перелётах мог быть очень велик, а также самолёты могли участвовать в воздушных боях, подвергаться обстрелу зенитных орудий, при этом получать пробоины в маслопроводах). Удалённый от двигателя маслобак не увеличивал габаритные размеры мотогондолы. Для подачи масла в двигатель служил второй масляный насос.

Ряд мотоциклетных двигателей также имеет систему смазки с «сухим картером», масляный бак может быть встроен в трубчатую раму. Данная схема применяется когда объёмный масляный поддон установить на двигатель затруднительно или когда мотоцикл эксплуатируется в сложных дорожных условиях, например эндуро. Если мотоцикл оказывается «лежащим на боку», двигатель не испытывает «масляного голодания».

Примечания

Ссылки

wikiredia.ru

Как работает вентиляция картера двигателя

Двигатель внутреннего сгорания работает по принципу сжигания топливно-воздушной смеси в цилиндрах. После сжигания топливного заряда отработавшие газы и другие продукты сгорания смеси воздуха и топлива в большей части выводятся через выпускную систему наружу, то есть выбрасываются в атмосферу.

Однако с учетом того, что в камере сгорания создается высокое давление, часть газов, остатки несгоревшего топлива и другие продукты прорываются через поршневые кольца и попадают в картер ДВС. Картер представляет из себя закрытую полость, в которой находится коленвал и другие детали силового агрегата.

В картере постоянно присутствует масляный туман, пары несгоревшего топлива, частицы воды и газы. Указанные газы называются картерными газами. Картерные газы оказывают негативное влияние на моторное масло. Параллельно с этим избыток картерных газов может привести к росту давления в картере. В результате моторное масло начинает выдавливаться.

Чтобы уменьшить количество газов и снизить давление, в конструкции современных ДВС используется система вентиляции картерных газов PCV (Positive Crankcase Ventilation). В этой статье мы поговорим об эволюции и устройстве данной системы, а также затронем вопрос распространенных неисправностей.

Читайте в этой статье

Устройство и конструктивные особенности системы вентиляции картера

Итак, система вентиляции картера позволяет удалить избыток картерных газов, повышает срок службы моторного масла, снижает выброс токсичных веществ в атмосферу, уменьшает давление в картере силового агрегата. Системы могут быть:

  • открытого типа;
  • закрытого типа;

Сразу отметим, на разных типах ДВС конструкция данной системы может отличаться, при этом основные функциональные элементы на современных моторах  представляют собой:

  • воздушные патрубки, по которым циркулируют газы;
  • клапан вентиляции картера, который регулирует давление картерных газов при их подаче во впускной коллектор;
  • маслоотделитель для предотвращения попадания масляных паров в камеру сгорания для уменьшения сажеобразования;

Другими словами, сегодня активно используется закрытый тип. Общий принцип работы такой системы вентиляции картера основан на разрежении, которое создается во впускном коллекторе. Благодаря разрежению газы выводятся из картера. Далее указанные газы проходят через маслоотделитель, который отделяет газы от масла. После очистки газы идут по воздушным патрубкам, после чего попадают во впуск. Из впускного коллектора картерные газы, перемешанные с воздухом, подаются в камеру сгорания и дожигаются.

Добавим, что в устаревшей открытой системе (эжекционного типа) избыток картерных газов попросту выбрасывается в атмосферу. Способ очень простой и дешевый, однако отмечается усиленное загрязнение окружающей среды. Также эффективность работы такого решения не самая высокая, так как при низких оборотах и в режиме ХХ подобная  вентиляция не работает.

Еще такая система не выполняет своих функций на высоких оборотах. Параллельно существует риск того, что в картер будет засасываться недостаточно очищенный наружный воздух после остывания ДВС. Дополнительно следует выделить, что при наличии открытой системы на моторе возможно увеличение расхода масла, также смазка может выбрасываться вместе с газами наружу, в результате поверхности двигателя загрязняются масляными пятнами.

Закрытая система вентиляции картера, которую также называют принудительной, сложнее по конструкции. При этом именно данное решение позволяет уменьшить количество вредных выбросов в атмосферу с учетом экологических стандартов и снизить расход масла.

Двигатель с такой системой работает стабильно, лучше держит обороты зимой, так как холодный наружный воздух во впуске подогревается картерными газами, снижается риск детонации. Однако при всех плюсах и эта схема устройства не лишена ряда недостатков.

В результате попадания картерных газов во впуск происходит усиленное загрязнение воздуховодов и элементов во впускной системе двигателя. Также специалисты отмечают, что принудительная система отсоса отработанных газов может являться причиной быстрого окисления моторного масла из-за сильного разрежения на высоких оборотах.

Также принудительная вентиляция может дополнительно реализовываться разными путями. При этом основным принципом остается то, что газы должны «вытягиваться» из картера, а также происходит их смешивание в результате подачи в картер наружного воздуха. После этого через специальный клапан смесь подается в цилиндры мотора.

На карбюраторных моторах, агрегатах с моновпрыском и инжекторных двигателях можно встретить различные типы реализации подвода картерных газов. Ранее достаточно часто встречалась конструкция, когда система имела два канала. Один был выведен перед дроссельной заслонкой, а второй канал с жиклером выводился за дросселем.

В режиме холостого хода газы подавались по каналу с жиклером за заслонкой. Однако после начала открытия заслонки  и роста оборотов коленвала разряжение в области за заслонкой становилось меньше. При этом объем газов, которые прорывались в картер, становился больше. Канал с жиклером переставал выполнять свою функцию, но подключался вывод газов по каналу перед дросселем. Дальнейшее развитие системы вентиляции  привело к появлению клапанных решений для регулирования подачи газов.

Если просто, клапан стоит в трубопроводе, через который подводятся газы из картера. Клапаны также делятся на золотниковые и мембранные. Добавим, что мембранные  клапаны лучше дозируют количество газов, однако сама мембрана чаще выходит из строя.

Для чего нужен маслоотделитель в двигателе

Как уже было сказано выше, маслоотделитель (маслоуловитель) является элементом системы вентиляции картера. Главной задачей маслоотделителя становится не допустить попадания частичек масла в камеру сгорания.

По способу отделения масла от картерных газов можно выделить лабиринтный и циклический маслоуловитель. Отметим, что на современных моторах используется маслоотделитель комбинированного типа.

Лабиринтный маслоотделитель, который еще называется успокоитель, замедляет движение газов. В результате объемные частицы масла попросту оседают на стенках, после чего стекают обратно в картер.

Центробежный маслоотделитель более тщательно отделяет смазку от газов. При прохождении через устройство газы фактически «раскручиваются», то есть на них воздействует центробежная сила. Под ее воздействием масло оседает на стенках и стекает в картер ДВС.

Чтобы избежать турбулентности газов, в комбинированном типе устройств за центробежным маслоотделителем на выходе устанавливается лабиринтный  успокоитель. В успокоителе завершается процесс отделения частиц смазки от газов из картера.

Клапан системы вентиляции картера

Указанный клапан служит для того, чтобы отрегулировать давление газов, которые подаются во впуск. Если разрежение не сильно большое, тогда клапан находится в открытом положении.

В случае, когда разрежение во впускном канале значительное, происходит закрытие данного клапана. Еще отметим, что в турбомотрах вентиляция картера реализована посредством дроссельного регулирования.

Рекомендуем также прочитать статью о том, что такое система EGR. Из этой статьи вы узнаете о назначении, устройстве и других особенностях системы рециркуляции отработавших газов.

Частые неисправности системы вентиляции картера

С учетом приведенной выше информации становится понятно, что система вентиляции картера на современных двигателях является достаточно сложной. Выход из строя и нарушения в работе данной системы могут привести к ухудшению общей работоспособности ДВС, возникновению неполадок и уменьшению ресурса агрегата.

Сразу отметим, что проблемы с вентиляцией картера могут быть не так очевидны, однако проявляются  в виде снижения мощности, увеличения расхода топлива, активного и быстрого загрязнения дроссельной заслонки и РХХ. Также в воздушном фильтре может появиться масло и т.д.

Часто при диагностике указанные проблемы пытаются решить путем поверки и ремонта системы питания или зажигания, забывая о системе вентиляции картерных газов. Важно понимать, что закрытая система предполагает наличие специальных каналов в БЦ и ГБЦ, а также клапанов, патрубков и шлангов для циркуляции газов. Хорошо известно, что клапаны рано или поздно могут начать подклинивать. Прежде всего, это приводит к нарушению состава рабочей топливно-воздушной смеси.

Что касается  причин, клапан клинит как из-за засорения, так и в результате собственных повреждений. Как правило, первый вариант более распространен. Дело в том, что в картерных газах присутствует сажа, нагар и т.п.

Чем изношеннее мотор, (ЦПГ, другие узлы и системы), тем больше таких продуктов попадает в картер. Также различные загрязнения могут переноситься с микрочастицами масла. В  результате грязь и отложения скапливаются в клапане, различных отверстиях, патрубках, каналах. Также рвутся и трескаются сами патрубки.

Как утверждают опытные автомеханики, c появлением стандарта Euro-4  стали встречаться двигатели, которые «падают» в аварийный режим работы при возникновении проблем с вентиляцией картера. При этом проведение компьютерной диагностики ничего не показывает, что усложняет поиск проблемы.

Также указанная система может доставить много неприятностей в зимний период. Дело в том, что в картерных газах содержатся частицы воды. Вода появляется из атмосферного воздуха, который засасывается мотором во время работы. После попадания в систему вентиляции, вода, которая находится в виде пара, может конденсироваться и скапливаться в отдельных местах системы вентиляции. После остывания ДВС влага попросту замерзает и становится льдом, закупоривая систему.

В результате вентиляция перестает работать, давление в картере растет и выдавливает масляный щуп, а двигатель и подкапотное пространство забрызгивает моторным маслом. Причем данная неисправность может возникнуть как на старом двигателе, так и на новом ДВС с небольшим пробегом. Дело в том, что далеко не на всех автомобилях система вентиляции имеет дополнительный обогрев.

Подведем итоги

Отметим, что в мануалах не всегда содержится какое-либо указание или предписание для отдельного обслуживания системы вентиляции картера двигателя. Однако на практике обслуживание должно проводиться, причем регулярно.

В профилактической очистке нуждаются полости шлангов и патрубков, маслоотделитель и т.д. Выполнять процедуру желательно на каждом ТО параллельно замене масла и фильтров (через 10 тыс. км) или через раз (20 тыс. км.).

Такой подход позволит избежать критического засорения, в результате которого картерные газы попросту выдавят щуп и погонят  масло из двигателя. Также чистота системы будет способствовать нормальному процессу смесеобразования, что отразится на приемистости агрегата, расходе горючего и смазки.

Напоследок отметим, что система вентиляции давно уже перестала являться решением только для снижения давления в картере. Сегодня данная схема является одним из эффективных инструментов для повышения общей экологичности  двигателя наравне с системой EGR и установкой катализатора в выпуске. По этой причине современные производители автомобилей продолжают активно использовать и совершенствовать данное решение.

Читайте также

krutimotor.ru


Станции

Районы

Округа

RoadPart | Все права защищены © 2018 | Карта сайта