Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

Турбонаддув – назначение, устройство и принцип работы. Турбонаддув что это


Что такое турбонаддув — ДРАЙВ

Влад Клепач, 5 июня 2007. Фото фирм-производителей

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

www.drive.ru

Что такое турбонаддув и для чего он нужен?

Турбированный дизельный двигатель является успешной попыткой разработчиков сделать дизель, который не будет уступать по отдаче двигателю внутреннего сгорания, который работает на бензине, при любых режимах работы. На обслуживание устройства наддува не понадобится большое количество энергии мотора. Помимо этого, вся даровая энергия, которая тратится непосредственно на сжатие воздуха, на порядок увеличивает коэффициент полезного действия двигателя автомобиля.

Следовательно, значительно снижаются потери, которые необходимы для трения, и это сопровождается небольшим весом самого двигателя. Казалось бы, что все автомобили с турбонаддувом должны были бы быть более экономичными и выгодными, так как это именно то, чего пытались добиться конструкторы. Тем не менее, не все так гладко, как хотелось и как кажется.

Современные турбины имеют иногда скорость вращения, которая может достигать 200 000 оборотов за минуту, при этом температура газов будет составлять до 1000 градусов. Для того, чтобы сделать устройство турбонаддува, которое будет способно выдерживать достаточно высокие нагрузки на протяжении длительного периода, необходимо не только значительная денежная сумма, но и определенное количество времени.

Именно исходя из этих соображений системы турбонаддува были широко распространены лишь в авиационных конструкциях периода 1941-1945 гг. После окончания войны данные устройства начали применятся и в разного рода тракторах и грузовиках.

1. История создания турбонаддува.

Турбокомпрессоры для повышения мощности двигателей внутреннего сгорания применялись уже на первых этапах развития данного вида технологий. Впервые запатентованный в первом десятилетии прошлого столетия турбокомпрессор сыграл особую роль в конструировании военной авиации. Первые серийные автомобили, которые имели турбированные дизели, изготавливались по большей части в Германии во второй половине двадцатого века.

2. Для чего нужен турбонаддув.

Сразу же следует отметить один момент: нет особых различий в конструктивной составной турбонаддувов для разных моделей автомобилей. Есть всего небольшие вариации, которые относятся к размерам, дизайну и некоторым узлам. Если прислушаться к инструкторам по вождению, то множество из них употребляют термин «турбина», для обозначения нужного нам узла. Важно заметить, что это является ошибочным утверждением.

Турбина – это всего лишь часть турбонаддува, которая состоит из корпуса, уплотнительной системы, вала с крыльчатками и двух улиток. Кроме того, в ее состав входят два опорные подшипника скольжения. В данное устройство не крепится пневмопривод, посредством которого в работу приходит перепускной клапан. Следует отметить, что некоторые модели вообще не имеют данное устройство в своем арсенале. Основной целью перепускного клапана является регулировка оборотов турбины и производительности компрессора.

Когда уже на непосредственном выходе давление воздуха переваливает за допустимое, то устройство пневмопривода, которое открывает клапан, задействуется, вследствие чего небольшая составная выхлопных газов напрямую выходит в выхлопную систему. Именно из-за этого обороты турбины на порядок снижаются.

Турбина являет собою крыльчатку, которая располагается на валу и приводит во вращение устройство компрессора. Данный агрегат изготовляется из жаростойкого сплава, в то время как вал изготовляется из среднелегированной стали, а устройство компрессора из алюминия. Важно заметить, что эти детали не могут быть отремонтированы, вследствие чего они попросту заменяются на новые. Исключением из этого является только вал, иногда который можно перешлифовать и под него сделать новые подшипники.

Не секрет, что для того, чтобы топливо горело необходимо условие наличия кислорода. Непосредственно в цилиндрах двигателя сгорает воздушно-топливная смесь, а не само топливо. Так, происходит смешивание топлива с воздухом в определенном соотношении. Важно заметить, что воздуха при этом требуется достаточно топлива. Существует простая закономерность: увеличение подачи топлива влечет за собой увеличение подачи воздуха. В стандартных двигателя внутреннего сгорания воздух получают цилиндры из-за небольшой разницы в давлениях в цилиндре и атмосфере.

Такого рода зависимость является прямой, так как больший объем цилиндра предполагает большое потребление кислорода. Все отработанные выхлопные газы, которые идут из двигателя внутреннего сгорания автомобиля, вращают ротор турбины определенным образом. Он, в свою очередь, знаменует начало движения механизма компрессора, посредством которого происходит доведение сжатого воздуха напрямую в цилиндры.

Тем не менее, перед этим сам воздух будет проходить через интеркулер, где будет охлаждаться. Таким образом, чем быстрее турбина вращается, тем больше в турбину будет попадать выхлопных газов. А это означает, что большее поступление воздуха в цилиндры будет знаменовать увеличение мощности двигателя внутреннего сгорания.

3. Принцип работы двигателя с турбонаддувом.

Принцип работы двигателя с турбонаддувом базируется на использовании энергии от выхлопных газов. Так, при покидании цилиндра, все отработанные газы будут направляться в крыльчатку турбины, где будут вращать ее и закрепленную на одном валу с ней турбину компрессора, который встроен в систему подачи воздуха к цилиндрам.

Так, в отличии от дизелей атмосферных, турбокомпрессорные агрегаты имеют подачу воздуха в цилиндры принудительную и под высоким давлением. В результате будет возрастать объем воздуха, который попадает непосредственно в цилиндр за один цикл. Если к этому добавить еще и увеличение объема сгорающего топлива, то прирост мощности будет достаточно существенным – в 25%. Для большего повышения объема воздуха, который поступает в цилиндры, дополнительно используется интеркулер.

Данное специальное устройство позвано охлаждать атмосферный воздух перед своим нагнетанием в мотор. Так, никому не секрет, что холодный воздух будет занимать значительно меньше места, чем воздух теплый. Таким образом, при непосредственном охлаждении в цилиндр будет доставляться большее количество воздуха.

Результат вполне очевиден. Турбодизель будет иметь менее эффективный расход топлива, при этом его объемная мощность будет достаточно высока. Все это обеспечит способность в существенном наращивании суммарной мощности двигателя без увеличения числа оборотов и его габаритов.

4. Минусы двигателя с турбонаддувом.

Сложность конструкции и дороговизна турбонаддува – это не самые существенные недостатки данного устройства. Важно заметить, что то, насколько эффективно будет функционировать турбина, напрямую зависит от оборотов двигателя внутреннего сгорания. Если выхлопных газов мало и обороты довольно невелики, то ротор будет достаточно слабо раскручиваться. В таком случае компрессор не будет давать цилиндрам дополнительную порцию воздуха. Именно из-за этого бывают случаи, когда двигатель не будет дотягивать до 3000 оборотов и будет выстреливать лишь после 4000. Такая заминка называется турбоямой.

Чем больший размер имеет турбина, тем больший промежуток времени уходит на ее раскрутку. Это будет означать, что все двигатели внутреннего сгорания, которые оснащиваются турбинами с высоким уровнем давление, и, следовательно, с высокой мощностью будут страдать турбоямой в первую очередь. Турбины, посредством которых обеспечивается низкий уровень давление, не будет подобных провалов.

Тем не менее, из-за этого и поднимаемая мощность будет не очень высокой. От турбоямы можно избавиться посредством схемы с последовательным наддувом. В таком случае на малых оборотах будет начинать работать малоинерционный турбокомпрессор, при помощи которого будет происходить увеличение тяги на низких оборотах, а на высоких, при помощи повышения давления на выпуске будет включаться иной механизм.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?Да Нет

auto.today

Предназначение турбонаддува, его устройство и как он работает

Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала.

Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.

наддув авто

Применение турбонаддува

Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.

Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.

Устройство

Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.

Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.

Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.

Его устройство выглядит следующим образом:

устройство турбокомпрессора

Устройство турбонагнетателя:1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.

Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.

Как работает турбонаддув

Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.

как работает турбина

Принцип работы турбонаддува

Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.

Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.

О отрицательных особенностях турбонаддува

Конструкция системы турбонаддува обуславливает некоторые отрицательные особенности, возникающие при её работе.

Одна из них – эффект «турбоямы» (turbolag): при резком нажатии на педаль акселератора увеличение мощности двигателя происходит с задержкой. Причина этого в инерционности системы: нужно определённое время для увеличения давления в наддуве, если на газ нажали резко. Избежать этой ситуацию становится возможным, либо применяя турбину с изменяемой геометрией, либо используя два турбокомпрессора, работающих параллельно или последовательно (bi-turbo или twin-turbo), либо задействовав комбинированный наддув.

Второй неприятный момент – это «турбоподхват»: вслед за преодолением «турбоямы» происходит резкое увеличение давления в наддуве.

Турбина с изменяемой геометрией или VNT турбина, способна оптимизировать движение потока отработавших газов, меняя размер входного канала. Наиболее распространены такие турбины в серийных системах турбонаддува дизельных двигателей известных автопроизводителей (например, TDI у Volkswagen).

Турбонаддув с двумя параллельно работающими турбокомпрессорами находит большее применение для мощных V-образных двигателей. При этом на каждый ряд цилиндров двигателя работает свой турбокомпрессор. Выигрыш получается за счёт распределения инерции с одной большой турбины на две маленькие.

В случае установки двух турбин в последовательном режиме выигрыш производительности достигается путём работы разных турбокомпрессоров для разных значений оборотов двигателя. Изредка встречаются случаи установки трёх турбокомпрессоров последовательно (triple-turbo, например, у BMW), ещё реже – четырёх (quad-turbo у Bugatti).

При комбинированном наддуве (twincharger) совместно используется турбонаддув и механический наддув. Сжатие воздуха при низких оборотах коленчатого вала происходит с помощью механического нагнетателя. С увеличением оборотов в работу включается турбокомпрессор, а при достижении их определённой частоты работа механического нагнетателя прекращается (например, TSI у Volkswagen).

Видео — как работает турбина:

Применение турбонаддува особенно эффективно для дизельных двигателей мощных грузовиков: расход топлива увеличивается ненамного, зато мощность двигателя и крутящий момент заметно повышаются.

Турбокомпрессоры, наиболее мощные в пропорции к мощности двигателя, применяются для дизелей тепловозов. По абсолютному же значению, самые мощные турбокомпрессоры устанавливаются в судовые двигатели (до десятков тысяч киловатт).

Загрузка...

avto-i-avto.ru

Турбонаддув. Турбокомпрессор. Турбонагнетатель.

Турбонагнетатель производства фирмы Turbonetics,цена $5599.99Установка на двигатель турбонаддува является сегодня самым простым и относительно дешевым способом существенно поднять мощность двигателя, как бензинового, так и дизельного. Чтобы установить турбонаддув не нужно вскрывать двигатель, нужно только определиться с его производительностью, немножко места под ракушку, талант автослесаря, чтобы грамотно установить турбонаддув.

Также необходимо определиться с типом турбо системы, которая подойдет вашему двигателю, будь то турбина с двумя ракушками, приводимая в движение горячим потоком выхлопных газов, или же турбокомпрессор с жестким ременным приводом от коленвала. У каждой системы свои преимущества и недостатки, каждая имеет разный КПД и свои особенности установки и работы. В общем установить турбину на атмосферный двигатель не очень сложно, как говорится глаза боятся, руки делают.

Для начала типы систем турбонаддува:Турбокомпрессор с жестким приводом от коленвала напоминает по принципу работы масляный насос двигателя. Небольшие роторы турбокомпрессора имеют лопасти,скошенные под определенным углом, что позволяет им за счет высоких оборотов валов турбокомпрессора эффективно подавать воздух и создавать давление. К слову на основе этой технологии турбонаддува создано много моделей воздушных компрессоров, которые используются на производствах и особенно строителями. Часто такую систему называют лепестковый наддув, потому, что лопасти роторов турбокомпрессора похожи на лепестки. Такая система наддува будет постоянно создавать давление при заведенном двигателе, в этом заключается преимущество - отсутствие турбоямы. Довольно часто такую схему наддува применяют на оппозитных моторах. Но, как всегда есть одно но, давление,  создаваемое турбокомпрессором постоянно и одинаково и не зависит от оборотов коленвала, то есть, на низких оборотах двигателю нужно меньше воздуха и компрессор работает на низких оборотах но, давление создает, за счет малого потребления воздуха, когда же обороты коленвала возрастут, скорость вращения роторов турбокомпрессора тоже возрастает, возрастает и количество подаваемого воздуха, и опять же возрастает расход подаваемого воздуха, то есть как ни крути, а давление будет постоянным и одинаковым. Турбокомпрессор с ременным приводом.Турбонагнетатель, приводимый в движение от скорости горячих выхлопных газов на сегодняшний день является самым распространенным типом системы наддува. Его популярность заключается в его эффективности и надежности. КПД такого турбонагнетателя составляет в среднем около 70%, что очень неплохо. Принцип работы основан на разницах температур выхлопных газов и подаваемого в цилиндры воздуха. Температура воздуха, который подается в цилиндры как правило немного выше температуры воздуха окружающей среды (нагревается пока проходит через систему турбонаддува), температура же выхлопа доходит до 600-1000С, немало, а все газы как и большинство веществ на нашей планете при нагреве имеют свойство расширяться и увеличиваться в объёме. Получается в цилиндры поступает одно количество воздуха, а выходит гораздо больше, и чем больше газов попадет на крыльчатку турбины, тем быстрее она будет вращаться, а спаренная с ней крыльчатка наддува нагонит еще больше воздуха в цилиндры, чем больше воздуха попадет в цилиндры, тем больше может сгореть топлива, чем больше топлива сгорит, тем выше будет удельная мощность выдаваемая двигателем. Такой вот замкнутый круг. Но опять же обороты регулируются количеством подаваемого топлива и воздуха соответственно. Как было сказано выше температура выхлопных газов может достигать 1000С, которые разогревают турбину и поэтому в большинстве своем ракушки турбонаддува выполнены одна из аллюминия, так как этот металл имеет отличные теплообменные свойства, т.е. легко охлаждается, а вторая половина, та что наиболее подвержена температурным нагрузкам выполнена из особого сплава чугуна и стали. В общем обороты вала такого турбонагнетателя могут достигать 300 000 об/мин. Чтобы создать такой механизм, износо и жаростойкий, который будет работать десятилетиями, нужны дорогостоящие материалы и технологии, от того турбонагнетатель имеет такую цену (читайте также - "почему двигатель идет в разнос").Турбонагнетатель двигателя Wartsila-Sulzer RTA96-CВсе тоже свойство газов нашей атмосферы при нагреве расширяться, поставило перед разработчиками еще одну задачу. Атмосферный воздух, нагнетаемый хоть турбокомпрессором, хоть турбонагнетателем нагревается от сжатия (когда создается давление в системе впускных коллекторов) и от деталей самой системы турбонаддува, то есть, воздух, нагревшись расширился, при этом его объём увеличился,но количество содержащегося в нем кислорода осталось прежним. Один умный дядька ломая голову над тем чтобы еще придумать для улучшения показателей двигателя, чтобы не выгнали его с работы за безделие, просек эту тему и придумал интеркулер.Он придумал охлаждать воздух с помощью этого интеркулера. Холодный воздух имеет большую плотность нежели горячий, и поэтому несет в себе больше кислорода, а чем больше кислорода, тем лучше проходит реакция горения.И всё же, что такое интеркулер?- интеркулер (с англ. -"промежуточный охладитель") - это воздушный радиатор, который охлаждает воздух на пути в цилиндры и дополнительно выполняет роль рессивера, только и всего.Совершенно не случайно турбонагнетатели устанавливают на многие современные двигатели,будь то малолитражка или белазовский дизель-генератор Cummins QSK 78, на котором установлено целых шесть турбонагнетателей, даже самый большой в мире двигатель имеет турбонаддув. Установка турбонаддува является способом получить дополнительную мощность, и снизить количество вредных веществ в выхлопных газах за счет полного сгорания топлива.{webplayer width=680 height=400 type=youtube video=http://www.youtube.com/watch?v=d7JP7ElZycQ }

yamotorist.ru

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува. 

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Для устранения эффекта турбоямы используются три основных метода:

  • Использование системы с двумя (и более) турбокомпрессорами. Турбины могут устанавливаться параллельно – это допускается на двигателях V-образного типа. При этом каждая турбина устанавливается на свой ряд цилиндров. Идея данного метода в том, что две турбины меньшего размера обладают более низкой инерционностью, чем одна большая турбина. Турбины так же могут устанавливаться и последовательно, причем их может быть от двух до четырех (Bugatti). Увеличение производительности и максимальная эффективность турбонаддува в этом случае достигаются за счет того, что при разных оборотах двигателя используется свой турбокомпрессор.
  • Использование турбины с изменяемой геометрией. Подобный метод обеспечивает более рациональное использование энергии отработанных газов за счет изменения площади сечения входного канала турбины. Данный метод весьма часто используется на дизельных двигателях, например всем известная система TDI от Volkswagen.
  • Использование комбинированного типа турбонаддува. Данный метод позволяет применять симбиоз двух систем – механического и турбинного наддува. Механический наддув эффективен на малых оборотах коленвала, при которых сжатие воздуха обеспечивается нагнетателем механического типа. Турбонаддув применяется при высоких оборотах коленвала, где функцию нагнетания воздуха берет на себя турбинный компрессор. Наиболее распространенной системой комбинированного наддува является наддув двигателя TSI от Volkswagen.

autodromo.ru

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры. Турбокомпрессор.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Buchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

Аналог турбонаддува — приводной нагнетатель.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.Интеркулер.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Бывают и более изощрённые конструкции. Например, инженеры придумали устанавливать на мотор не одну, а две турбины. Одна работает на маленьких оборотах двигателя, создавая тягу на «низах», а вторая включается позже. Такое решение получило название twin-turbo и позволило убить сразу двух зайцев — и турбояму, и проблему нехватки мощности. В конце минувшего векаавтомобилис последовательной схемой подключения турбин имели некоторую популярность, их выпускали Nissan, Toyota, Mazda и даже Porsche. Однако в силу сложности конструкции век таких аппаратов оказался недолог, и распространение получили другие идеи.

Например, параллельный турбонаддув, или biturbo. То есть вместо одной турбины ставят две маленькие одинаковые турбины, которые работают независимо друг от друга. Идея такова: чем меньше турбина, тем быстрее она раскручивается, тем более «отзывчивым» получается двигатель. Как правило, две маленькие турбины ставили на V-образные двигатели, по одной на каждую «половинку».

Ещё один вариант — турбины с двумя «улитками», или twin-scroll. Одна из них (чуть большего размера) принимает выхлопные газы от одной половины цилиндров двигателя, вторая (чуть меньшего размера) — от второй половины цилиндров. Обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких.

Турбина twin-scroll имеет двойную улитку турбины.

Но и на этом конструкторы не успокоились. Естественно, чем городить две турбины, гораздо проще обойтись одной. Надо только сделать так, чтобы турбина одинаково эффективно работала во всём диапазоне оборотов. Так появились турбины с изменяемой геометрией. Здесь и начинается самое интересное. В зависимости от оборотов поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo». Автор: Влад Клепач

mensby.com

Что такое турбонаддув в автомобиле и как он работает

Турбонаддув современной конструкции – это сложное в техническом плане устройство. Первые системы для наддува двигателей появились еще в начале XX века. Наибольшее же распространение получила конструкция наддува, компрессор которой приводится от турбины, раскручиваемой выхлопными газами авто до высоких оборотов.

Энергия выхлопных газов бесплатна, поэтому мощность мотора при использовании турбокомпрессора значительно поднимается без ухудшения экономичности, а зачастую, экономичность двигателя даже улучшается (советы как уменьшить расход топлива). Из-за использования в конструкции турбины, такой вид наддува двигателя имеет всем хорошо известное название – турбонаддув.

Воздух при сжатии компрессором нагревается, плотность падает, и в цилиндры его помещается меньше, поэтому, довольно часто, после турбокомпрессора нагнетаемый воздух пропускают через специальный радиатор – интеркулер, в котором он охлаждается.

Частота вращения турбины и связанного с ней компрессора турбонаддува очень велика (больше ста тысяч оборотов в минуту), поэтому в них применяются подшипники скольжения с очень маленькими зазорами. Соответственно возрастает требовательность двигателя с турбонаддувом к качеству и чистоте масла. Конечно, стоимость этого агрегата тоже немаленькая.

Серьезным недостатком турбонаддува можно считать эффект так называемой ”турбоямы”. Он проявляется при резком нажатии на педаль акселератора – двигатель сперва ”задумывается” и только после этого начинает разгонять автомобиль.

Объясняется это тем, что турбине необходимо какое-то время для раскрутки до рабочих оборотов, и чтобы его уменьшить, на некоторых моделях турбокомпрессоров (как правило, предназначенных для легковых автомобилей) устанавливают специальный клапан, который перепускает часть воздуха с выхода компрессора обратно на его вход.

Таким образом, при закрытии дроссельной заслонки турбина продолжает вращаться с большой скоростью, а турбокомпрессор в это время работает “вхолостую”, перегоняя воздух по кругу. Нажатие на педаль газа закрывает этот клапан, и нагнетаемый воздух в полном объеме снова поступает во впускной коллектор. Обычно управление перепускным клапаном турбонаддува возлагают на электронику.

Другой разновидностью наддува является приводной компрессор, который, в отличии от турбонаддува, вращается коленчатым валом двигателя. Поскольку для его привода отбирается энергия у мотора, такие системы менее экономичны, чем аналогичные силовые агрегаты без компрессора или с турбонаддувом. Зато они надежнее, дешевле и не имеют ”турбоямы”, что очень важно для спортивных автомобилей, где при разгоне каждая доля секунды на счету.

Такие компрессоры часто используют западные тюнинговые компании для увеличения мощности моторов – это гораздо дешевле, чем увеличивать рабочий объем, организуя мелкосерийное производство поршней, коленвалов и других технологически сложных деталей. Их используют такие автомобильные “гранды” как Mercedes, General Motors, Ford, Jaguar, Mazda и другие автопроизводители.

unit-car.com


Станции

Районы

Округа

RoadPart | Все права защищены © 2018 | Карта сайта