Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

Устройство и работа: Система впрыска топлива. Системы впрыска топлива бензиновых двигателей


СИСТЕМЫ ВПРЫСКА БЕНЗИНА

Первые системы впрыска были механическими (рис. 2.61), а не электронными, и некоторые из них (например, высокоэффективная система BOSCH) были чрезвычайно остроумными и хорошо работали. Впервые же система механического впрыска топлива была разработа­ на компанией Daimler Benz, а первый серийный автомобиль с впрыском бензина был выпу­ щен еще в 1954 г. Основными преимуществами системы впрыска по сравнению с карбюра­ торными системами являются следующие:

— отсутствие дополнительного сопротивления потоку воздуха на впуске, имеющему место в карбюраторе, что обеспечивает повышение наполнения цилиндров и литровой мощно­ сти двигателя;

— более точное распределение топлива по отдельным цилиндрам;

— значительно более высокая степень оптимизации состава горючей смеси на всех режи­ мах работы двигателя с учетом его состояния, что приводит к улучшению топливной эко­ номичности и снижению токсичности отработавших газов.

Хотя в конце концов оказалось, что лучше для этой цели использовать электронику, которая дает возможность сделать систему компактнее, надежнее и более адаптируемой к требовани­ ям различных двигателей. Некоторые из первых систем электронного впрыска представляли собой карбюратор, из которого удаляли все «пассивные» топливные системы и устанавливали одну или две форсунки. Такие системы получили название «центральный (одноточечный) впрыск» (рис. 2.62 и 2.64).

 

 

 

Рис. 2.62. Агрегат центрального (одноточечного) впрыска

Рис. 2.64. Схема системы центрального впрыска топлива: 1 — подача топлива;

Рис. 2.63. Электронный блок управления 2 — поступление воздуха; 3 — дроссельная четырехцилиндровым двигателем заслонка; 4 — впускной трубопровод; Valvetronic BMW 5 — форсунка; 6 — двигатель

 

В настоящее время наибольшее распространение получили системы распределенного (многоточечного) электронного впрыска. На изучении этих систем питания необходимо оста­ новиться более подробно.

 

 

СИСТЕМА ПИТАНИЯ С ЭЛЕКТРОННЫМ РАСПРЕДЕЛЕННЫМ ВПРЫСКОМ БЕНЗИНА (ТИПА MOTRONIC)

 

В системе центрального впрыска подача смеси и ее распределение по цилиндрам осущест­ вляются внутри впускного коллектора (рис. 2.64).

Наиболее современная система распределенного впрыска топлива отличается тем, что во впускном тракте каждого цилиндра устанавливается отдельная форсунка, которая в опре­ деленный момент впрыскивает дозированную порцию бензина на впускной клапан соответ­ ствующего цилиндра. Бензин, поступивший

в цилиндр, испаряется и перемешивается с воздухом, образуя горючую смесь. Двига­ тели с такими системами питания обладают лучшей топливной экономичностью и пони­ женным содержанием вредных веществ в отработавших газах по сравнению с кар­ бюраторными двигателями.

Работой форсунок управляет электрон­ ный блок управления (ЭБУ) (рис. 2.63), пред­ ставляющий собой специальный компью­ тер, который получает и обрабатывает элект­ рические сигналы от системы датчиков, сравнивает их показания со значениями,

хранящимися в памяти компьютера, и выда­ ет управляющие электрические сигналы на электромагнитные клапаны форсунок и другие исполнительные устройства. Кроме того, ЭБУ постоянно проводит диагностику

Рис. 2.65. Схема системы распределенного впрыска топлива Motronic: 1 — подача топ­ лива; 2 — поступление воздуха; 3 — дрос­ сельная заслонка; 4 — впускной трубопро­ вод; 5 — форсунки; 6 — двигатель

системы впрыска топлива и при возникно­ вении неполадок в работе предупреждает водителя с помощью контрольной лампы, установленной в щитке приборов. Серьез­ ные неполадки записываются в памяти бло­ ка управления и могут быть считаны при проведении диагностики.

Система питания с распределенным впрыском имеет следующие составные части:

— система подачи и очистки топлива;

— система подачи и очистки воздуха;

— система улавливания и сжигания паров бензина;

— электронная часть с набором датчиков;

— система выпуска и дожигания отработав­ ших газов.

Система подачи топливасостоит из топ­ ливного бака, электрического бензонасоса, топливного фильтра, трубопроводов и топ­ ливной рампы, на которой установлены форсунки и регулятор давления топлива.

 

Рис. 2.66. Погружной электрический топливный насос; а — топливозаборник с насо­ сом; б — внешний вид насоса и насосная секция роторного типа топливного насоса с электрическим приводом; в — шестеренчатая; г — роликовая; д — пластинчатая; е — схема работы насосной секции роторного типа:1 — корпус; 2 — зона всасывания; 3 — ротор; 4 — зона нагнетания; 5 — направление вращения

 

 

Рис. 2.67. Топливная рампа пятицилиндрового двигателя с установленными на ней форсунками, регулятором давления и штуцером для контроля давления

Электробензонасос(обычно роликовый) может устанавливаться как внутри бензобака (рис. 2.66), так и снаружи. Бензонасос включается с помощью электромагнитного реле. Бен­ зин засасывается насосом из бака и одновременно омывает и охлаждает электродвигатель насоса. На выходе из насоса имеется обратный клапан, который не позволяет топливу выте­ кать из напорной магистрали при выключенном бензонасосе. Для ограничения давления служит предохранительный клапан.

Поступающее от бензонасоса топливо, под давлением не менее 280 кПа проходит через топливный фильтр тонкой очистки и поступает к топливной рампе. Фильтр имеет металлический корпус, заполненный бумажным фильтрующим элементом.

Рампа(рис.2.67) представляет собой полую конструкцию, к которой крепятся форсунки и регулятор давления. Рампа крепится болтами к впускному трубопроводу двигателя. На рампе также устанавливается штуцер, который служит для контроля давления топлива. Штуцер закрыт резьбовой пробкой для предохранения от загрязнения.

Форсунка(рис. 2.68) имеет металличес­ кий корпус, внутри которого расположен электромагнитный клапан, состоящий из электрической обмотки, стального сер­ дечника, пружины и запорной иглы. В верхней части форсунки расположен не­ большой сетчатый фильтр, предохраняю­ щий распылитель форсунки (имеющий очень маленькие отверстия) от загрязне­ ния. Резиновые кольца обеспечивают не­ обходимое уплотнение между рампой, форсункой и посадочным местом во впуск­ ном трубопроводе. Фиксация форсунки

на рампе осуществляется с помощью спе­ циального зажима. На корпусе форсунки имеются электрические контакты для под-

Рис. 2.68. Электромагнитные форсунки бензинового двигателя: слева — GM, справа — Bosch

Рис. 2.69. Регулятор давления топлива:1 — корпус; 2 — крышка; 3 — патрубок для вакуумного шланга; 4 — мембрана; 5 — кла­ пан; А — топливная полость; Б — вакуумная полость

 

 

Рис. 2.70. Пластмассовый впускной тру­ бопровод с ресивером и дроссельным патрубком

ключения электрического разъема. Регулирование количества топлива, впрыскиваемого форсункой, осуществляется изменением длины электрического импульса, подаваемого на контакты форсунки.

Регулятор давлениятоплива (рис. 2.69) служит для изменения давления в рампе, в за­ висимости от разрежения во впускном трубопроводе. В стальном корпусе регулятора распо­ ложен подпружиненный игольчатый клапан, соединенный с диафрагмой. На диафрагму, с од­ ной стороны воздействует давление топлива в рампе, а с другой разрежение во впускном трубопроводе. При увеличении разрежения, во время прикрытия дроссельной заслонки, клапан открывается, излишки топлива сливаются по сливному трубопроводу обратно в бак, а давление в рампе уменьшается.

В последнее время появились системы впрыска, в которых отсутствует регулятор давле­ ния топлива. Например, на рампе двигателя V8 автомобиля New Range Rover нет регулятора давления, и состав горючей смеси обеспечивается только работой форсунок, получающих сигналы от электронного блока.

Система подачи и очистки воздухасостоит из воздушного фильтра со сменным фильт­ рующим элементом, дроссельного патрубка с заслонкой и регулятором холостого хода, реси­ вера и выпускного трубопровода (рис. 2.70).

Ресивердолжен иметь достаточно большой объем, для того чтобы сглаживались пульса­ ции поступающего в цилиндры двигателя воздуха.

Дроссельный патрубокзакреплен на ресивере и служит для изменения количества воз­ духа, поступающего в цилиндры двигателя. Изменение количества воздуха осуществляется с помощью дроссельной заслонки, поворачиваемой в корпусе с помощью тросового приво­ да от педали «газа». На дроссельном патрубке установлены датчик положения дроссельной заслонки и регулятор холостого хода. В дроссельном патрубке имеются отверстия для забо­ ра разрежения, которое используется системой улавливания паров бензина.

В последнее время конструкторы систем впрыска начинают применять электропривод управления, когда между педалью «газа» и дроссельной заслонкой нет механической связи (рис. 2.71). В таких конструкциях на педали «газа» устанавливаются датчики ее положения, а дроссельная заслонка поворачивается шаговым электродвигателем с редуктором. Элект­ родвигатель поворачивает заслонку по сигналам компьютера, управляющего работой дви­ гателя. В таких конструкциях не только обеспечивается четкое выполнение команд водителя, но и имеется возможность влиять на работу двигателя, исправляя ошибки водителя, дейст­ вием электронных систем поддержания устойчивости автомобиля и других современных электронных систем обеспечения безопасности.

 

Рис. 2.71. Дроссельная заслонка с элект-Рис. 2.72. Индуктивные датчики положе- рическим приводом обеспечивает воз- ния коленчатого и распределительного можность управления двигателем по про- валов

Водам

Датчик положения дроссельной заслонкипредставляет собой потенциометр, ползунок которого соединен с осью дроссельной заслонки. При повороте дросселя, изменяется электри­ ческое сопротивление датчика и напряжение его питания, которое является выходным сигна­ лом для ЭБУ. В системах электропривода управления дроссельной заслонкой используется не меньше двух датчиков, чтобы компьютер мог определять направления перемещения заслонки.

Регулятор холостого ходаслужит для регулировки оборотов коленчатого вала двигателя на холостом ходу путем изменения количества воздуха, проходящего в обход закрытой дроссель­ ной заслонки. Регулятор состоит из шагового электродвигателя, управляемого ЭБУ, и конусного клапана. В современных системах, имеющих более мощные компьютеры управления работой двигателя, обходятся без регуляторов холостого хода. Компьютер, анализируя сигналы от много­ численных датчиков, управляет длительностью поступающих к форсункам импульсов электри­ ческого тока и работой двигателя на всех режимах, в том числе и на холостом ходу.

Между воздушным фильтром и патрубком впускного трубопровода устанавливается дат­ чик массового расхода топлива.Датчик изменяет частоту электрического сигнала, посту­ пающего к ЭБУ, в зависимости от количества воздуха, проходящего через патрубок. От этого датчика поступает к ЭБУ и электрический сигнал, соответствующий температуре поступаю­ щего воздуха. В первых системах электронного впрыска использовались датчики, оценива­ ющие объем поступающего воздуха. Во впускном патрубке устанавливалась заслонка, которая отклонялась на разную величину в зависимости от напора поступающего воздуха. С заслон­ кой был связан потенциометр, который изменял сопротивление в зависимости от величины поворота заслонки. Современные датчики массового расхода воздуха работают, используя принцип изменения электрического сопротивления нагретой проволоки или токопроводя- щей пленки при охлаждении ее поступающим потоком воздуха. Управляющий компьютер, получающий также сигналы от датчика температуры поступающего воздуха, может опреде­ лить массу поступившего в двигатель воздуха.

Для корректного управления работой системы распределенного впрыска электронному бло­ ку требуются сигналы и от других датчиков. К последним относятся: датчик температуры охлажда­ ющей жидкости, датчик положения и частоты вращения коленчатого вала, датчик скорости авто­ мобиля, датчик детонации, датчик концентрации кислорода (устанавливается в приемной трубе системы выпуска отработавших газов в варианте системы впрыска с обратной связью).

В качестве температурных датчиков в настоящее время в основном используются полупровод­ ники, изменяющие электрическое сопротивление при изменении температуры. Датчики положе­ ния и скорости вращения коленчатого вала обычно выполняются индуктивного типа (рис. 2.72). Они выдают импульсы электрического тока при вращении маховика с метками на нем.

 

Рис.2.73. Схема работы адсорбера:1 — всасываемый воздух; 2 — дроссельная заслонка; 3 — впускной коллектор двигателя; 4 — клапан продувки сосуда с активированным углем; 5 — сигнал от ECU; 6 — сосуд с активированным углем; 7 — окружающий воздух; 8 — топ­ ливные пары в топливном баке

 

Система питания с распределенным впрыском может быть последовательной или парал­ лельной. В параллельной системе впрыска, в зависимости от числа цилиндров двигателя, одновременно срабатывают несколько форсунок. В системе с последовательным впрыском в нужный момент времени срабатывает только одна, конкретная форсунка. Во втором слу­ чае ЭБУ должен получать информацию о моменте нахождения каждого поршня вблизи ВМТ в такте впуска. Для этого требуется не только датчик положения коленчатого вала, но и дат­ чик положения распределительного вала.На современных автомобилях, как правило, уста­ навливаются двигатели с последовательным впрыском.

Для улавливания паров бензина,который испаряется из топливного бака, во всех сис­ темах впрыска используются специальные адсорберы с активированным углем (рис. 2.73). Активированный уголь, находящийся в специальной емкости, соединенной трубопроводом с топливным баком, хорошо поглощает пары бензина. Для удаления бензина из адсорбера последний продувается воздухом и соединяется с впускным трубопроводом двигателя, Для того

чтобы работа двигателя при этом не нарушалась, продувка производится только на опреде­ ленных режимах работы двигателя, с помо­ щью специальных клапанов, которые откры­ ваются и закрываются по команде ЭБУ.

В системах впрыска с обратной связью ис­ пользуются датчики концентрации кислоро­ дав отработавших газах, которые устанавли­ ваются в выпускной системе с каталитиче­ ским нейтрализатором отработавших газов.

Каталитический нейтрализатор(рис. 2.74;

Рис. 2.74. Двухслойный трехкомпонент- ный каталитический нейтрализатор отра­ ботавших газов:1 — датчик концентрации кислорода для замкнутого контура управления; 2 — монолитный блок-носитель; 3 — мон­ тажный элемент в виде проволочной сетки; 4 — двухоболочковая теплоизоляция нейт­ рализатора

2.75) устанавливается в выпускной системе для уменьшения содержания вредных веществ в отработавших газах. Нейтрали­ затор содержит один восстановительный (родий) и два окислительных (платина и пал­ ладий) катализатора. Окислительные ката­ лизаторы способствуют окислению несго- ревших углеводородов (СН) в водяной пар,

 

Рис. 2.75. Внешний вид нейтрализатора

а окиси углерода (СО) в углекислый газ. Вос­ становительный катализатор восстанавли­ вает вредные оксиды азота NOx в безвредный азот. Так как эти нейтрализаторы снижают в отработавших газах содержание трех вред­ ных веществ, они называются трехкомпо- нентными.

Работа автомобильного двигателя на этилированном бензине приводит к выходу из строя дорогостоящего каталитического нейтрализатора. Поэтому в большинстве стран использование этилированного бен­ зина запрещено.

Трехкомпонентный каталитический нейт­ рализатор работает наиболее эффективно, если в двигатель подается смесь стехиомет- рического состава, т. е. при соотношении воздуха и топлива как 14,7:1 или коэффици­ енте избытка воздуха, равном единице. Ес­ ли воздуха в смеси слишком мало (т. е. мало кислорода), тогда СН и СО не полностью окислятся (сгорят) до безопасного побочного продукта. Если же воздуха слишком много, то не может быть обеспечено разложение N0X на кислород и азот. Поэтому появилось новое поколение двигателей, в которых со­ став смеси регулировался постоянно для получения точного соответствия коэффици­ ента избытка воздуха сс=1 с помощью дат­ чика концентрации кислорода (лямбда-зон­ да) (рис. 2.77), встраиваемого в выпускную систему.

 

Рис. 2.76. Зависимость эффективности действия нейтрализатора от коэффици­ ента избытка воздуха

Рис. 2.77. Устройство датчика концентра­ ции кислорода:1 — уплотнительное коль­ цо; 2 — металлический корпус с резьбой и шестигранником «под ключ»; 3 — керамичес­ кий изолятор; 4 — провода; 5 — уплотнитель- ная манжета проводов; 6 — токоподводя- щий контакт провода питания нагревателя; 7 — наружный защитный экран с отверсти­ ем для атмосферного воздуха; 8 — токо­ съемник электрического сигнала; 9 — элек­ трический нагреватель; 10 — керамический наконечник; 11 — защитный экран с отвер­ стием для отработавших газов

Этот датчик определяет количество кислорода в отработавших газах, а его электрический сигнал использует ЭБУ, который соответственно изменяет количество впрыскиваемого топ­ лива. Принцип действия датчика заключается в способности пропускать через себя ионы ки­ слорода. Если содержание кислорода на активных поверхностях датчика (одна из которой контактирует с атмосферой, а другая с отработавшими газами) значительно отличается, про­ исходит резкое изменение напряжения на выводах датчика. Иногда устанавливают два дат­ чика концентрации кислорода: один — до нейтрализатора, а другой — после.

Для того чтобы катализатор и датчик концентрации кислорода могли эффективно работать, они должны быть прогреты до определенной температуры. Минимальная температура, при ко­ торой задерживается 90 % вредных веществ, составляет порядка 300 "С. Необходимо также избегать перегрева нейтрализатора, поскольку это может привести к повреждению наполни­ теля и частично блокировать проход для газов. Если двигатель начинает работать с перебоя­ ми, то несгоревшее топливо догорает в катализаторе, резко увеличивая его температуру. Ино­ гда может быть достаточно нескольких минут работы двигателя с перебоями, чтобы полностью повредить нейтрализатор. Вот почему электронные системы современных двигателей должны выявлять пропуски в работе и предотвращать их, а также предупреждать водителя о серьезно­ сти этой проблемы. Иногда для ускорения прогрева каталитического нейтрализатора после пу­ ска холодного двигателя применяют электрические нагреватели. Датчики концентрации кисло­ рода, применяющиеся в настоящее время, практически все имеют нагревательные элементы. В современных двигателях, с целью ограничения выбросов вредных веществ в атмосфе­

ру во время прогрева двигателя, предварительные каталитические найтрализаторы устана­ вливают максимально близко к выпускному коллектору (рис. 2.78), чтобы обеспечить быст­ рый прогрев нейтрализатора до рабочей температуры. Кислородные датчики установлены до и после нейтрализатора.

Для улучшения экологических показателей работы двигателя необходимо не только со­ вершенствовать нейтрализаторы отработавших газов, но и улучшать процессы, протекаю­ щие в двигателе. Содержание углеводородов стало возможным снизить за счет уменьшения

«щелевых объемов», таких как зазор между поршнем и стенкой цилиндра над верхним ком­ прессионным кольцом и полостей вокруг седел клапанов.

Тщательное исследование потоков горючей смеси внутри цилиндра с помощью компью­ терной техники дало возможность обеспечить более полное сгорание и низкий уровень СО. Уровень NOx был уменьшен с помощью системы рециркуляции отработавших газов путем за­ бора части газа из выпускной системы и подачи его в поток воздуха на впуске. Эти меры и быстрый, точный контроль за работой двигателя на переходных режимах могут свести вредные выбросы к минимуму еще до катализатора. Для ускорения прогрева каталитическо­ го нейтрализатора и выхода его на рабочий режим используется также способ вторичной по­ дачи воздуха в выпускной коллектор с помощью специального электроприводного насоса.

Другим эффективным и распростра­ ненным способом нейтрализации вредных продуктов в отработавших газах является пламенное дожигание, которое основано на способности горючих составляющих отработавших газов (СО, СН, альдегиды) окисляться при высоких температурах. Отработавшие газы поступают в камеру дожигателя, имеющую эжектор, через ко­ торый поступает нагретый воздух из теп­ лообменника. Горение происходит в камере,

Рис. 2.78. Выпускной коллектор двигателяа для воспламенения служит запальная

с предварительным нейтрализаторомсвеча.

НЕПОСРЕДСТВЕННЫЙ ВПРЫСК БЕНЗИНА

 

Первые системы впрыска бензина непосредственно в цилиндры двигателя появились еще в первой половине XX в. и использовались на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы XIX в., потому что такие двигатели получались дорогостоящи­ ми, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсун­ ки для непосредственного впрыска бензина работают в более сложных условиях, чем те, что установлены во впускном трубопроводе. Головка блока, в которую должны уста­ навливаться такие форсунки, получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьша­ ется, а значит, для хорошего смесеобразования необходимо подавать бензин под боль­ шим давлением.

Со всеми этими трудностями удалось справиться специалистам компании Mitsubishi, ко­ торая впервые применила систему непосредственного впрыска бензина на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection — непосредственный впрыск бензина) появился в 1996 г. (рис. 2.81). Сейчас двигатели с непосредственным впрыском бензина выпускают Peugeot-Citroen, Renault, Toyota, DaimlerChrysler и другие производители (рис. 2.79; 2.80; 2.84).

Преимущества системы непосредственного впрыска заключаются в основном в улуч­ шении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать

 

Рис. 2.79. Схема двигателя Volkswagen FSI с непосредственным впрыском бензина

Рис.2.80. В 2000 г. компания PSA Peugeot-Citroen представила свой двухлитровый че­ тырехцилиндровый двигатель HPI с непосредственным впрыском бензина, который мог работать на бедных смесях

на очень бедных смесях. Повышение мощности обусловлено в основном тем, что орга­ низация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается устано­ вить степень сжатия свыше 10 из-за наступления детонации).

В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электро­ магнитная форсунка, установленная в го­ ловке блока цилиндров,впрыскивает бен­ зин непосредственно в цилиндр двигателя и может работать в двух режимах. В зави­ симости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей (рис. 2.82). Днище поршня имеет специальную форму в виде сферической выемки (рис. 2.83). Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топли­ во к свече зажигания, установленной по центру камеры сгорания. Впускной трубо­ провод расположен не сбоку, а вертикаль­

Рис. 2.81. Двигатель Mitsubishi GDI — пер­ вый серийный двигатель с системой не­ посредственного впрыска бензина

но сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой ско­ ростью.

 

Рис.2.82. Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощ­ ный (а) или компактный (б) факел распыленного бензина

В работе двигателя с системой непосредственного впрыска можно выделить три различ­ ных режима:

1) режим работы на сверхбедных смесях;

2) режим работы на стехиометрической смеси;

3) режим резких ускорений с малых оборотов;

Первый режимиспользуется в том случае, когда автомобиль движется без резких уско­ рений со скоростью порядка 100-120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо ком­ пактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне на­ правляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.

Второй режимиспользуется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движе­ ния требует стехиометрического состава смеси. Смесь такого состава легко воспламеня­ ется, но у двигателя GDI повышена степень

сжатия, и для того чтобы не наступала де­ тонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное то­ пливо заполняет цилиндр и, испаряясь, ох­ лаждает поверхности цилиндра, снижая вероятность появления детонации.

Третий режимнеобходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель ра­

ботает на малых оборотах. Этот режим рабо­ ты двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для

Рис. 2.83. Поршень двигателя с непосред­ ственным впрыском бензина имеет спе­ циальную форму (процесс сгорания над поршнем)

4. Заказ № 1031.97

Рис. 2.84. Конструктивные особенности двигателя с непосредственным впрыском бен­ зина Audi 2.0 FSI

его охлаждения мощным факелом впрыскивается сверхбедная смесь (а=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает.

По сравнению с обычным двигателем с системой питания с распределенным впры­ ском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасыва­ ет в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями тако­ го типа, они очень чувствительны к содержанию серы в бензине.

Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного.

 

Рис. 2.85. Работа форсунки Orbital

Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топ­ ливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факе­ лом впрыскивается топливно-воздушная смесь в виде аэрозоля (рис. 2.85).

Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечи­ вает ее хорошее воспламенение.

 

§14

Похожие статьи:

poznayka.org

Что такое впрыск топлива?

Впрыск топлива – это система определенных доз топлива в цилиндры двигателя. На сегодняшний момент существует множество различных комплектующих, которые обеспечивающих подачу топлива: моно-впрыск, распределительный, механический и непосредственный тип подачи горючего. Сегодня мы более подробно поговорим о современных системах подачи топлива.

Впрыск топлива

Впрыск топлива

В представленной нами статье вы легко сможете найти ответы на такие довольно распространенные вопросы:

  • Что собой представляет и как работает система впрыска?
  • Основные типы схем впрыскивания;
  • Каким бывает впрыск топлива, и какое влияние он оказывает на характеристики двигателя?

Что собой представляет и как работает система впрыска топлива?

Современные автомобили оснащены различными системами подачи бензина. Система впрыска горючего или как ее еще называют инжекторной, обеспечивает подачу бензиновой смеси. На современных двигателях система впрыска полностью вытеснила карбюраторную схему питания. Несмотря на это, среди автомобилистов и по сей день нет единственного мнения о том, какая же из них лучше, потому как каждая из них имеет свои достоинства и недостатки. Прежде чем разбираться с принципом работы и типами систем впрыска топлива необходимо разобраться с ее элементами. Итак, система впрыска горючего состоит из таких основных элементов:

  • Дроссельная заслонка;
  • Ресивер;
  • Четыре форсунки;
  • Канал.

Теперь рассмотрим принцип работы системы подачи топлива в двигатель. Подача воздуха регулируется при помощи дроссельной заслонки, и прежде чем разделиться на четыре потока накапливается в ресивере. Ресивер нужен для правильного расчета массовых затрат воздуха, потому как проводится измерение общих массовых затрат или давления в ресивере. Ресивер должен быть достаточного размера для того, чтобы исключить возможность возникновения воздушного голодания цилиндров во время большого потребления воздуха, а также сглаживания пульсации на пуске. Четыре форсунки располагаются в канале в непосредственной близости от впускных клапанов.

Система впрыска

Система впрыска

Система впрыска топлива применяется как на бензиновых, так и на дизельных двигателях. К тому же, конструкция и принцип работы подачи бензина дизельных и бензиновых двигателей имеют значительные различия. На бензиновых двигателях при помощи подачи топлива образовывается однородная топливовоздушная смесь, принудительно воспламеняющаяся от искр. На дизельных двигателях подача топливной смеси проходит под высоким давлением, доза топливной смеси смешивается с горячим воздухом и практически сразу воспламеняется. Давление определяет размер порции впрыскиваемой топливной смеси, а значит, и мощность двигателя. Поэтому мощность двигателя прямо пропорционально зависит от давления. То есть чем больше давления подачи топлива, чем больше будет мощность двигателя. Схема топливной смеси является составной частью транспортного средства. Главным рабочим “органом” абсолютно каждой схемы впрыскивания является форсунка.

Система впрыскивания топлива на бензиновых двигателях

Зависимо от метода образования топливовоздушной смеси различают такие системы центрального впрыскивания, непосредственного и распределенного типа. Система распределенного и центрального впрыскивания является схемой предварительного впрыскивания. То есть впрыскивание в них проходит, не доходя к камере сгорания, которая находится во впускном коллекторе.

Центральное впрыскивание (или моновпрыск) проходит при помощи одной-единственной форсунки, которая устанавливается во впускном коллекторе. На сегодняшний момент система такого типа не производится, но еще встречается на легковых машинах. Такой тип достаточно простой и надежный, но имеет повышенные затраты горючего и низкие экологические показатели.

Распределительное впрыскивание горючего – это подача топливной смеси во впускной коллектор через отдельную для каждого цилиндра топливную форсунку. Образовывается топливовоздушная смесь во впускном коллекторе. Она является самой распространенной схемой впрыскивания топливной смеси на бензиновых двигателях. Первым и основным преимуществом распределенного типа является экономичность. К тому же, из-за более полного сгорания топлива за одни цикл машины с таким типом впрыскивания приносят меньше вреда окружающей среде вредными выбросами. При точном дозировании топливной смеси риск возникновения непредвиденных сбоев в функционировании на экстремальных режимах сводится практически к нулю. Недостаток этого типа системы впрыскивания заключается в довольно сложной и полностью зависящей от электроники конструкции. Из-за большого количества компонентов ремонт и диагностика этого типа возможна исключительно в условиях автомобильного сервисного центра.

Процесс впрыска топлива

Процесс впрыска топлива

Один из самых перспективных типов подачи горючего является непосредственная система впрыска топлива. Подача смеси проходит непосредственно в камеру сгорания всех цилиндров. Схема подачи дает возможность создавать оптимальный состав топливовоздушной смеси во время функционирования всех режимов работы двигателя, увеличить уровень сжатия, экономичность топлива, увеличение мощности, а также понижение вредных выбросов. Недостаток этого типа впрыскивания заключается в сложной конструкции, а также высоких эксплуатационных требований. Для того чтобы снизить уровень выброса твердых частиц в атмосферу вместе с отработанными газами используется комбинированное впрыскивание, которое объединяет схему непосредственной и распределенной подачей бензина на единственном двигателе внутреннего сгорания.

Впрыск топлива в двигатель может иметь электронное или механическое управление. Самым лучшим считается электронное управление, которое обеспечивает значительную экономию горючей смеси, а также сокращение вредных выбросов. Впрыскивание топливной смеси в схеме может проходить импульсно или непрерывно. Самым перспективным и экономичным считается импульсный впрыск горючей смеси, который использует все современные типы. В двигателе эта схема обычно объединяется с зажиганием и образовывает объединенную схему подачи горючей смеси и зажигания. Согласование функционирования схем подачи топлива обеспечивается благодаря схеме управления двигателем.

Надеемся, что данная статья помогла вам найти решение в проблемах и вы нашли ответы на все вопросы, которые относятся к этой теме. Соблюдайте правила дорожного движения и будьте бдительны во время поездок!

Похожие статьи:

autodont.ru

Устройство и работа: Система впрыска топлива

Система впрыска топливаСистема впрыска топлива

Каждый автолюбитель с легкостью ответит, что машина движется благодаря сгоранию топлива. Однако сказать, каким образом горючее попадает непосредственно в камеры сгорания силового агрегата, многие затрудняются. Сегодня мы поговорим об основных системах впрыска топливовоздушной смеси, активно применяющихся в современных автомобилях с бензиновыми моторами.

Функции системы топливного впрыска

Главное назначение любой инжекторной системы состоит в обеспечении камер сгорания необходимым количеством топлива, пропорциональным объему поступившего в двигатель воздуха. Системы впрыска применяются как на бензиновых движках, так и на дизелях, но заметим, что каждая модель агрегата предусматривает свои особенности впрыска горючего. Например, бензиновые моторы воспламеняют поступившую смесь принудительно, с помощью искры, исходящей от свечей зажигания. С дизельными ДВС ситуация иная. Горючее внутрь их рабочих камер поступает под значительным давлением, после чего, соединяясь с раскаленными газами предыдущего цикла, самопроизвольно воспламеняется.

Впрыск является важной частью системы топливного питания. Его основным элементом выступают форсунки, именуемые инжектором.

Разновидности впрыска бензиновых двигателей

Для бензиновых агрегатов применяются несколько рабочих топливных систем: моно-впрыск (центральная подача), система распределенного впрыска (многоточечный впрыск), а также комбинированные и непосредственные системные разновидности.

1. Моно-впрыск

Поставка топлива в камеры сгорания у подобных систем осуществляется с помощью единичной форсунки, располагающейся внутри впускного коллектора. Именно потому, что форсунка всего одна, данное устройство получило название «моно-впрсык». Главным «плюсом» моно-впрыска является простота его устройства и великолепная надежность. Отрицательной стороной использования данной схемы стала низкая экологичность, превышающая рамки современных стандартов, и повышенный топливный расход автомобилей, оборудованных централизованной подачей горючего. Моно-впрыск утратил былую актуальность. В наши дни его можно встретить лишь в устаревших, уже не выпускающихся моделях.

2. Распределенный впрыск

Особенность устройства системы распределенного впрыска состоит в наличии нескольких форсунок, по количеству совпадающих с числом цилиндров, установленных в двигателе. Подачу бензина они осуществляют многоточечно, заполняя каждую камеру сгорания посредством её личного, если можно так выразиться, инжектора. Образование топливовоздушной смеси при этом происходит исключительно внутри впускного коллектора. К достоинствам распределенного впрыска можно отнести его экологичность, достойную величину топливного расхода и незначительные требования к качеству заливаемого бензина. Такая разновидность систем получила наибольшее распространение. Основная масса автомашин оснащена именно распределенным впрыском, выполняющим свою работу наиболее эффективно.

3. Система комбинированного впрыска

Подобное конструктивное устройство можно назвать промежуточным вариантом между моно-впрыском и системой распределенного впрыска. Данная разновидность предусматривает как непрерывную подачу горючего, так и импульсную. Ведущие профильные специалисты называют импульсную подачу наиболее актуальной в виду её высочайшей продуктивности. Ответственными за выбор метода впрыска являются специальные органы управления, которые могут быть и полностью электронными, и обычными механическими. Преимуществом использования комбинированного впрыска является наилучшая экологичность, достигаемая за счет снижения количества вредных выбросов. В качестве «минусов» выделим сложность устройства и, как следствие, высокую стоимость создания таких систем.

4. Непосредственный впрыск

Устройство непосредственного впрыска чрезвычайно похоже на схему распределенного впрыска, однако существует одно маленькое, но чрезвычайно важное отличие, — форсунки у неё располагаются не около цилиндров, а внутри них. Такое устройство позволило осуществлять управление фазами и длительностью впрыска, так как отсутствует прямая зависимость от работы впускного клапана. Помимо этого, непосредственный впрыск помог значительно снизить детонации, возникающие во время воспламенения смеси, а также послужил дополнительным средством охлаждения отработанных газов. «Плюсом» применения систем распределенного впрыска стало их высочайшая экономичность и более качественная работа двигателя. К «минусам» отнесем необходимость наличия насоса, подающего топливо под высочайшим давлением, что несколько усложнило устройство системы.

Подведем итоги

Подводя итоги, скажем, что практически все перечисленные нами типы впрыска топлива находят свое применение в автомобильной промышленности. Исключение составляет разве что морально устаревший моно-впрыск. Остальные схемы имеют гораздо больше положительных качеств, нежели недостатков. Это и обуславливает их широчайшую технологическую востребованность.

servicing-auto.ru

система впрыска бензина

Непосредственная система впрыска бензина

система впрыска бензина

«Нет плохих идей, есть не доведенные до ума или нереализованные», — так, наверное, считают японские инженеры. По крайней мере вряд ли кто-то еще сравнится с ними по числу оригинальных решений, примененных на серийных автомобилях. «А это мы придумали, мы же над этим работали!», — кричат потом в Европе и Америке. Придумали. Но не сделали. Или сочли невыгодным и бросили. А теперь догоняйте!

Система впрыска бензина (СНВТ) (Gasoline Direct Injection (GDI)) — Инжекторная система подачи топлива для бензиновых двигателей внутреннего сгорания с непосредственным впрыском топлива, у которой форсунки расположены в головке блока цилиндров и впрыск топлива происходит непосредственно в цилиндры. Топливо подается под большим давлением в камеру сгорания каждого цилиндра в противоположность стандартной системе распределённого впрыска топлива, где впрыск производится во впускной коллектор. Источник

Уже более 100 лет на автомобили устанавливается бензиновый ДВС и уже почти 100 — двигатель Дизеля. Мы давно к ним приспособились и, хорошо зная их достоинства и недостатки, применяем тот или другой по обстоятельствам. Бензиновый двигатель легко пускается, разгоняется быстро и до высоких оборотов, имеет большую литровую мощность и дешевле стоит. Но любит «покушать», причем недешево. Поэтому его мы чаще видим на легковых и небольших грузовых автомобилях.

Дизель и сам по себе стоит дороже, и дороже в обслуживании, не столь быстроходен, выдает меньшую мощность с литра рабочего объема, имеет повышенный уровень шума и хуже пускается. Зато, и это главное, — потребляет куда меньше топлива, причем более дешевого. Понятно, что практически весь тяжелый и коммерческий транспорт «ездит» на дизелях. Но «лишних денег не бывает», и покупатели легковых автомобилей, причем не только в Европе, все чаще задумываются о том, какой двигатель им предпочесть. И довольно часто выбирают дизель. Хотя еще лучше, если бы два в одном… И быстрый, и тихий, и с легким пуском, и чтобы топливо зимой не застывало, да и мощность повыше не помешает, но вот только бы «ел» поменьше… Но чудес не бывает. Бывает теория двигателей.

Простыми словами

Чтобы топливо сгорело, нужен воздух. Но надо смешать с топливом столько воздуха, сколько нужно для полного сгорания. Такое количество воздуха называется стехеометрическим, и оно, конечно же, давно известно. Например, для бензина оптимальный (теоретически) состав топливной смеси выражается соотношением 14,7:1, то есть на 1 грамм бензина нужно 14,7 грамма воздуха. Смесь, в которой воздуха больше, чем нужно, называетсябедной, а та, в которой воздуха меньше, чем нужно (то есть больше топлива), называется богатой. Слишком бедную смесь не всегда удается поджечь, при работе на богатой смеси несгоревшее топливо бесполезно «вылетает в трубу» и растет выброс угарного газа.

Но воздух нужен не только для сгорания. Чем выше давление в цилиндре перед воспламенением смеси, тем больше отдача двигателя. И нам очень выгодно, чтобы больше воздуха попало в цилиндр на такте впуска: тем больше потом будет давление. А вот теперь пора разбираться, почему дизель экономичнее.

Вспомним, как работает ДВС. У бензинового двигателя на такте впуска смесь воздуха и топлива поступает в цилиндр, затем она сжимается и поджигается искрой. У дизеля на такте впуска в цилиндр поступает только воздух, который сжимается поршнем под большим давлением и от этого еще и нагревается. К концу сжатия в цилиндр впрыскивается топливо, которое при высоких давлении и температуре самовоспламеняется. Давление в цилиндре дизеля намного выше, чем в цилиндре бензинового двигателя: для современного безнаддувного дизеля вполне нормальна степень сжатия 20, а у серийных бензиновых, даже самых «зажатых», едва достигает 11. А выше давление в цилиндре — выше и эффективность. Сразу мысль: а поднять степень сжатия в бензиновом двигателе?! Пробовали. Но выше 11 никак не получается. Потому что есть такие явления, как детонация и калильное зажигание.

Детонация — очень быстрое сгорание топлива в точках, удаленных от свечи, сопровождается резким местным перегревом и перегрузкой деталей двигателя. Внешний признак детонации — стук — мы слышим, когда, например, на «Жигулях» пытаемся резко разогнаться после заправки низкооктановым бензином.

Калильное зажигание — преждевременное (до появления искры) воспламенение смеси от перегретых деталей камеры сгорания (например — от того же электрода свечи).

Длительная работа с детонацией и калильным зажиганием недопустима: мотор быстро выйдет из строя. Детонацию и калильное зажигание провоцируют высокая температура и высокое давление. Во избежание детонации моторы с высокой степенью сжатия «кормят» высокооктановым бензином (98), но выше степени сжатия 11 и его «не хватает».

Теперь посмотрим, что происходит при малых нагрузках. Вот мы «убавили газ» и поехали медленнее. Что это значит для бензинового мотора? Когда мы отпускаем педаль акселератора, на впуске прикрывается дроссельная заслонка, а это значит, что мы уменьшаем не только количество подаваемого топлива, но и количество воздуха. Меньше воздуха в цилиндре — меньше давление в конце сжатия. Но это при карбюраторе, скажете вы. А как же бензиновый двигатель с впрыском топлива? Ведь там-то можно уменьшить подачу топлива, не уменьшая количество воздуха? Можно, но до определенного предела. Потому что слишком бедная смесь не будет поджигаться искрой, и чтобы смесь не обеднилась слишком сильно, дроссель все же придется прикрыть, и давление снизится. Меньше давление в цилиндре — меньше момент на выходе.

А что значит «отпустить педаль» у дизеля? Это значит, что в цилиндр будет просто подаваться меньше топлива. Но количество всасываемого воздуха останется прежним, и давление в конце такта впуска не изменится. Да, смесь в цилиндре станет бедной, но дизель благополучно работает и на бедной смеси — ведь там другой принцип воспламенения и другое топливо! И дизель остается весьма эффективным и при малых нагрузках. А мы, кажется, дошли до главного: если мы хотим сделать бензиновый двигатель экономичным, «эластичным» и при этом более мощным, то мы должны избавить его от детонации и научить «питаться» бедной смесью.

На некалорийной пище

Итак, проблема в том, что искра упорно не желает воспламенять бензовоздушную смесь более бедную, чем в соотношении 17:1. Но ведь можно заполнять цилиндр совсем бедной смесью, а непосредственно к свече подавать более богатую, которая загорится. Пытались: например, в форкамерном двигателе эта идея и была заложена. Реальных же результатов удалось достичь на моторах с распределенным впрыском топлива: здесь добиваются устойчивой работы на смеси с соотношением 22:1, но сильнее обеднить смесь все равно не удается. Ведь в случае обычного распределенного впрыска смесеобразование внешнее — форсунка впрыскивает бензин во впускной трубопровод. И доставить более богатую часть потока смеси к свече мы можем только за счет направления потока методами аэродинамики, например, определенным образом его завихряя. Вот если бы топливо впрыскивалось непосредственно в цилиндр…

Бензиновые двигатели с непосредственным впрыском появились довольно давно и применялись в авиации уже в годы Второй мировой войны. Двигатели для автомобилей тоже разрабатывались, по крайней мере в нашей стране их испытывали уже в конце 40-х. Однако еще долгое время не удавалось

[spoiler]

справиться с серьезными недостатками непосредственного впрыска, в частности — «дизельным» дымлением на мощностных режимах. Да и мотор получался довольно дорогим, а потому экономически невыгодным. И непосредственным впрыском практически перестали заниматься.

Но не японцы. На Mitsubishi раньше других осознали, какую пользу может принести непосредственный впрыск в условиях ужесточения экологических норм, а бензин в Японии дешевым никогда не был. 15 лет усилий увенчались успехом: первые доведенные до готовности к производству моторы в которых непосредственна система впрыска бензина были представлены публике на Франкфуртском и Токийском автосалонах осенью 1995 г. Их обозначили GDI — Gasoline Direct Injection — система впрыска бензина. Спустя год на японском рынке появился серийный Mitsubishi Galant 1.8 GDI, и, наконец, в 1997 г. европейцам была предложена Carisma с двигателем 1.8 GDI.

Как устроен GDI

GDI - Непосредственный впрыск бензинаДействительно, двигатель Mitsubishi GDI напоминает по конструкции и обычный бензиновый, и дизель. В каждом цилиндре присутствует и свеча зажигания, и форсунка, а топливо подается насосом высокого давления под давлением 5 МПа (50 атм.). Форсунка обеспечивает два различных режима впрыскивания топлива. Обратим внимание на следующие особенности. Впускной трубопровод подходит к цилиндру сверху. Это позволяет получить падающий поток воздуха, который после контакта с поршнем разворачивается и устремляется вверх, закручиваясь по часовой стрелке (такая организация воздушного потока позволяет достичь оптимальной концентрации топлива непосредственно около свечи). По почти прямому трубопроводу поток движется с очень высокой скоростью, и даже когда поршень достиг нижней мертвой точки, еще некоторое количества воздуха входит в цилиндр по инерции.

Поршень необычный — сверху есть выемка сферической формы. Форма поршня обеспечивает три важные функции. Во-первых, позволяет задать воздушному потоку нужное направление движения. Во-вторых, направляет впрыскиваемое топливо непосредственно к свече зажигания, что важно при работе на предельно бедных смесях. В-третьих, определяет распространение фронта пламени.

Как работает GDI

В работе GDI различаются три возможных режима в зависимости от режима движения. Работа на сверхбедных смесях. Этот режим используется при малых нагрузках: при спокойной городской езде и загородном движении на скоростях до 120 км/ч. В этом случае топливо подается в цилиндр практически как в дизеле — в конце такта сжатия. Топливо впрыскивается компактным факелом и, смешиваясь с воздухом, направляется сферической выемкой поршня. В результате наиболее обогащенное топливом облако оказывается непосредственно около свечи зажигания и благополучно воспламеняется, поджигая затем бедную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.

Работа на стехиометрической смеси. Этот режим используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. При стехиометрическом составе смеси с воспламенением никаких проблем не возникает. Но поскольку было бы желательно повысить степень сжатия, то важным становится не допустить детонации и калильного зажигания. Впрыск топлива осуществляется в процессе такта впуска. Топливо впрыскивается коническим факелом, распыляется по всему цилиндру и, испаряясь, охлаждает при этом воздух в цилиндре. Благодаря охлаждению снижается вероятность детонации и калильного зажигания.

И еще один режим реализует система впрыска бензина - система управления GDI. Он позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора. Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации еще возрастает. Поэтому впрыск осуществляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр заполняется сверхбедной смесью (примерно 60:1), в которой детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, которая доводит соотношение воздуха и топлива в цилиндре до «богатого» 12:1. А на «подготовку» детонации времени уже не остается.

Итак, что, в конце концов, получется на выходе? Степень сжатия удалось поднять до 12—12,5, улучшилось наполнение воздухом. Двигатель устойчиво работает и на очень бедной смеси. Результат: по сравнению с «обычным» бензиновым двигателем GDI расходует на 10% меньше топлива, выдает на 10% больше мощности и выбрасывает на 20% меньше углекислого газа. Но это в Японии. Из-за того, что бензин в Европе содержит много серы, при подготовке европейской версии мотора от одного из преимуществ — повышенной мощности — пришлось отказаться…

[/spoiler]

avto.win7ka.ru

Система впрыска топлива

Методы впрыска топлива

Существует несколько методов впрыска топлива: непрерывный впрыск топлива, точечный впрыск топлива, распределённый впрыск топлива и непосредственный впрыск топлива. Непрерывный впрыск топлива осуществлялся механическими и электромеханическими системами впрыска топлива. Остальные электронные системы впрыска топлива подают топливо строго дозированными порциями. 

Системы непрерывного впрыска топлива

Наиболее распространёнными примерами непрерывноговпрыска топлива являются механическая система впрыска топлива BOSCH K-Jetronic и электромеханическая система впрыска топлива BOSCH KE-Jetronic. Здесь топливо впрыскивается непрерывным потоком при помощи механических форсунок, распыляющих топливо пред впускными клапанами каждого цилиндра. Количество топлива регулируется путём изменения интенсивности потока впрыскиваемого топлива. Данные системы применялись на ранних системах питания двигателя, и были вытеснены более надёжными иточными электронными системами подачи топлива.

Системы точечного впрыска топлива

Системы точечного впрыска топлива оснащены одной электромагнитной форсункой (иногда двумя форсунками работающими в паре, на двигателях с раздельными группами цилиндров), впрыскивающей топливо во впускной тракт перед дроссельной заслонкой. Как и в случае карбюраторного питания, во время работы двигателя оборудованного точечным впрыском, впускной коллектор двигателя весь заполняется готовойтопливовоздушной смесью.Впрыск топлива здесь осуществляется не непрерывной струёй, а подаётся порциями. Количество подаваемого топлива регулируется путём изменения продолжительности открытого состояния форсунки.Форсунка точечной системы впрыска топлива за два оборота коленчатого вала двигателя (один полный цикл работы четырёхтактного двигателя) впрыскивает топливо четыре раза. Недостатки такой системы приготовления топливовоздушной смеси схожи с карбюраторными системами, связанные с задержкой и неравномерностью подачи топливовоздушной смеси для разных цилиндров, не столь хорошей приемистостью двигателя, оседание топлива настенках впускного коллектора, особенно во время холодного запуска двигателя. Хотя для такой системы впрыска не предъявляются высокие требования к качеству распыла топлива, так как отводится достаточно времени на испарение и смешивание топлива с поступившим в впускной коллектор воздухом. Осциллограммы напряжения сигналов системы управления двигателем BOSCHMONO-Motronic, демонстрирующие схему впрыска топлива данной системы.1 Осциллограмманапряжения выходного сигнала датчика Холла, встроенного в корпус механического распределителя зажигания. Датчик генерирует четыре импульса за два оборота коленчатого вала двигателя.2 Осциллограмманапряжения управляющих импульсов топливной форсункой. За один полный цикл работы двигателя форсунка осуществляет четыре впрыска топлива.3 Импульс синхронизации с моментом зажигания в первом цилиндре. Обмотка топливной форсунки точечной системы впрыска, имеет низкое электрическое сопротивление - единицы Ома (топливные форсунки с низким электрическим сопротивлением встречаются и вдругих систем впрыска топлива). За счёт уменьшения сопротивления обмотки увеличивается быстродействие форсунки, что позволяет впрыскиватьнебольшие порции топлива. Для уменьшения нагрева обмотки форсунки, применяются меры, ограничивающие величину протекающего через обмотку форсунки тока. В некоторых системах с этой целью используется мощный токоограничивающий резистор, включённый последовательно в цепь питания форсунки. Осциллограммы напряжения питания и управляющего импульса на выводах обмотки низкоомной форсунки (система точечного впрыска топлива BOSCH MONO Jetronic).1 Осциллограмма напряжения на управляющем выводе обмотки форсунки.2 Осциллограмма напряжения на питающем выводе обмотки форсунки (после токоограничивающего резистора). Как видно по приведённым осциллограммам, за счёт возникновения падения напряжения на токоограничивающем резисторе, напряжение питания обмотки форсунки автоматически снижается.В некоторых системах, применяются более сложные алгоритмы управления форсункой. В таких случаях, импульс управления форсункой имеет более сложную форму и делится уже на две фазы: фаза открывания клапана топливной форсунки и фаза удержания клапана топливнойфорсунки в открытом состоянии. Осциллограмма напряжения управляющего импульса низкоомной форсункой системы управления двигателем с точечным впрыском топлива Multec IEFI автомобиля производства OPEL.A: Значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению питания обмотки форсунки и равно 14,6 V.1 Моментоткрытия управляющего форсункой силового транзистора. С этого момента на обмотку форсунки действует напряжение величиной около 14 V.2 Фаза открывания клапана топливной форсунки.3 Момент переключения управляющего форсункой силового транзистора в режим ограничения тока в цепи форсунки.4 Фазаудержания клапана топливной форсунки в открытом состоянии Управляющий форсункой силовой транзистор работает в режиме ограничения тока в цепи форсунки, обеспечивая подвод к обмотке форсунки пониженного напряжения.A-B: Значение разницы напряжений между указанными маркерами моментами времени. В данном случаесоответствует величине воздействующего на обмотку форсунки напряжения во время фазы удержания клапана топливной форсунки в открытом состоянии иравно ~1,7 V5 Момент закрытия управляющего форсункой силового транзистора. Как можно видеть по приведённой выше осциллограмме, в первоначальный момент времени на низкоомную обмотку форсунки кратковременно подаётся напряжение, близкое к напряжению на клеммах аккумуляторной батареи, что обеспечивает ускорение процесса открытия клапана топливной форсунки. Продолжительность фазы открывания клапана  топливной форсунки здесь составляет около 1 mS. Теперь, когда клапан форсунки открыт, для удержания клапана в открытом состоянии достаточно уже меньшего тока. Величина протекающего через обмотку тока ограничивается путём уменьшения величины воздействующего наобмотку напряжения. В данном случае, уменьшение воздействующего на обмотку форсунки напряжения достигается путём "призакрытия" управляющегосилового транзистора. Тем самым уменьшается чрезмерный нагрев обмотки форсунки (дополнительное охлаждение форсунки обеспечивается за счёт омывающего форсунку топлива). Продолжительность фазы удержания клапана топливной форсунки в открытом состоянии может изменяться и зависит от того, какую порцию топлива в данный момент требуется впрыснуть.В некоторых системах, ограничение протекающего через обмотку форсунки тока во время фазы удержания клапана в открытом состоянии реализовано другим способом. Осциллограмма напряжения управляющего импульса низкоомной форсункой системы управления двигателем BDZ с точечным впрыском топлива, устанавливаемого на автомобили Peugeot 405. Здесь во время фазы удержания, управляющий обмоткой форсунки силовой транзистор переключается в режим Широтно-Импульсной Модуляции (ШИМ). Благодаря этому, обмотка форсунки многократно подключается к источнику напряжения и отключается от него, после чего процесс повторяется. Частота процесса подключения / отключения обмотки настолько высока, что механическая система форсунки (клапан) "не успевает" закрываться в моменты, когда питающее напряжение отключено. 

Системы распределённого впрыска топлива

Каждый цилиндр системы распределённого впрыска топлива обслуживается собственной электромагнитной форсункой. Каждая форсунка такой системы впрыскивает топливо во впускной коллектор пред впускными клапанами каждого цилиндра. Таким образом, только часть внутреннего объёма впускного коллектора работающего двигателя заполняется подготовленной топливной смесью. Как и в системе точечного впрыска топлива, здесь впрыск осуществляется не непрерывной струёй топлива, а подаётся порциями. Количество подаваемого топлива регулируется путём изменения продолжительности открытого состояния форсунки.Электромагнитные топливные форсунки имеют некоторую инерционность. Проявляется эта инерционность как задержка открытия и задержка закрытия клапана форсунки относительно управляющего напряжения. Задержка открытия клапана форсунки может составлять около 1,5 mS, кроме того, она может изменяться с изменением величины напряжения на аккумуляторной батарее. Задержка закрытия клапана форсункиможет составлять около 1,0 mS. Когда двигатель работает под нагрузкой, длительность впрыска топлива может составлять несколько единиц или даже десятки миллисекунд, то есть -длительность впрыска топлива при этом значительно превышает время задержки срабатывания клапана форсунки, и засчёт этого инерционность форсунки сказывается мало заметно.Когда двигатель работает при малых нагрузках или на холостом ходу, длительность впрыска значительно уменьшается, и становится сравнимой с временем задержки срабатывания клапана форсунки. Из-за этого, инерционность форсунки может сказываться значительно сильнее и точность дозирования количества впрыскиваемого топлива может сильно снизиться. Поэтому, для таких форсунок не используют управляющие импульсы продолжительностью менее 1,5 mS. Кроме того, инерционность форсунок, обслуживающих разные цилиндры одного и того же двигателя со значительным пробегом может заметно различаться, что вносит дополнительную погрешность дозирования малых порций топлива.

Классификация систем распределённого впрыска топлива

Распределённые системы впрыска топлива различаются по схеме работы впрыска топлива: параллельный впрыск, попарно-параллельный, фазированный (последовательный).

Параллельный впрыск топлива

Топливные форсунки многих ранних распределённых систем впрыска топлива соединены параллельно. При такой схеме, управление форсунками двигателя происходит одновременно - все форсунки такой системы работают синхронно. Осциллограммы напряжения сигналов системы управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей параллельный впрыск топлива, демонстрирующие схему впрыска топлива данной системы.1 Осциллограмма напряжения управляющих импульсов топливной форсункой 1-го цилиндра.2 Осциллограмма напряжения управляющих импульсов топливной форсункой 2-го цилиндра.3 Осциллограмма напряжения управляющих импульсов топливной форсункой 3-го цилиндра.4 Осциллограмма напряжения управляющих импульсов топливной форсункой 4-го цилиндра.7 Импульс синхронизации с моментом зажигания в первом цилиндре. В системах параллельного впрыска, за один полный цикл работы двигателя (за два оборота коленчатого вала 4-х тактного двигателя), каждая форсунка впрыскивает топливо дважды. То есть, каждая порция топлива, попадающего впоследствии в цилиндр во время  такта впуска, впрыскивается "за два приёма". Из-за того, что подача каждой порции топлива осуществляется за два впрыска, в сравнении с точечным впрыском, точность дозирования получается несколько лучшей; но в сравнении с фазированным впрыском, точность дозирования получается несколько хуже, особенно на переходных режимах работы двигателя.Блок управления параллельной системы впрыска топлива должен учитывать инерционность открытия клапана форсунки, которая сильно зависит от величины напряжения в бортовой сети автомобиля. При больших порциях впрыскиваемого топлива, к примеру, во время ускорения автомобиля или во время холодного пуска, часть топлива оседает на стенках впускного коллектора и попадает в цилиндр с некоторойзадержкой, что сказывается на приемистости двигателя. Но к качеству распыла топлива здесь предъявляются немного меньшие требования, так как отводится достаточно времени на испарение топлива и смешивание его с воздухом.Недостаток параллельного впрыска заключается в неодинаковом для всех цилиндров времени от начала впрыскивания топлива форсункой до момента открытия впускного клапана цилиндра. При одновременном впрыске топлива порядок работы цилиндров не учитывается, соответственно время подготовки топливовоздушной смеси (время испарения топлива) для каждого цилиндра получается разным.

Попарно-параллельный впрыск топлива

Для уменьшения зависимости качества подготовки топливовоздушной смеси от момента впрыска топлива, а так же для улучшения точности дозирования топлива на переходных режимах работы двигателя, топливные форсунки были разделены на группы согласно порядку работы цилиндров и соединены попарно-параллельно - половина форсунок соединена параллельно и управляется своим выходным силовым транзистором блока управления двигателем, другая половина форсунок так же соединена параллельно и управляется своим, вторым выходным силовым транзистором блока управления двигателем.Управление форсунками одной группы происходит одновременно - все форсунки одной группы работают синхронно. Когда форсунки первой группы впрыскивают топливо, форсунки второй группы закрыты, и наоборот. При этом, первая и вторая группы форсунок, так же как и в системе параллельного впрыска топлива, впрыскивают топливо дважды за один цикл работы 4-х тактного двигателя (за два оборота коленвала). Осциллограммы напряжения сигналов системы управления 4-х цилиндрового 4-х тактного двигателя, осуществляющей попарно-параллельный впрыск топлива, демонстрирующие схему впрыска топлива данной системы. Порядок работы цилиндров 1 - 3 - 4 - 2. В данномслучае в первую пару объединены форсунки, обслуживающие цилиндры №1 и №4, а во вторую пару объединены форсунки, обслуживающие цилиндры №2 и №3. Но встречаются системы, где при таком же порядке работы цилиндров двигателя, форсунки объединены в пары по-другому.напряжения управляющих импульсов топливнойнапряжения управляющих импульсов топливнойнапряжения управляющих импульсов топливнойнапряжения управляющих импульсов топливнойфорсункой форсункой форсункой форсункой1 Осциллограмма 1-го цилиндра.2 Осциллограмма 2-го цилиндра.3 Осциллограмма 3-го цилиндра.4 Осциллограмма 4-го цилиндра.5 Осциллограмманапряжения выходного сигнала датчика положения / частоты вращения коленчатого вала. За один полный оборот коленвала датчик генерирует 58 импульсов и один пропуск, продолжительность которого соответствует продолжительности двух импульсов. Соответственно, за один полный цикл работы 4-х тактного двигателя (за два оборота коленвала) датчик генерирует такие пропуски дважды.7 Импульс синхронизации с моментом зажигания в первом цилиндре. Следует заметить, что в момент пуска двигателя блок управления двигателем переключается на параллельную схему впрыска топлива, то есть, включает и выключает все топливные форсунки одновременно.

Фазированный впрыск топлива

Для дальнейшего повышения точности дозирования впрыскиваемого топлива при малых длительностях впрыска путём уменьшения негативного влияния инерционности электромагнитных топливных форсунок, каждую форсунку стали обслуживать собственным выходным транзистором блока управления двигателем. Такая схема впрыска называется фазированнымвпрыском или последовательным впрыском топлива. За счёт уменьшения частоты срабатывания форсунки по сравнению с параллельным и попарно-параллельным впрыском в два раза, потребовалось уже более продолжительное открытие форсунки для обеспечения подачи того же количества топлива. То есть, схема управления форсунками была модернизирована так, что вместо двух коротких впрысков топлива осуществляется один более продолжительный впрыск. Таким образом, замена параллельной схемы впрыска топлива на фазированную позволила заметно повысить точность дозирования впрыскиваемого топлива при малых длительностях впрыска. Осциллограммынапряжения сигналов системы управления 4-х цилиндрового 4-х двигателя, осуществляющей фазированный впрыск топлива, демонстрирующие схему впрыска топлива данной системы.1 Осциллограмма напряжения управляющих импульсов топливной 1-го цилиндра.2 Осциллограмма напряжения управляющих импульсов топливной 2-го цилиндра.3 Осциллограмма напряжения управляющих импульсов топливной 3-го цилиндра.4 Осциллограмма напряжения управляющих импульсов топливной 4-го цилиндра.5 Осциллограмма напряжениявыходного сигнала датчика положения / частоты вращения коленчатого вала. За один полный оборот коленвала датчик генерирует 58 импульсов и один пропуск, продолжительность которого соответствует продолжительностидвух импульсов. Соответственно, за один полный цикл работы 4-х тактногодвигателя (за два оборота коленвала) датчик генерирует такие пропуски дважды.6 Осциллограмманапряжения выходного сигнала датчика положения распределительного вала (датчика фаз). За два полных оборота коленвала датчик генерирует один импульс.7 Импульс синхронизации с моментом зажигания в первом цилиндре. Здесь, впрыск топлива осуществляется тогда, когдаобслуживаемый данной форсункой цилиндр находится на такте выпуска отработавших газов, то есть, незадолго до такта впуска. За два полных оборота коленчатого вала двигателя соответствующих одному полному циклу работы четырёхтактного двигателя, каждая форсунка впрыскивает топливо только один раз. То есть, по сравнению с параллельным и попарно-параллельным впрыском, здесь частота срабатывания форсунки уменьшена в два раза. За счёт этого, для обеспечения подачи заданного количества топлива потребовалось более продолжительное открытие форсунки, а за счёт увеличения продолжительности открытого состояния форсунки уменьшилось негативное влияние инерционности электромагнитных топливных форсунок на точность дозирования топлива. Таким образом, замена попарно-параллельной схемы впрыска топлива на фазированную позволила ещё больше повысить точность дозирования впрыскиваемого топлива при малых длительностях впрыска.Для реализации фазированной схемы впрыска топливапотребовались заметные доработки системы управления двигателем, обеспечивающие привязку алгоритма управления форсунками к фазам рабочегоцикла цилиндров. По этому, двигатели, оборудованные фазированным впрыском топлива, дополнительно оснащены датчиком положения распределительного вала (датчиком фаз). Кроме того, блок управления такого двигателя потребовалось дооснастить ещё несколькими силовыми транзисторами, для управления каждой форсункой индивидуально. Кроме внесения изменений в блок управления двигателем, потребовалось применение форсунок с более тонким распылом топлива, так как уменьшиласьпродолжительность процесса испарения топлива и смешивания его с воздухом. На некоторых двигателях, дополнительно, это позволило использовать режим работы при более бедной смеси (дополнительно потребовалось изменение конструкции впускного коллектора и применение заслонок завихрителей, для формирования вертикальных потоков воздуха в цилиндре).Следует заметить, что в момент пуска двигателя блок управления двигателем переключается на параллельную схему впрыска топлива, то есть, включает и выключает все топливные форсунки одновременно до тех пор, пока не распознает сигнал от датчика положения распределительного вала.Дополнительно применяется асинхронный режим впрыска. В момент, когда водитель очень резко нажимает на педаль акселератора, некоторые блоки управления могут осуществлять впрыскиваниедополнительного количества топлива несколькими малыми порциями в цилиндры, которые в данный момент находятся перед или вначале такта впуска. Осциллограммы напряжения сигнала управления форсункой и сигнала от датчика положения дроссельной заслонки системы фазированного впрыска топлива в момент резкой перегазовки.4 Осциллограмма напряжения выходного сигнала датчика положения дроссельной заслонки.6 Осциллограмма напряжения управляющих импульсов топливной форсункой одного из цилиндров.Как видно из приведённым выше осциллограммам, на переходных режимах работы двигателя, в данном примере в момент резкого открытия дроссельной заслонки, система фазированного впрыска топлива может осуществлять дополнительные циклы впрыска топлива, дополнительно обогащая таким образом состав приготовляемой топливовоздушной смеси. Благодаря этому снижается вероятность возникновения пропусков воспламенения топливовоздушной смеси в цилиндрах при работе двигателя напереходных режимах.В системах точечного впрыска топлива подавляющегобольшинства двигателей современных автомобилей реализован именно фазированный впрыск топлива. 

Системы непосредственного впрыска топлива

Наиболее современными системами управления двигателем являются системы с непосредственным впрыскиванием топлива. Здесь топливная форсунка впрыскивает топливо непосредственно в камеру сгорания, то есть, во внутренний объём цилиндра. Благодаря этому, при работе двигателя с низкой нагрузкой (холостой ход, равномерное движение автомобиля с небольшой скоростью...) удалось достичь приготовления внутри цилиндра топливовоздушной смеси с неоднородным соотношением воздух-топливо. Вблизи электродов свечи зажигания образуется нормальная или немного обогащённая смесь, за счёт чего происходит устойчивое воспламенение этой смеси от искрового разряда между электродами свечи зажигания. В остальном объёме цилиндра образуются бедные и сверхбедные смеси, которые сгорают от пламени горения нормальной по составу смеси вблизи электродов свечи зажигания. За счёт послойного приготовления топливовоздушной смеси (состав смеси в объёме камеры сгорания неоднороден), усреднённый состав приготовляемой и сжигаемой таким образом топливовоздушной смеси оказывается сверхбедным - соотношение воздух-топливо при работе двигателя в таком режиме может достигать значений 30:1...40:1. Для сравнения, на бензиновом двигателе с подачей топлива во впускной коллектор и оборудованном специальными завихрителямипотока воздуха (для создания послойной смеси в камере сгорания) не удаётся достичь обеднения топливовоздушной смеси с соотношением воздух-топливо более 25:1. А, как известно, обеднение топливовоздушной смеси позволяет заметно снизить количество расходуемого двигателем топлива.Системы управления двигателем с непосредственным впрыскиванием топлива, да и сами двигатели, обслуживаемые подобными системами, имеют ряд отличий от обычных систем с точечным впрыскиванием топлива. Это: вертикальные каналы ввода потока воздуха в цилиндры, поршни с закругленной выборкой для направления топливной смеси в сторонусвечи зажигания, вихревые инжекторы высокого давления, топливный насос высокого давления. Кроме того, при работе двигателя на сверхбедных смесях, впрыскивание топлива в камеру сгорания происходит в конце такта сжатия. Из-за высокого давления в камере сгорания в момент впрыска топлива, а так же для обеспечения направленного перемещения впрыснутого топлива к свече зажигания, давление топлива в топливной рейке здесь существенно увеличено, соответственно изменена и конструкция топливной форсунки. С целью повышения давления в топливной рейке, кроме электрического топливного насоса, размещённого внутри бака, здесь дополнительно применён механический топливный насос высокого давления, приводимый от распределительного вала двигателя. Механический топливный насос высокого давления обеспечивает поддержание давления в топливной рейке на уровне нескольких десятков Bar.Для обеспечения правильного послойного образования топливовоздушной смеси, движение воздушного потока внутри цилиндра было оптимизировано за счёт изменения конструкции двигателя - изменены форма и направление впускного воздушного канала для создания в камере сгорания вертикально направленных воздушных потоков. Так же здесьприменена специальная форма днища поршня. За счёт изменённой формы днища поршня, струя впрыскиваемого форсункой топлива "отражается" от наклонного углубления в днище поршня и направляется к свече зажигания, где образуется область с достаточно богатым содержанием топлива.В связи с повышением давления топлива в топливнойрейке, потребовалось значительно сократить длительность открытия топливной форсунки, измеряемое здесь в единицах десятых долей милли Секунды. Для уменьшения инерционности топливных форсунок, величина управляющего форсунками напряжения была значительно увеличена и достигает нескольких десятков Вольт. Для управления топливными форсунками многих систем непосредственного впрыска топлива применяется специальный модуль, преобразующий низковольтные импульсы от блока управления двигателем в высоковольтные импульсы для управления топливными форсунками. Осциллограммы напряжений сигналов управления топливной форсункой системы непосредственного впрыска топлива.1 Осциллограмма напряжения на одном из выводов топливной форсунки системы непосредственного впрыска топлива.2 Осциллограмма напряжения на втором из выводов топливной форсунки системы непосредственного впрыска топлива.3 Осциллограмма напряжения, воздействующего на обмотку топливной форсунки системы непосредственного впрыска топлива. Следует отметить, что при работе двигателя на холостом ходу, для поддержания необходимой температуры нейтрализатора выхлопных газов приготовление сверхбедной топливовоздушной смеси периодически чередуется с приготовлением обычный однородной смеси (послойное смесеобразование чередуется с гомогенным смесеобразованием). При гомогенном смесеобразовании впрыск топлива в камеру сгорания происходит не во время такта сжатия, а на такте впуска. Переключения между послойным и гомогенным смесеобразованием заметны по незначительному изменению частоты вращения двигателя на холостом ходу.На определенных режимах работы двигателя возможенкомбинированный режим приготовления смеси, когда топливо впрыскивается форсунками на такте впуска и дополнительно в конце такта сжатия.Из-за низкого качества топлива, повышается степень износа деталей некоторых узлов системы непосредственного впрыскивания топлива. Высокое содержание серы и нерегламентированных присадок в бензине фактически сводит на нет экономические, экологическиеи мощностные показатели данных двигателей. Поэтому, не многие производители автомобилей одобряют эксплуатацию таких двигателей в странах СНГ.

auto-master.su

Система питания топливом бензинового (карбюраторного) двигателя

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин, как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 — 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72—98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение — Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение — Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола — его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства — карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а < 0,85 — богатая.

Когда в цилиндры двигателя поступает смесь нормального состава, он работает устойчиво со средними показателями мощности и экономичности. При работе на обедненной смеси мощность двигателя несколько снижается, но заметно повышается его экономичность. На бедной смеси двигатель работает неустойчиво, его мощность падает, а удельный расход топлива возрастает, поэтому чрезмерное обеднение смеси нежелательно. При поступлении в цилиндры обогащенной смеси двигатель развивает наибольшую мощность, но и расход топлива также увеличивается. При работе на богатой смеси бензин сгорает неполностью, что приводит к снижению мощности двигателя, росту расхода топлива и появлению копоти в выпускном тракте.

Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана — впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Схема системы питания топливом карбюраторного двигателя

Рис. Схема системы питания топливом карбюраторного двигателя:1 — топливный бак; 2 — фильтр трубой очистки топлива; 3 — топливоподкачивающий насос; 4 — фильтр тонкой очистки; 5 — карбюратор; 6 — воздухоочиститель; 7 — впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройство предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разре-жения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Схема системы питания топливом бензинового двигателя с многоточечным впрыском

 

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

ustroistvo-avtomobilya.ru

Система питания двигателя с впрыском топлива - 6 Декабря 2014 - АвтоБлог

 

Инжекторная система

Данная система вытеснила карбюраторную систему за счет ряда преимуществ. В отличие от карбюратора, в инжекторной системе впрыска подача топлива в цилиндры двигателя осуществляется за счет форсунок, которые управляются электронным блоком управления. Благодаря этому, изменить параметры можно буквально за считанные секунды.

Рис. 1. Топливная рейка современного бензинового двигателя

 

Первый инжекторный двигатель

Мотор с впрыском был изготовлен в России в 1916 году Стечкиным и Микулиным. Инжекторный АШ-82ФН оказался настолько удачным, что выпускалcя еще долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.

Рис. 2. Двигатель АШ-82ФН

 

Первые системы питания не нашли широкого применения. Вновь вспомнили о них в 60-х годах XX века. Тогда эти системы были исключительно механическими, затем им на смену пришли современные системы впрыска с электронным управлением. А уже в 90 годах XX века стали широко внедрять электронику. Это позволило усовершенствовать и систему питания двигателя, кроме того возникал возможность координации ее действий с остальными частями двигателя.

Системы управления двигателем в автомобилестроении начали применяться с 1951 года, когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного фирмой Goliath.

Это позволило уменьшить вертикальную высоту двигателя и создать очень красивую машину для того времени.

Рис. 3. Первый автомобиль с инжекторным двигателем - купе Goliath 700 Sport

 

Устройство впрыска

Рис. 4. Инжекторная система: 1-топливный бак; 2-электробензонасос; 3-топливный фильтр; 4-регулятор давления топлива; 5-форсунка; 6-электронный блок управления; 7-датчик массового расхода воздуха; 8-датчик положения дроссельной заслонки; 9-датчик температуры ОЖ; 10-регулятор ХХ; 11-датчик положения коленчатого вала; 12-датчик кислорода; 13-нейтрализатор; 14-датчик детонации; 15-клапан продувки адсорбера; 16-адсорбер

 

Воздух под давлением поступает в двигатель. Но предварительно поток анализируется специальным датчиком, который вычисляет объем воздуха в данный момент времени. Эти данные передаются на контроллер, который анализирует не только данные с датчика расхода воздуха, но и другие данные по работе двигателя, такие как частота вращения коленчатого вала двигателя, температура двигателя и воздуха.

После того как вся полученная информация обработана, компьютер определяет количество топлива, которое является оптимальным для данного объема воздуха и при этом было получено максимальное КПД (коэффициент полезного действия) от двигателя.

После обработки всей информации на форсунки подается электрически разряд определенной продолжительности. Форсунки открываются на необходимый период времени и впрыскивают заданную дозу топлива во впускной коллектор.

 

Типы выпрыска систем питания

Рис. 5. Системы впрыска: а-моновпрыск; б-распределенный впрыск

 

Моновпрыск - электронно управляемая система впрыска топлива, в которой электромагнитная форсунка периодически впрыскивает топливо во впускной трубопровод перед дроссельной заслонкой.

Распределенный впрыск - система подачи топлива во впускной коллектор через отдельную для каждого цилиндра топливную форсунку

Система распределенного впрыска (многоточечная система впрыска) относится к системам впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива в каждый цилиндр отдельной форсункой.

По принципу действия системы распределенного впрыска топлива разделяются на системы непрерывного и импульсного впрыска. В зависимости от вида управления различают системы распределенного впрыска с механическим и электронным управлением.

Известными конструкциями системы распределенного впрыска топлива являются системы K-Jetronic, KE-Jetronic и L-Jetronic. Основным производителем систем впрыска является фирма Bosch.

 

Подтипы систем распределенного впрыска

  • Одновременный - когда за один рабочий такт (два оборота коленвала - 720 градусов) двигателя все 4 форсунки отрабатывают два раза одновременно.

Рис. 6. Диаграмма работы одновременного впрыска

  • Попарно-параллельный или групповой - когда за один рабочий такт двигателя форсунки отрабатывают парами (1-4 и 2-3) параллельно два раза за рабочий такт

Рис. 7. Диаграмма работы попарно-параллельного впрыска

  • Фазированный или последовательный - когда за один рабочий такт двигателя каждая форсунка отрабатывает по одному разу в соответствии с фазой впрыска. Естественно, что время впрыска во всех системах различно, при этом количество поданного в цилиндры за один рабочий такт топлива примерно одинаково.

Рис. 8. Диаграмма работы фазированного впрыска

 

На диаграммах работы желтым обозначен впуск, черным - впрыск топлива, молнией - зажигание. В системах впрыска Bosch MP7.0H используется несколько другой алгоритм фазированного впрыска, вместо привычного 1-3-4-2 топливо подается последовательно 1-2-3-4. 

Суммарное время впрыска на одновременном и попарно-параллельном способе одинаково, на фазированном - в два раза выше, т.к за 1 цикл одновременного и попарно-параллельного впрыска форсунка включается 2 раза, а на фазированном - 1, поэтому время ее работы увеличено в 2 раза.

Инжекторные агрегаты обладают несомненными плюсами, по сравнению с карбюраторными. Они менее токсичны, более экономичны, легко запускаются. Кроме того, крутящий момент таких моторов доступен в широком диапазоне оборотов.

Имеет данная система питания и минусы: более сложная конструкция, высокая чувствительность агрегата к качеству горючего. Кроме того, форсунки являются не ремонтируемыми узлами, что удорожает ремонт. Для диагностики же их состояния и очистки, СТО должно иметь современное дорогое оборудование.

 

источники: wikipedia.org ; amastercar.ru ; popmech.ru ; systemsauto.ru

 

www.autoscience.ru


Станции

Районы

Округа

RoadPart | Все права защищены © 2018 | Карта сайта