Услуги

Марки

Шоссе

Техцентры на карте
Новости

Вопрос-ответ

Устройство и принцип работы инжектора. Принцип работы инжектора


Что такое инжектор, зачем он нужен и как устроен?

Первые инжекторы появились в автомобильной индустрии в далеком 1951 году, благодаря компании Bosch, а затем и Mercedes. Тем не менее, широкое распространение инжекторы получили несколько десятков лет спустя, вытеснив карбюраторы. Многие автомобилисты (особенно начинающие) задавались вопросом, что такое инжектор и зачем он нужен. В данной статье подробно рассмотрен принцип работы устройства и назначение.

Инжектор: что это, как работает, для чего нужен?

Инжектор (форсунок) – часть системы подачи топлива, если говорить грубо. Основной принцип работы заключается в принудительной подаче топлива (жидкого или газообразного) в цилиндр.

 

двигатель с инжектором

Существует два вида в зависимости от места установки и основного принципа работы:

  • Моновпрыск (центральный впрыск) – состоит из одной форсунки, которая подает топливо во все цилиндры.
  • Распределённый впрыск – состоит из множества форсунок, каждая из которых подает топливо только в один из цилиндров. Распределенный впрыск может быть:
  1. Одновременным, при этом происходит синхронная подача топлива во все цилиндры.
  2. Прямым, то есть непосредственно в камеру. Для двигателей с таким типом подачи особо важным является качество применяемого топлива.
  3. Попарно-параллельным, при котором одна из форсунок открывается перед началом подачи топлива, а вторая после.
  4. Фазированным – каждая форсунка открывается непосредственно перед началом впрыска топлива.

Преимущества и недостатки инжектора

Множество автолюбителей задумывается, особенно при выборе автомобиля, в чем заключаются преимущества инжектора:

Первое – подача топлива в камеру сгорания, где происходит смешивание с воздухом, происходит с помощью форсунки. Это позволяет дозировать порцию бензина на одно впрыскивание. За счет этого у транспортного средства значительно увеличивается мощность (на 7–10%), а главное снижается расход топлива.

Система впрыска очень чувствительна к изменениям нагрузки, и поэтому быстро реагирует на ее изменения количеством подачи бензина. Немаловажным преимуществом является то, что в холодное время года транспортное средство практически не нужно «прогревать». Также инжектор незначительно повышает экологичность выхлопных газов.

Теперь перейдем к недостаткам. Во-первых, автоматизированость инжекторной системы не всегда является преимуществом. При внезапном выходе из строя, привести систему в работу самостоятельно без помощи специалиста невозможно.

Кроме того, инжектор очень требователен к выбору топлива, особенно если вы хотите, чтобы транспортное средство прослужило как можно дольше. При поломках большинство деталей являются неремонтопригодными и требуют полной замены.

В случае ДТП риск воспламенения более высок, из-за подачи топлива под определённым давлением (в случае повреждения контроллера впрыска).

Внутреннее устройство инжектора и принцип его работы

Чтобы разобраться в принципе работы инжекторного двигателя, сперва нужно понять его строение.

  1. ЭБУ (электронный блок питания) – управляет работой всей системы инжекторного двигателя на основании полученных данных (из внешней среды и непосредственно от параметров работы двигателя). Содержит систему диагностики неисправности инжектора, передавая сигнал датчику «Check engine» на панели приборов.
  2. Регулятор давления. В норме давление в форсунках должно быть постоянным, этот регулятор отвечает за постоянство этой величины.
  3. Форсунки – непосредственно подают топливо в цилиндры (электромагнитные, электрогидравлические и пьезоэлектрические).
  4. Бензонасос – под давлением подает топливо в форсунки, что снижает риск образования воздушных пробок.
  5. Датчики – необходимы для слаженной работы всей системы. В инжекторе установлено несколько видов:
  • Датчик детонации – расположен в самих цилиндрах, при детонации по нему проходят вибрации. В виде свободного тока передает информацию на ЭБУ.
  • ДПДЗ – реагирует увеличением датчика или его падением, при смене поворотного угла заслонки дросселя.
  • Датчик фаз сообщается с блоком управления и с цилиндром. Благодаря этому, блок управления подает необходимое напряжение в цилиндр при зажигании, и совершает управление тактами.
  • Датчик массового расхода воздуха состоит из двух платиновых нитей (первая свободно обдувается потоками воздуха, а вторая герметично изолирована). Блок управления подсчитывает температуру и массу воздуха, за счет разницы температуры и сопротивления на двух нитях.
  • ДПКВ (положения коленчатого вала), или датчик Холла, позволяет определять положение коленчатого вала. Основной принцип работы в том, что зубчатое колесо, расположенное на валу двигателя, вращается вокруг магнита. При искажении магнитного поля датчик создает импульсы внутри катушки и передает их в блок управления. В соответствии с полученными импульсами ЭБУ определяет положение коленвала.

 

принцип работы инжекторной системы

Все форсунки соединены в единую систему, которая называется топливной рампой. С помощью бензонасоса за счет излишнего давления внутри системы топливо подается в систему. После чего открывается клапан, и топливо из форсунки поступает в цилиндр (чем дольше открыт клапан, тем больше топлива подается и, соответственно, обороты будут выше). Количество поступающего топлива непосредственно зависит от количества воздуха, поступающего в цилиндр.

принцип работы форсунки

Благодаря ресурсам интернет-сети можно наглядно увидеть принцип работы инжекторного двигателя:

Режимы работы

Инжекторный двигатель способен работать в 2 режимах.

  1. Холодного пуска. Во время запуска топливо оседает на стенках впускных труб и значительно меньше испаряется. Вследствие этого, топливная смесь незначительно утрачивает свои способности. Для устранения негативного эффекта необходима дополнительная подача топлива при запуске, до достижения топливом необходимой температуры, благодаря чему достигаются нужные обороты холостого хода.
  2. Частичной или полной нагрузки. Максимальной мощности двигатель достигает в момент полного открытия дроссельной заслонки. При повышении оборотов (при быстром открытии заслонки) способность топлива к испарению снижается. Во избежание этого и достижения нужных оборотов происходит дополнительная подача топлива.

Частые поломки и ремонт инжектора

Первой из возможных поломок могут быть проблемы с подачей топлива в инжектор. Первым делом нужно проверить датчик уровня бензина, если датчик исправен – значит проблема в бензонасосе. При засорении входного отверстия подачи топлива его необходимо просто прочистить. В случае если чистка не увенчалась успехом – поломан бензонасос, и его необходимо заменить.

Для замены лучше обратиться на СТО, так как при неправильной установке бензонасоса вместе с топливом он начнет всасывать воздух.

Увеличение расхода топлива чаще всего происходит при засорении форсунок. При этом они не смогут подавать необходимый объем топлива, и система начнет это компенсировать увеличением частоты или объема впрыска топлива. Кроме того, длительность разгона транспортного средства увеличится, а мощность значительно снизится.

Временное исчезновение холостого хода в основном происходит при нарушении герметичности внутри системы, вследствие чего в нее поступает воздух.

Двигатель начинает троить при остановке работы одного из цилиндров. С данной проблемой можно столкнуться при полном засорении форсунки, когда она не способна подавать топливо в цилиндр. Чаще всего это происходит при использовании некачественного топлива.

При поломке датчика фаз, форсунки начинают работать асинхронно, при этом топливо в цилиндры поступает абсолютно бесконтрольно. Будут наблюдаться перебои в работе двигателя и значительная утрата мощности.

Поломка датчика положения дроссельной заслонки проявляется в изменении оборотов при фиксированной педали газа, или в снижении оборотов при выжатой педали. При этом в двигатель поступает чрезмерно большое количество топлива.

Для того, чтобы избежать значительных поломок следует выбирать качественное топливо (во избежание чрезмерного загрязнения) и следить за исправностью работы инжектора.

Индикатор «Check engine» не всегда будет загораться, свидетельствуя о поломках, или вовсе может давать ложные показания. Поэтому нельзя всегда полагаться на датчик, а если вы заметили «странное поведение» транспортного средства – лучше сразу обратиться на СТО.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

pricurivatel.ru

Инжекторный двигатель: устройство и принцип работы

Инжекторный двигатель представляет собой сложное устройство, обеспечивающее максимальную производительность автомобиля. В отличие от карбюраторных моделей, инжектор более экономичен и прост в обслуживании. Такие двигатели снабжены системой впрыскивания топлива, благодаря чему повышается мощность авто, а расходы топлива, наоборот, снижаются. Принцип работы инжекторного двигателя рассмотрен в нашей статье.

Принцип работы инжектора

Использование устройств с подобным алгоритмом действия поначалу коснулся авиастроительного производства. Ужесточение экологических норм привело к тому, что многие производители автомобилей отказались от применения карбюраторных двигателей, дальнейшее усовершенствование которых не приводило к желаемому результату.

Управление системой впрыскивания топлива проводится автоматизированной системой или бортовым компьютером. Проводится проверка состояния воздушно-топливной смеси и при ее соответствии происходит последовательный впуск топлива непосредственно во впускной клапан. Так обеспечивается более точный расход, а также быстрое сгорание топлива.

Устройство инжекторного двигателя можно охарактеризовать выполнением следующей последовательности:

  1. Нажатие на педаль газа открывает дроссельную заслонку. Это обеспечивает поступление воздуха в двигатель.
  2. Компьютер анализирует объем поступающего воздуха (в зависимости от усилия нажатия педали), после чего дает команду для подачи оптимального объема топлива.
  3. Специальный датчик контролирует количество поступающего в двигатель кислорода и его соответствие объему топлива.
  4. Топливный нанос перекачивает необходимый объем, после чего происходит его впрыск под давлением. В результате образуется мелкодисперсный туман, который быстро сгорает, приводя в движение механизмы вращения движущихся частей мотора.

Даже упрощенная схема показывает, насколько сложным является процесс движения автомобиля. Работа двигателя инжектора представляет собой замкнутую систему, в которой значение имеет каждая деталь. При выходе из строя любой составляющей, сигнал об этом поступает на электронную систему, после чего компьютер сам принимает решение о возможность дальнейшего движения. Это одновременно является достоинством и недостатком такого механизма, ведь при измененных условиях труда раскачать «вручную» систему не получиться, придется обращаться за квалифицированной помощью.

В чём особенности устройства?

В чём особенности устройства инжектора?

Как показывает приведенная информация, главным отличием от более старых карбюраторных моделей является автоматическая подача топлива. Это ключевой момент, определяющий преимущества использования инжекторного устройства. Кроме того, существует еще несколько пунктов, которые выгодно отличают разницу между инжектором и карбюратором.

Ключевые отличия:

  • За счет того, что в карбюраторном двигателе создается определенный уровень давления, позволяющий засасывать воздушно-топливную смесь, а в инжекторе она подается автоматически, экономится мощность отдачи. Это позволяет в целом увеличить производительность авто на 10%. Показатель небольшой, но при длительной эксплуатации это существенная экономия топлива.
  • Быстрое реагирование на изменение условий движения. В инжекторе практически моментально происходит увеличение или уменьшение подачи топлива. Это позволяет маневрировать на дороге гораздо быстрей.
  • Система впрыскивания топлива обеспечивают легкий запуск двигателя.
  • Инжекторное устройство менее чувствительно к измененным погодным условиям. Расход топлива будет экономиться за счет того, что не требуется длительный прогрев двигателя.
  • Также такие устройства соответствуют более строгим современным экологическим стандартам. Уровень вредных выбросов, как правило, ниже на 50-70%, что в современном мире просто необходимо.

Среди главных недостатков — полная зависимость системы от исправности всех элементов. Инжектор снабжен несколькими датчиками, которые анализируют параметры топлива и условия эксплуатации. При выходе электроники из строя может понадобиться дорогостоящий ремонт.

Также при эксплуатации авто с инжекторным двигателем необходимо тщательней следить за состоянием используемого топлива. Форсунки, обеспечивающие подачу и распыление воздушно-топливной смеси, часто забиваются при использовании некачественного бензина. Вместе с тем, этот критерий очень сложно контролировать, особенно при длительной поездке, когда приходится заправляться на непроверенных точках. К недостаткам также можно отнести дорогостоящий ремонт в случае поломок. Самостоятельная починка электронной части на практике оказывается неудачным решением и может привести к необходимости восстановления системы, а это стоит немало.

ЭБУ

Главным центром управления инжектора является ЭБУ — электронный блок управления. В его задачи входит непосредственный контроль над работой всех систем, расходом и подачей топлива, а также сигнализирование о возможных неполадках в работе автомобиля. Отчеты о возможных сбоях в системе и алгоритм правильной работы храниться в специальных ячейках памяти,

В зависимости от модели, обычно есть три типа памяти устройства:

  1. ППЗУ требует однократного программирования, после чего сохраняются все алгоритмы действия для управления системой. Чип хранится на плате блока, при необходимости подлежит замене. Информация не подлежит удалению при сбоях сети, корректированию не поддается.
  2. ОЗУ — оперативное запоминающее устройство. Относится к временному хранилищу файлов. Также служит местом для расчета и анализа полученной информации. Располагается ОЗУ на печатной плате блока, при сбоях в сети информация стирается.
  3. ЭПЗУ представляет собой электрически программируемое запоминающее устройство. В основном используется для хранения информации для противоугонной системы (коды и пароли владельца). При нарушении ввода данных, двигатель не заведется. Такое хранилище не зависит от данных сети, информация сохраниться при любых ситуациях.

Форсунки

Форсунки

Заслонка, позволяющая контролировать впрыск топлива в систему, называется форсункой. Используется два типа системы подачи топлива. Моновпрыск сейчас практически не используется. При таком расположении форсунки топливо подается вне зависимости от открытия впускного клапана двигателя. К тому же, такое управление мало контролируется электроникой. Второй вид — распределительный впрыск представлен более совершенной системой. Благодаря нескольким форсункам, расположенным непосредственно вблизи каждого цилиндра, происходит направленный доступ горючего. Такая система четко регламентирует подачу топлива, а также увеличивает производительность двигателя. Тип управления инжектором также определяется ЭБУ и может быть точечным и последовательным.

Каталитический нейтрализатор

Этот элемент системы инжекторного двигателя предназначен для контроля выхлопов авто. Для его работы необходим датчик содержания кислорода в выхлопных газах (лямбда-зонд). При превышении допустимых значений проводится корректировка впрыска топлива, а также проводится процесс рециркуляции отработанных газов. Кроме того, в системе предусмотрены специальные катализаторы, уменьшающие содержание вредных примесей после сжигания топлива.

Датчики

Сложная система электронного управления подразумевает проверку и регулировку нескольких датчиков. При выходе из строя хотя бы одного элемента, ЭБУ выдает ошибку.

Основные датчики инжекторного двигателя:

  • ДМРВ (датчик массового расхода воздуха). Обеспечивает информацию о массе воздуха, поступающего в двигатель.
  • Лямбда-зонд (датчик кислорода). Определяет содержание кислорода в воздушно-топливной смеси. При помощи такой информации ЭБУ может выявить изменения топливной смеси и откорректировать ее значения.
  • Датчик дроссельной заслонки. Контролирует положение дроссельной заслонки, согласно которому блок управления может реагировать, увеличивая или сокращая подачу топлива по мере необходимости.
  • Датчик напряжения. Контролирует напряжение бортовой сети машины. Показания датчика при необходимости заставляют блок управления увеличить число оборотов холостого хода, если напряжение понижено (чаще всего при высоких электрических нагрузках).
  • Датчик контроля температуры охлаждающей жидкости. Дает сигнал о прогреве двигателя, после чего ЭБУ запускает работу других систем.
  • Датчик абсолютного давления. Следит за показателем давления во впускном коллекторе. От количества воздуха, которое поступает в двигатель, меняется потребление топливной смеси. Также этот показатель используется при определении производительности авто.
  • Датчик вращения коленвала. Скорость вращения коленчатого вала – один из определяющих факторов, которые влияют на расчет необходимой длительности импульса.

Преимущества инжектора уже оценили многие автолюбители. Снижается расход топлива, повышается производительность автомобиля, а также облегчается процесс его управления. Работа инжекторного двигателя обеспечивается непосредственным впрыском топлива в систему, на основании проанализированных данных о параметрах топливной смеси и режиме эксплуатации двигателя. Как работает инжекторный двигатель, его преимущества и недостатки по сравнению с карбюраторным устройством рассмотрены в нашей статье.

Если материал был для вас интересен или полезен, опубликуйте его на своей странице в социальной сети:

jrepair.ru

Инжектор автомобиля, принцип работы, описание

Инжектор автомобиля, принцип работы, описание

Инжекторы - насколько это важный элемент устойчивой работы двигателя, и какие параметры важны при их проверке?В различных статьях уже говорилось о конструкции инжекторов, поэтому не будем повторяться, а попытаемся рассказать о тех случаях, которые происходили в практике ремонта. Иногда, при ремонте, у очередного клиента возникает такой вопрос: "Мне в разных мастерских проверили все, чуть ли не весь двигатель разобрали, а он как "троил", так и "троит" и не хочет ехать". В нашей практике ремонта тоже возникают вопросы, что некоторые машины устойчиво работают на холостых оборотах, а вот при резком ускорении создается такое впечатление, что машина "упирается в стенку" или, говоря так же образно - "ее что-то тянет за зад". Особенно это ощущается при трогании с места. Конечно, во всех этих ситуациях, нельзя говорить однозначно о той или иной причине. Потому что следствие может быть внешне похожим, а причины - разные. Но раз мы решили поговорить об инжекторах, тогда и перейдем к ним.

Так как я считаю, что в любой работе надо начинать с более простого, а значит и более дешевого для клиента, то в первую очередь необходимо проверить правильность работы системы зажигания (это свечи, бронепровода, правильность установки угла опережения зажигания). Об этом уже много говорилось. Если при устранении всех недостатков в работе системы зажигания проблема осталась (хотя чаще бывает, что двигатель начинает работать более уверенно), мы приступаем к проверке инжекторов. Очень важным параметром работы инжекторов является равномерность подачи топлива. При проверке - неравномерность подачи топлива не должна превышать 9%. Я измеряю ее отношением объема минимальной подачи к объему максимальной подачи топлива из комплекта инжекторов х 100%. Если разность подачи топлива превышает 9% (а встречаются случаи, где неравномерность подачи составляла 25, 30 и более %), то инжекторы, которые обеспечивают минимальную подачу, подлежат замене.

Мы пытались различными способами "привести в чувство" неисправные инжектора, используя для этого различные химические присадки высокой концентрации , ультразвуковую очистку, однако полностью привести в порядок неисправные инжекторы у нас не получалось - увы. "Если он мертв - то это навсегда". В этом случае, замена допускается только на тот тип инжектора, который установлен на этой модели двигателя. Это обусловлено тем, что каждый тип инжектора расчитан на определенный объем подачи топлива и если попытаться заменить его на другой тип, то не будут выполняться условия по оптимальному соотношению топливо-воздушной смеси. В некоторых автомагазинах - авторазборках нас пытались убедить, что замена на другой тип инжектора вполне и вполне возможна! Например, по их словам, можно "с чистой совестью" переставлять инжектора с двигателей 4A-FE на 5A-FE, 4S-FE на 3S-FE и наоборот. Поверьте на слово - это утопия.

Можно привести еще такой пример : на двигателях 4S-FE встречаются два типа инжекторов: 23250-74110 и 23250-74130. На первом типе инжектора объем подачи топлива в режиме холостого хода составляет 57-60 мл, а на втором - 61-63 мл. В начале своей работы с инжекторами мы пытались немного поэксперементировать, тем более что такую возможность нам давали. Интересно, подумали мы, если поставить инжекторы с меньшими объемами подачи топлива, машина будет более экономичной или нет??? А если подачу немного увеличить, она лучше поедет? А как будет с расходом?

Результатом этого эксперимента стал однозначный вывод: если за счет инжекторов уменьшить объем топлива, то расход не только не уменьшиться, а наоборот увеличится и машина практически перестанет нормально ездить (да, она будет "передвигаться", но нормально ездить - никогда). Если объем топлива увеличить, то машина станет немного резвее, но расход топлива резко возрастает. Этот вывод был сделан субъективно по словам человека, который доверил нам свою машину для этого эксперимента. Конечно, о "чистоте" эксперимента говорить не приходится, однако и такие выводы - тоже выводы. Если возникла необходимость произвести профилактическую проверку и чистку инжекторов, то результатом этой работы является улучшение облака распыления топлива, что приводит к лучшему смешиванию частиц топлива и воздуха. Таким образом, удается снизить расход топлива. Опять же, по оценке клиентов, после ультразвуковой чистки инжекторов расход топлива на машинах с объемом двигателя до 1600 см3 снижался на 1-1,5 литра, на двигателях с объемом двигателя свыше 1600 см3 - на 1,5-2 литра.

Основные принципы работы инжектораКак известно, абсолютное большинство японских автомобилей вообще, и Тойот в частности, оснащаются не карбюраторами, а системами впрыска топлива. Есть мнение, что впрыск - это хорошо, современно и прогрессивно. Также есть другое мнение, диаметрально противоположное первому: впрыск - это сложно, дорого, не ремонтопригодно. Этого мнения придерживаются в основном автовладельцы со стажем, имеющие богатый опыт эксплуатации отечественной техники и прекрасно знающие, что такое карбюратор, но не знающие, что делать с этими “новомодными” компьютерами, инжекторами, датчиками и т.д. Разумеется, для понимания того, как работает принципиально другая система питания, нужно, во-первых, иметь желание разобраться в этом, а во-вторых - нужна информация, которой очень и очень мало. Именно поэтому мы и попробуем сейчас в общих чертах дать описание функционирования системы впрыска TCCS (Toyota Computer Control System) фирмы Тойота, рассказать, как это все работает, и какие действия может предпринять автовладелец в случае, когда что-то не работает или работает не так.

Прежде всего, хотелось бы напомнить основные принципы работы любой современной автомобильной электронной системы впрыска. В двух словах процесс работы системы впрыска выглядит так: масса воздуха, поступающая в двигатель, измеряется датчиком расхода воздуха, эти данные передаются компьютеру, который на основе этой информации, а также на основе некоторых других текущих параметров работы двигателя, таких, как температура двигателя, температура воздуха, скорость вращения коленчатого вала, степень открытия дроссельной заслонки (и скорость ее открытия), расчитывает необходимое количество топлива, которое нужно сжечь в данном количестве воздуха. После этого компьютер подает на форсунки электрический импульс нужной длительности, форсунки открываются, и топливо, находящееся под давлением в топливной магистрали, впрыскивается во впускной коллектор. Все, дело сделано.

Как все просто, скажут многие и, в общем-то, будут правы - в системе впрыска есть одна-единственная сложность - это сложная программа, находящаяся в памяти компьютера и составленная таким образом, чтобы учитывать все разнообразие режимов работы двигателя и внешних условий, в которых ему приходится работать, а механические же узлы и составные части ничего сложного из себя не представляют и их можно перечислить по пальцам: это бензонасос, перепускной клапан топливной магистрали, клапан поддержания холостых оборотов (он же зачастую отвечает за прогревание обороты и компенсацию падения оборотов при включении кондиционера и других электроприборов), форсунки.

Ну и, естественно, датчики. Один из таких датчиков, о котором в автомобильной среде ходит очень много разных слухов и “гаражных баек”, является датчик кислорода или, иначе, лямбда-зонд. Чуть позже мы уделим ему особое внимание. Итак, рассмотрим процесс функционирования системы TCCS. Следует сразу сказать, что автомобильные системы впрыска бывают двух типов - с обратной связью и без нее. Системами с обратной связью оснащаются автомобили, предназначены для рынков развитых стран, таких как США, Япония, европейские страны, где нормы на содержание токсичных веществ в выхлопных газах очень строги и к автомобилям предъявляются соответствующие требования. В таких системах обязательно есть два компонента - каталитический нейтрализатор и лямбда-зонд. В системах без обратной связи ни лямбда-зонда, ни, как правило, нейтрализатора нет.

Система TCCS не является исключением и также выпускается в двух вариантах. Мы начнем с более сложного и передового варианта с обратной связью, тем более, что автомобили, приходящие из Японии, имеют именно этот вариант системы, ведь требования к чистоте выхлопа в Японии очень высоки.

Компьютер (ECU)Начнем мы, пожалуй, с компьютера управления, который общепринято называть ECU (Electronic Control Unit). В памяти компьютера находятся собственно программа управления и набор так называемых “карт” (maps), в которых отражена необходимая для работы программы информация. При этом сама программа более-менее стандартна для любого двигателя, а вот карты, используемые ею, уникальны для каждой модели и каждой модификации двигателя. Для большей наглядности можно представить себе простейшую программу, которая работает с двумя картами, одна из которых представляет собой трехмерную таблицу, в которой по горизонтали (вдоль оси X) заданы значения массы поступающего воздуха, по вертикали (вдоль оси Y) - значения оборотов двигателя, а вдоль оси Z - значения углов открытия дроссельной заслонки.

На пересечении всех трех колонок и столбцов таблицы проставлены значения количества топлива, которое необходимо впрыснуть при данных условиях работы двигателя. Во второй карте, двумерной, заданы соответствия между количеством топлива и временем открытия форсунок, в результате из этой карты программа может узнать то, для чего и городился весь этот огород - длительность электрического импульса, который должен быть подан на форсунки. В процессе работы программа каждые несколько миллисекунд опрашивает датчики, сравнивает полученные значения с заданными в первой карте, выбирает из соответствующей ячейки содержащееся там значение количества топлива, потом переходит ко второй карте и выбирает исходя из этого значения требуемое время открытия форсунок. Далее следует импульс на форсунки - все, цикл завершен.

Описанный процесс отличается от реального тем, что на самом деле таких карт больше и в них отражены взаимные зависимости гораздо большего числа параметров, чем было перечислено, в том числе нагрузка на двигатель, температура двигателя, температура воздуха и даже высота над уровнем моря. Но цель работы программы управления та же - конечным результатом сбора и обработки данных от датчиков должна быть длительность электрического импульса на форсунку.

Таким образом, вся сложность заключается не в написании собственно программы, которая всего-то и делает, что сверяется последовательно с несколькими картами и в результате “добирается” до некоторого значения, а в самих картах, которые должны быть очень точными и подобраны под конкретную модификацию двигателя. Кроме этого, ECU системы TCCS управляет также и углом опережения зажигания, зависимость которого от различных текущих параметров работы двигателя также задается соответствующими картами.

Обратная связьОбратная связь в системе TCCS, как и в любой другой системе впрыска, обеспечивается лямбда-зондом (датчиком кислорода). Необходимость ее обусловлена тем, что как бы ни были хороши и точны карты, находящиеся в памяти ECU, каждый экземпляр двигателя все- равно в той или иной мере отличается от остальных и требует индивидуальной подстройки топливной системы. В процессе эксплуатации двигателя также происходят изменения, связанные с его старением и износом, и которые тоже было бы неплохо компенсировать.

Кроме этого, сами карты могут быть изначально составлены не оптимально для некоторых сочетаний внешних условий и режимов работы двигателя и, таким образом, требовать корректировки. Именно эти задачи и позволяет решить наличие обратной связи. Но главная цель при решении всех этих задач - это достижение наиболее полного сгорания горючей смеси в цилиндрах двигателя для получения наилучших характеристик его токсичности. Известно, что оптимальным для полного сгорания топлива является соотношение воздух/топливо равное 14.7:1. Это отношение называют “стохиометрическим” или, иначе, “коэффициент лямбда” (именно отсюда и пошло название “лямбда- зонд”).

Выглядит обратная связь так. После того, как компьютер определил необходимое количество топлива, которое нужно впрыснуть в текущий момент работы двигателя исходя из текущих условий и режима его работы, топливо сгорает и выхлопные газы поступают в выпускную систему. В этот момент с датчика кислорода считывается информация о содержании кислорода в выхлопных газах, на основании чего можно сделать вывод, а так ли все прошло, как было рассчитано, и не требуется ли коррекция состава горючей смеси. Образно говоря, компьютер постоянно проверяет свои расчеты по конечному результату, информацию о котором он получает от датчика кислорода, и, если это требуется, выполняет окончательную точную подстройку состава горючей смеси. В англоязычной литературе эта процедура обычно именуется “short term fuel trim”. Но так происходит не всегда - в некоторых режимах работы двигателя компьютер игнорирует информацию от датчика кислорода и руководствуется только своими собственными расчетами. Давайте посмотрим, когда же это происходит.

Режимы управленияКомпьютер любой системы управления впрыском с обратной связью, в том числе и TCCS, в процессе работы может находиться в одном из двух режимов управления - либо в режиме замкнутого контура (closed loop), когда он использует информацию датчика кислорода в целях точной корректировки, либо в режиме разомкнутого контура (open loop), когда он игнорирует эту информацию. Ниже мы рассмотрим основные режимы работы двигателя и режимы управления.

Запуск двигателя. В момент запуска требуется, в зависимости от температуры как самого двигателя, так и окружающего воздуха, обогащенная горючая смесь с повышенным процентным содержанием топлива. Это всем известный факт, характерный вообще для всех бензиновых двигателей внутреннего сгорания, как карбюраторных, так и двигателей с впрыском, поэтому мы не станем подробно останавливаться на причинах. Скажем только, что соотношение воздух/топливо в этом режиме варьируется в среднем от 2:1 до 12:1. В этом режиме компьютер системы TCCS работает в режиме разомкнутого контура.

Прогрев двигателя до рабочей температуры. После запуска двигателя компьютер системы TCCS постоянно проверяет текущую температуру двигателя и в зависимости от этого параметра производит расчет состава горючей смеси, а также устанавливает требуемую величину прогревных оборотов посредством воздушного клапана ISC (Idle Speed Control). В процессе прогрева двигателя с ростом температуры соотношение воздух/топливо изменяется компьютером в сторону обеднения, а прогреваемые обороты также уменьшаются. В это же время происходит разогрев датчика кислорода в выпускном коллекторе до рабочей температуры. Компьютер при этом работает в режиме разомкнутого контура.

Холостой ход. По достижении заданной температуры двигателя и при условии достаточного для работы разогрева датчика кислорода (датчик кислорода начинает выдавать правильные показания только при температуре от 300C и выше) компьютер переключается в режим замкнутого контура и начинает использовать показания датчика кислорода для поддержания стехиометрического состава горючей смеси (14.7:1), обеспечивающего наименьший уровень содержания токсичных веществ в выхлопных газах.

Движение с постоянной скоростью, плавное увеличение или уменьшение скорости. В этом случае компьютер TCCS также находится в режиме замкнутого контура и использует показания датчика кислорода. Вы можете раскрутить двигатель хоть до 6500 об/мин, наполовину нажав педаль газа, но компьютер все-равно будет оставаться в режиме замкнутого контура, обеспечивая состав горючей смеси в пределах примерно от 14.5:1 до 15.9:1. Резкое ускорение. Как только Вы нажимаете педаль газа “в пол” и полностью открываете дроссельную заслонку - компьютер безоговорочно переходит в режим разомкнутого контура. Под нагрузкой (а компьютер всегда в состоянии определить, велика ли нагрузка на двигатель) компьютер может переключиться в режим разомкнутого контура несколько раньше - уже при открытии дроссельной заслонки на 68 или более процентов от ее хода. При этом он будет поддерживать состав горючей смеси в пределах от 11.9:1 до 12:1 для получения большей мощности.

Принудительный холостой ход (торможение двигателем). Компьютер также переходит в режим разомкнутого контура в случаях, когда текущие обороты двигателя превышают величину оборотов холостого хода, а дроссельная заслонка полностью закрыта - например, когда Вы движетесь под уклон, убрав ногу с педали газа и не выключив передачу. При этом компьютер обеспечивает обедненный состав горючей смеси. Таким образом, мы видим, что большую часть времени компьютер TCCS находится в режиме замкнутого контура, который обеспечивает оптимальный состав горючей смеси. Более того, находясь в этом режиме, компьютер “самообучается”, корректируя и модифицируя карты, используемые в режиме разомкнутого контура, адаптируя их к текущим условиям эксплуатации и состоянию двигателя.

Т.е., если, скажем, компьютер замечает, что в режиме замкнутого контура для достижения оптимального сгорания ему приходится все время обогащать топливо-воздушную смесь на, скажем, 5% относительно базовых значений, прописанных в соответствующих картах, то через некоторое время, когда он удостоверится в стабильности этого корректирующего коэффициента, он соответствующим образом модифицирует сами карты, тем самым влияя и на смесеобразование в режиме разомкнутого контура. Это и есть тот самый процесс “самообучения”, о котором тоже ходит столько слухов. “По-научному” он называется “long term fuel trim”. Следует заметить, что модифицированные карты сохраняются только в энергозависимой памяти компьюетра, поэтому после отключения аккумулятора восстанавливаются заводские значения этих карт, и компьютер должен “самообучиться” заново.

Все было бы просто замечательно, если бы не один фактор, портящий эту красивую картину - лямбда-зонд имеет обыкновение выходить из строя в результате заправок этилированным бензином. В реальной жизни это приводит к тому, что рано или поздно после пробега по нашим дорогам система TCCS лишается своей способности к адаптации под текущие условия и работает строго по тем картам, которые изначально находились в памяти компьютера, постоянно находясь в режиме разомкнутого контура. Естественно, что ничего хорошего из этого не получается, ведь большинство автомобилей к тому времени, когда они попадают к нам, уже немало побегали по японским дорогам, и двигатели их, увы, уже не новые. Впрочем, практика показывает, что и ничего особенно плохого тоже не происходит.

Более того, система TCCS “нативных” японских Тойот в случае выхода из строя лямбда-зонда даже не зажигает на панели лампочку “check engine” в отличие от Тойот для американского и/или европейского рынков.

Кстати, следует заметить, что каталитический нейтрализатор (именуемый в народе “катализатор”) и лямбда-зонд - это совершенно разные устройства, хотя их и можно назвать “сладкой парочкой” - как правило, если в машине есть лямбда-зонд - то есть и нейтрализатор, и наоборот. Оба эти устройства служат одной и той же цели - снижению уровня токсичности выхлопа, но выполняют каждое свою часть работы: лямбда-зонд помогает системе управления впрыском готовить оптимальную с точки зрения полноты сгорания горючую смесь, а нейтрализатор эту смесь дожигает.

Каталитический нейтрализаторНейтрализатор, который представляет собой керамические “соты”, покрытые активным слоем, способным дожигать остающиеся в выхлопных газах частички топлива, также выходит из строя после нескольких заправок этилированным бензином. Выходит из строя - это означает, что он теряет способность к дожиганию не сгоревших частичек топлива. Известны случаи, когда соты катализатора оплавлялись, забивались нагаром и такой нейтрализатор уже создавал серьезную помеху на пути выходящих из двигателя выхлопных газов. Но следует сказать, что сама по себе заправка, даже неоднократная, этилированным бензином к такому результату не приведет.

Причина оплавления нейтрализатора - это работа двигателя в течение длительного времени на обогащенной (или богатой) смеси, к чему может привести как выход из строя лямбда-зонда, так и неисправности в системе питания и зажигания.

Принцип работы датчика кислородаНаиболее распространённый тип - циркониевый кислородный датчик. По сути дела он является переключателем, резко меняющим свое состояние на рубеже 0.5% кислорода в составе выхлопных газов.

Это количество кислорода соответствует идеальному стехиометрическому соотношению воздух/топливо 14.7:1. Обычно интерфейс датчика устроен таким образом: прогретый датчик (более 300 градусов Цельсия) при количестве кислорода менее 0.5% (богатая смесь), являясь слабым источником тока, выставляет на сигнальном выходе напряжение в диапазоне от 0.45 до 0.8 вольта, а при количестве кислорода более 0.5% (бедная смесь) - от 0.2 до 0.45 вольта. Какой точно уровень напряжения при этом - роли не играет, учитывается его положение относительно средней линии.

Если ECU видит сигнал бедной смеси - топливо добавляется. Если в следующий измерительный период ECU видит сигнал богатой смеси - то подача топлива уменьшается. Таким образом состояние системы постоянно колеблется вокруг оптимальной величины и подача топлива настраивается по практическим результатам сгорания. Это позволяет системе адаптироваться к различным условиям работы. Частота колебаний напряжения на датчике кислорода составляет примерно 1-2 Гц на холостых оборотах и 10-15 Гц при 2000- 3000 об/мин. Так как датчик работает надежно только в хорошо прогретом состоянии, то ECU системы TCCS начинает замечать его показания только после определенного уровня прогрева двигателя.

Для ускорения прогрева датчика в него зачастую монтируют электрический подогреватель. Бывают датчики с одним проводом (сигнал), бывают с двумя (сигнал, земля сигнала), с тремя (сигнал, 2 провода подогревателя), с четырьмя (сигнал, земля сигнала, 2 провода подогревателя).

Самодиагностика компьютера системы TCCSЛюбая современная система впрыска имеет встроенную подсистему самодиагностики, которая позволяет определить различного рода неисправности датчиков, исполнительных механизмов и узлов системы.

В результате процедуры самодиагностики компьютер вырабатывает диагностические коды, которые можно тем или иным способом извлечь из памяти компьютера и расшифровать в соответствии с таблицами. Способ извлечения этих кодов у разных производителей - разный. В системе TCCS для этого используется лампочка “Check Engine” на панели приборов, а переключение компьютера в режим вывода диагностических кодов осуществляется путем закорачивания пары контактов на диагностическом разъеме в моторном отсеке автомобиля. Диагностический разъем обычно находится вблизи левой опоры стойки передней подвески и представляет собой черную или серую коробочку с надписью “DIAGNOSIS” на крышке.

Пошаговая процедура самодиагностики: Начальные условия напряжение в бортовой сети превышает 11 вольт дроссельная заслонка полностью закрыта трансмиссия в положении “нейтраль” (или “парковка” для автоматических трансмиссий) кондиционер выключен Металлическим проводником (провод, разогнутая канцелярская скрепка) замкнуть контакты T (или TE1) и E1 на диагностическом разъеме. Повернуть ключ зажигания в положение “ON”, но не запускать двигатель стартером. Считать коды путем подсчета количества мигание лампочки “Check Engine”. Считывание кодов диагностики. При считывании кодов возможны две ситуации:

Неисправностей не обнаружено: лампочка будет мигать непрерывно с интервалом в 0.25 секунды Обнаружены неисправности: последует серия мигание с интервалом 0.5 секунды - первая цифра кода (например, пять миганий - цифра 5) пауза 1.5 секунды серия мигание с с интервалом 0.5 секунды - вторая цифра кода (например, четыре мигания - цифра 4) в случае, если кодов больше одного - пауза 2.5 секунды после отображения всех кодов следует пауза в 4.5 секунды и процесс повторяется сначала Сброс кодов диагностики.

Обнаруженные коды диагностики (за исключением кодов 51 и 53) будут находиться в памяти компьютера даже после устранения неисправности. Чтобы очистить область памяти компьютера, в которой хранятся коды, нужно при заглушенном двигателе вынуть на 30-60 секунд предохранитель EFI (15A) из блока предохранителей. Коды диагностики также сбрасываются при отключении аккумуляторной батареи.Таблица диагностических кодов.

Все коды системы TCCS унифицированы и значение их одинаково для всех двигателей Toyota, но для каждого конкретного двигателя используется специфичное для него подмножество кодов. Например, код 34 может присутствовать только на двигателях, оборудованных турбонаддувом.

remrai.ru

Принцип работы инжектора | Лада Мастер

Двигатель транспортного средства представляет собой сложную систему, функционирующую слаженно в различных условиях. Еще не так давно машины оснащались карбюраторами, но данная технология несколько устарела, ее успешно заменил инжектор. В оснащенном этим устройством двигателе питание осуществляется инжекторной подачей. Такая технология существенно отличается, устанавливается на машинах, использующих бензин.

Содержание:

  1. Порядок работы
  2. Рабочая схема
  3. Устройство
  4. Возможные неисправности

Порядок работы

Да, на смену карбюратору пришел инжектор. Он на порядок эффективней своего предшественника. Таким моторам предписывается улучшенный разгон, экономия топлива, неплохие экологические параметры. Это достигается без ручного регулирования и иных манипуляций.

инжектор

Принцип действия этого устройства в топливной системе основан на подаче бензина, смешанного с воздухом, сквозь специальную форсунку. Их располагают в коллекторе впуска, систему называют моновпрыском. Из-за своих недостатков она успела несколько отойти в прошлое.Второй вариант расположение форсунок возле впускных цилиндрических клапанов. Этот вид системы называется распределенным впрыском.Они могут находиться на головке цилиндра. Это прямой впрыск, который используется часто.

Принцип работы инжектора

 

Топливо и воздух подаются сразу в камеру.Система распределенного впрыска разделяется на несколько типов:

  • одновременный – имеющиеся форсунки горючее подают все вместе;
  • парно-параллельный – приоткрываются парами, на впрыск и на выпуск. Данный метод используют при запуске силовой установки;
  • фазированный – раскрывается перед впрыскиванием;
  • прямой – топливо-воздушная смесь впускается сразу в ресивер.

Чтобы происходили впрыски топлива, его подводит к распылению давление, создаваемое электрическим бензонасосом. Импульсные сигналы подаются бортовым компьютером. Протяженность импульса и партия бензина или солярки для каждого впрыска определяются по данным, которые поступают с датчиков читки информации функционирования мотора.

Рабочая схема

Рабочая схема

Работа машины заключается не только в движке и крутящем моменте, сюда следует добавить электроуправление от компьютера. Главный «мозг» оказывает влияние и на функции инжектора. Имеющиеся датчики считывают сведения о количестве горючего, скорости, сетевом напряжении, другие данные.Контроллер обобщает всю информацию и начинает управлять приборами, регулируя подачу горючего.

Устройство

Устройство

Чтобы понимать, как он функционирует, следует знать его состав. Сюда входят:

  • электронасос;
  • электрический блок управления либо контроллер;
  • датчик, регулирующий давление;
  • датчики;
  • форсунка либо сам инжектор.инжекторная подача

Возможные неисправности

Инжектор вносит эффективность в работу силовой установки, помогает экономить бензин, помогает делать выхлопные газы более чистыми.Но если форсунки начинают засоряться, то:

  • обороты мотора снижаются;
  • зажигание затрудняется;
  • набор скорости происходит медленней;
  • увеличивается расход топлива;
  • в выхлопах увеличивается уровень вредных компонентов.

В современных транспортных средствах имеются электродатчики, выдающие сведения на монитор приборной доски, чтобы водитель имел возможность уточнить неисправность, которую необходимо устранить.

диагностика инжектора

 

Засорение устройства может быть вызвано бензином, в состав которого входят парафиновые частички и сложные химсоединения. При отключении мотора некоторое количество горючего остается в форсунке. От температуры оно начинает испаряться, парафин застывает. Он то и создает основное препятствие для подачи горючего.Чтобы восстановить нормальную работоспособность, прибор следует прочистить. Можно воспользоваться компрессорным устройством и специальной промывочной жидкостью. Компрессор монтируется вместо насоса подачи топлива, начинает подавать растворитель в систему. Время процедуры будет зависеть от того, насколько сильны загрязнения форсунок. Если результат не достигнут, следует применить более кардинальный способ.Чтобы уточнить результативность прочистки, следует выполнить анализ выхлопных газов, уточнить мощность двигателя и уровень падения показателя давления в инжекторе. Если все нормально, значит, очистка проведена успешно.

инжекторный двигатель

Второй способ сложнее, подразумевает наличие специальных навыков. Придется разбирать мотор и некоторые узлы машины. До такого состояния устройство рекомендуется не доводить.Некоторые водители считают, что моноинжектор будет эффективней. Вопрос спорный, на расход топлива влияние не оказывается. Небольшое улучшение можно получить, если одновременно провести чип-тюнинг.

ladamaster.com

Как работает инжектор? / Хабр

В заметке пойдет речь о работе «мозгов», управляющих двигателем вашего автомобиля или мотоцикла. Попытаюсь на пальцах и в общем объяснить что же и как происходит.

Чем занимаются те самые «мозги» и для чего они нужны? Электроника — альтернатива другим системам, выполняющим те же функции. Дозированием топлива занимался карбюратор, зажиганием управлял механический или вакуумный корректор угла опережения зажигания. В общем не электроникой единой возможно реализовать все это и достаточно продолжительное время именно так и было. На автомобилях, мотоциклах, бензопилах, бензогенераторах и во многих многих других местах работали и продолжают работать те самые системы, которые призван заменить инжектор. Зачем же понадобилось что-то менять? Зачем сносить существующие проверенные и весьма надежные системы? Все просто — гонка за экономичностью, экологичностью и мощностью. Точность работы описанных выше систем недостаточна для обеспечения желаемого уровня экологичности и мощности, а сами по себе электронные системы управления двигателем начали появляться достаточно давно. Я опущу принцип работы поршневых ДВС, многие знакомы с тем как работает двигатель, а те кто не знакомы — не слишком пострадают. В разрезе работы системы питания и системы зажигания двигатель это просто преобразователь воздушно-топливной смеси в механическую энергию. Можно рассматривать его как черный ящик, с некоторыми особенностями.

Итак, у нас есть топливо (бензин, этанол, пропан или метан), есть воздух и желание получить из этого механическую энергию. Сложность состоит в том, что для получения интересующих нас характеристик надо смешивать топливо и воздух в точно определенных пропорциях и поджигать их в достаточно точно определенный момент времени. Более того — при недостаточной точности мы получим ухудшение характеристик.

Вся суть работы «мозгов» сводится к дозированию топлива и поджигом смеси в цилиндрах двигателя. Это основные функции. Кроме них есть еще и дополнительные — управление турбиной, управление трансмиссией.

Подсистема, занимающаяся дозированием топлива называется инжектор, поджигом топлива занимается зажигание. Воздух в двигатель поступает «естественным» порядком. Двигатель сам всасывает воздух, его количество только может ограничиваться, для снижения мощности двигателя. Нам не нужна максимальная мощность все время, бОльшую часть времени мощность как раз ограничивается. В случае с турбиной воздух попадает в двигатель принудительно, но это не меняет сути. Воздуха столько сколько есть и мы управляем его количеством при помощи педали. Сколько топлива нам надо подать в двигатель и как его дозировать? Есть так называемое стехиометрическое отношение, показывающее, что для полного сжигания килограмма топлива нам нужно вполне определенное количество воздуха. Для бензина это соотношение равно 14,7:1. также его называют AFR (Air Fuel Rate по английски) Это не аксиома, это некий оптимум. Смесь может быть «беднее», в ней может быть меньше топлива. Такая смесь хуже горит, двигатель сильнее греется, но сгорает все полностью. Это значения в большую сторону — AFR 15 и более. Может быть и «богаче», когда топлива больше — AFR 14 или меньше. При таком соотношении смесь сгорает не полностью, но мощность двигателя максимальна. И в ту и в другую сторону есть ограничения — если слишком увлечься, работать двигатель не будет. Нельзя просто налить 20 частей топлива и ожидать пропорционального прироста мощности.

Итак, чтобы определить сколько же топлива нам надо подать в двигатель нам надо знать сколько воздуха в него поступает. Дальше все просто — из количества воздуха по соотношению определяем количество бензина и дело сделано! Погодите ка, а как же нам определить сколько воздуха поступает в двигатель? Для этого есть несколько путей. Обычно используют один из следующих датчиков:

ДМРВ или MAF — датчик массового расхода воздуха. Датчик этот измеряет количество проходящего через него воздуха. Как подсказывает википедия — «Датчик состоит из двух платиновых нитей, нагреваемых электрическим током. Через одну нить, охлаждая её, проходит воздух, вторая является контрольной. По изменению тока проходящего через охлаждаемую воздушным потоком платиновую нить вычисляется количество воздуха, поступающего в двигатель.». Датчики такого типа зачастую устанавливаются в гражданские автомобили. В общем то все достаточно просто. Похоже, это именно то, что нужно! Примерно так и есть.

Другой тип датчиков

ДАД или MAP — датчик абсолютного давления. Этот датчик подключен к впускному коллектору и измеряет разрежение (или же избыточное давление, в случае с наддувом) в коллекторе. На основании показаний этого датчика и датчиков температуры, частоты вращения коленвала тоже можно вычислить объем поступающего воздуха, что нам и требуется. Для корректировки его показаний надо еще знать давление окружающего воздуха. Для измерения атмосферного давления либо ставят еще один такой же датчик, который непрерывно его измеряет, либо просто до запуска двигателя измеряют давление. Во втором случае может выйти неприятность, если вы с берега моря рванули прямиком на Эверест. MAP часто ставят на спортивные автомобили.

Устанавливается один из этих датчиков, наличие одного из них — обязательно. Ну что же, сколько воздуха поступает в двигатель мы примерно можем вычислить. Другой обязательный датчик — ДПКВ или датчик положения коленвала. Этот датчик позволяет мозгам точно знать, в каком положении находится коленвал. Зачем нам это нужно? Мало знать сколько топлива надо подать в двигатель, надо подавать его в определенный момент времени. Да и зажигать смесь в цилиндрах тоже надо строго вовремя. Так что без этого датчика — никак. Есть несколько типов таких датчиков, но большинство из них — либо индукционные, либо датчики Холла, либо подобные им. В общем — бесконтактные датчики, подобные тем, которые трудятся, например, в двигателе вашего винчестера. Или в кулерах. Следующий датчик, который вместе с ДПКВ дает еще больше информации о том, что же происходит в двигателе в данный конкретный момент — ДПРВ — датчик положения распредвала. Также его называют датчиком фаз. При помощи этого датчика можно понять в каком из цилиндров в данный момент такт впуска, куда же нам надо подавать топливо, в каком цилиндре у нас такт сжатия и время поджигать смесь. По принципу работы он подобен ДПКВ, но зачастую несколько проще. В общем то тоже самое, но на распредвале.

Этого набора датчиков нам должно хватить для запуска двигателя. Худо бедно, но этого достаточно, чтобы примерно понять сколько надо подавать топлива, когда это делать и когда поджигать полученный коктейль. Так давайте же тогда подавать и поджигать! (не путать с разжигать и науськивать)

Исполнительные механизмы

Топливо дозируется форсунками или другими словами «инжекторами». Да да, именно по названию этого узла все это безобразие нами так и называется. Форсунка из себя ничего особо интересного не представляет. Просто электромеханический клапан. Два провода и трубопровод с топливом под давлением. Подали напряжение на выводы — форсунка открылась, прекратили пропускание тока — форсунка закрылась. Для простоты давайте сначала примем, что форсунка открывается и закрывается моментально. Тогда для оценки объема проходящего через нее топлива нам достаточно знать ее статическую производительность. Это просто объем топлива, который пройдет через форсунку за минуту. Открыли форсунку, измерили объем бензина, который через нее за минуту вытек — получили основной параметр. Теперь нам для точного дозирования надо просто открывать и закрывать форсунку на определенное время. Получается что дозирование производится «выдержкой», если говорить терминами фотографов. Чем длиннее время на которое мы открываем форсунку, тем больше топлива мы нальем в двигатель. А поджиг смеси осуществляет все та же бессменная свеча зажигания, которая верой и правдой служила для этой цели. И катушка зажигания тоже на месте. Вот только управляется она уже «мозгами». Зажигание не изменилось, но для его работы важен ДПКВ и ДПРВ, так что без этих датчиков дела не будет.

В общем то это, можно считать, и есть в общих чертах как работает инжектор. Смотрим на показания датчиков, отмеряем нужное количество топлива и открываем форсунку на вычисленное время. И так каждый такт. Т.е. в зависимости от частоты — 100 раз в секунду на частоте в 6000об/мин коленвала. Часто? Да не так чтобы и очень.

Идем дальше?

В реальных двигателях все несколько сложнее. Точно вычислить сколько же воздуха попадает в двигатель не так просто. Для корректировки значений нужны датчики температуры охлаждающей жидкости — просто термодатчик, аналогичный тому, что показывает температуру на приборной панели. И датчик температуры поступающего воздуха. В целом незначительно отличающийся от первого, а функционально и вовсе его брат близнец — тоже просто измеряет температуру, но уже не двигателя, а воздуха, поступающего в двигатель. Зачем нам что-то корректировать? Дело в том, что пока двигатель холодный, пока он не нагреется до определенной температуры — топливо испаряется не так хорошо, а горят именно пары. Соответственно нам нужно топлива подавать больше, чтобы двигатель работал. Значит берем наше значение для оптимального соотношения, измеряем двигателю температуру и корректируем это наше значение. Также нужно откорректировать момент зажигания смеси в цилиндрах — по тем же причинам. И тут тоже корректируем.

Другой не совсем приятный момент — форсунка, которую мы приняли идеальной — на самом деле таковой не является. Во первых нужно время, чтобы она открылась, а потом закрылась. Соответственно в этом время она тоже подает топливо, но в меньшем количестве. На это тоже делается поправка. Само время открытия и закрытия зависит от напряжения бортовой сети. Одно дело когда генератор шпарит на всю и в сети 14В, а другое дело, когда генератор умер, а аккумулятор разряжен до неприличных 10В. Время открытия форсунки меняется и его надо корректировать. Мало умершего генератора, ехать то надо и двигатель не должен перестать работать в таких условиях.

Мало нам было исполнительных механизмов, для работы на холостом ходу, когда педаль мы совсем не трогаем — двигатель не должен глохнуть, его работу надо поддерживать. Для этого есть специальное исполнительное устройство — РХХ — регулятор холостого хода. Это такой шаговый двигатель (реже просто электромагнит), который через специальный канал дает двигателю «вздохнуть» мимо перекрывающей воздух дроссельной заслонки. Умный мозг не дает двигателю зачахнуть и приоткрывает этот клапан, когда обороты снижаются. Но и разойтись не дает — прикрывает его, когда обороты возрастают уж слишком сильно.

Хорошо бы нам также знать на сколько сильно водитель давит на педаль акселератора. Для этих целей смотрят не на положение педали, а на положение заслонки, которой эта педаль управляет. Датчик так и называется — ДПДЗ — датчик положения дроссельной заслонки. Технически это просто потенциометр, который измеряет на какой угол повернута ось дроссельной заслонки. Это зачем это нам надо знать, как сильно водитель давит в пол, спросите вы? Все просто, нам надо знать когда включать режим холостого хода (помним про РХХ), когда водитель жаждет острых ощущений и энергично давит на педаль — не время экономить, льем от души!

Экологические нормы достаточно строго контролируют что же «выдыхает» (пускай уж выдыхает) наш двигатель. Так что при всем желании лить «на глазок» — нельзя. нужно контролировать состав выхлопных газов. Как это сделать? Для этой цели есть так называемый лямбда зонд или датчик кислорода — датчик, показывающий сгорела ли смесь целиком, есть ли в выхлопных газах топливо либо же свободный кислород. По показаниям этого датчика инжектор может корректировать свое поведение, либо увеличивая либо уменьшая количество подаваемого топлива. Нужно это достаточно часто — бензин везде разный и даже просто хранясь в канистре или баке — стареет. А уж о заправках наших можно легенды слагать. Соответственно и режимы его горения совсем не постоянны. Ко всему прочему и производительность форсунок может «плавать». Ведь как вы поняли — расчет ведется исходя из их постоянной производительности, а форсунка со временем может забиться, производительность ее может снизиться. А нормы строгие, а бензин дорогой, да и ехать же надо. Внимательный читатель заметил, что одного этого датчика достаточно для обеспечения обратной связи. Смотрим на состав выхлопных газов, если сгорело не все — льем меньше. Если сгорело дочиста — льем больше. Лямбда зонды бывают двух видов — узкополосные и широкополосные. Отличаются они точностью. Первые только показывают богатая или бедная у нас смесь, вторые показывают на сколько она богатая или бедная. Даже точно указывают тот самый AFR упоминаемый в начале статьи. Ну и цена, конечно. Первые стоят 25$, вторые — 200$. С лямбдами тоже не все просто — они достаточно капризны, требуют определенной температуры для работы, а это не всегда возможно, в некоторых типах зондов рабочий элемент специально подогревают от бортовой сети. Да, лямбда может быть не одна, но это уже тонкости.

Еще один сенсор, применяемый для анализа происходящего в двигателе — датчик детонации. Детонация это процесс сгорания топлива, который протекает взрывообразно. В нормальном режиме топливо просто сгорает, при детонации топливо взрывается. Это вредно для двигателя — все равно что бить по поршню молотком. Никто не любит когда по нему бьют молотком — поршень не исключение. Явление это крайне нежелательное и для определения того, что смесь детонирует и применяют такой датчик. Он по принципу работы похож на микрофон, который «слушает» двигатель (датчик закреплен на блоке цилиндров) и по услышанному пытается отфильтровать шум работы двигателя и понять где же детонация, а где нормальная работа. Все не просто и здесь. Для облегчения работы этого датчика ставят еще датчик неровной дороги, который покажет, что это наши дороги так шумят, а не двигатель. Востребованность этого датчика возрастает на турбированых двигателях.

В итоге сами по себе мозги работают примерно следующим образом: Есть так называемая топливная карта — таблица, в которой записано какого состава должна быть смесь. У таблицы три измерения — частота вращения коленвала двигателя, нагрузка на двигатель и собственно AFR. Просто берем из таблицы значение, положенное туда опытным товарищем. Корректируем это значение в соответствии с показаниями датчиков температур, лямбда зонда, датчика детонации, изменением положения дроссельной заслонки и в соответствии со всеми этими поправками (часть из них тоже в табличках) вычисляем необходимое количество топлива. Пересчитываем объем топлива во время открытия форсунки в соответствии с ее производительностью, корректируем время в соответствии с напряжением бортовой сети и в момент впуска — открываем форсунку на вычисленное время.

Как видите — ничего сложного и заумного здесь нет. Просто таблицы, может быть местами ПИД регулятор, коэффициенты влияния тех или иных факторов и в итоге просто время открытия форсунки. С зажиганием тоже самое, только там карта углов, аналогичная топливной карте (тоже таблица) и тоже корректировки в соответствии с показаниями датчиков.

В штатном режиме все работает, но что делать, если один из датчиков вышел из строя? И как это понять? Если датчик температуры, например, показывает что двигатель нагрет до 200 градусов, или что смесь детонирует несмотря на все корректировки? В этом и заключается продуманность мозгов. Вычислить, что датчик врет, не принимать во внимание его показания, зажечь «check engine» на панели и продолжить работу. Благодаря такому поведению двигатель сохранит работоспособность при выходе из строя некоторых датчиков (не всех, как вы понимаете) и позволит доехать до СТО.

Да, многие из вас заметят, что инжектор по сути достаточно простое устройство. И схематически там нет ничего военного — входящие значения считываются по АЦП, выходящие так и вовсе чисто бинарные. Ну выходные транзисторы, ну достаточно жесткие условия работы. Но это не космос далеко. Касательно работы прошивки — тоже вроде как все не так и сложно. На мой взгляд проще всяких алгоритмов распознавания изображений и всякое такое. В процессе настройки саму прошивку никто не трогает обычно. В том смысле, что открывать исходники, корректировать алгоритмы, оптимизировать что-то — такого нет. Просто софт который позволяет изменять те самые топливные карты и другие коэффициенты. А прошивками занимаются уже инженеры на заводах. Или простые смертные, которым это интересно. Да да, не каждый готов платить за «мозги» космические деньги, а кому-то может быть просто хочется больше контроля над происходящим. Все это привело к тому, что есть несколько проектов вполне доступных «мозгов». Есть megasquirt — www.megamanual.com/index.html, для этой аппаратной базы в последствии была написана и поддерживается кастомная прошивка с расширенным функционалом — msextra.com/doc/index.html На последнем сайте есть даже схемы этих «мозгов», может быть кому-то из электронщиков будет интересно. А программистам может быть интересно глянуть на код. Если не ошибаюсь, то он есть здесь. msextra.com/doc/ms2extra/files/release/ms2extra_3.2.1_release.zip Есть еще VEMS — www.vems.hu/wiki который сначала назывался megasquirtAVR, но теперь сам по себе. Видел еще вот таких ребят — forum.diyefi.org там у них какой-то свой проект FreeEMS. На мой взгляд все это показывает, что все не так уж сложно и местами даже очень даже доступно.

Надеюсь получилось достаточно интересно и в меру понятно. Об опечатках прошу писать в личку. Если где ошибся — поправьте.

habr.com

Инжектор - принцип работы

Инжектор - принцип работы

Инжектор (или форсунка) нужен для точечной подачи топлива в двигатель, его распыления в камере сгорания, а так же образования воздушно-топливной смеси.

Инжектор пришел на смену карбюратору из-за несостоятельности последнего. На современных машинах форсунка используется повсеместно, причем как на бензиновых, так и на дизельных движках.

Виды инжекторов

В зависимости от способа подачи топлива в двигатель различают три вида форсунок.

Электромагнитная форсунка. Подобный инжектор пользуется популярностью на бензиновых двигателях. Устройство форсунки включает сопло и электромагнитный клапан с иглой. Работа инжектора осуществляется благодаря постоянному заложенному алгоритму. Блок управления подает напряжение на обмотку клапана. Электромагнитное поле, образованное этим действием, преодолевает усилие пружины и втаскивает иглу. Освобождается сопло, через которое впрыскивается топливо. После этого напряжение уходит, игла форсунки возвращается на седло.

Электрогидравлическая форсунка. Такой инжектор используют на дизельных движках. Устройство форсунки объединяет камеру управления, дроссели (сливной и впускной), а так же электромагнитный клапан.

В начальном положении игла форсунки прижата давлением топлива на поршень к седлу, клапан закрыт и обесточен. Затем из электронного блока управления подается команда на клапан, он открывает сливной дроссель. Через него топливо вытекает в сливную магистраль из камеры управления. Впускной же дроссель препятствует скорому выравниванию давлений во впускной магистрали и камере управления. Вследствие этого давление на поршень падает, а на иглу не меняется, поэтому и происходит впрыск топлива.

Пьезоэлектрическая форсунка. Быстрота срабатывания, точность дозировки впрыскиваемого топлива, а так же возможность его многократного впрыска: все эти параметры позволяют назвать пьезоэлектрический инжектор лучшей форсункой из имеющихся устройств на данный момент. Сделана форсунка на основе пъезокристалла, включает в себя переключающий клапан, иглу, толкатель.

Работа пьезоэлектрического инжектора основана на принципе гидравлики. В начальном положении игла сидит на седле с помощью высокого топливного давления. На пьезоэлемент подается электрический сигнал, что увеличивает его длину. Усилие переходит на поршень, раскрывается переключающий клапан и топливо подается в сливную магистраль. Игла поднимается за счет разницы давлений в нижней части и собственно на иглу, происходит впрыск топлива в двигатель.

Принцип работы инжектора

Наука далеко шагнула вперед, и в отличие от движков старого типа, под каждый из цилиндров ставят отдельный инжектор. Они соединяются между собой топливной рампой, а за каждой из форсунок находится топливо, которое под давлением подает электронный бензонасос. Инжектор оборудован электромагнитным клапаном. Когда он открывается, топливо впрыскивается либо в коллектор, либо в цилиндр, если стоит система прямого впрыска. Чем дольше клапан остается раскрытым, тем больше топлива попадает в цилиндр, и тем выше будут обороты движка. В современных авто за эту систему отвечает электроника. Электронный блок работает на основании сведений от множества датчиков (о них мы расскажем ниже). Эта информация позволяет настраивать двигатель в соответствии с любой нагрузкой, при любой температуре и при любых его оборотах.

Теперь поговорим об основных датчиках, координирующих работу инжектора. Одним из них является датчик температуры охлаждающей жидкости. Он отвечает за коррекцию подачи топлива и управление электрическим вентилятором. В случае поломки датчик перестанет подавать данные в блок, а двигатель будет работать согласно запрограммированным данным. Они берутся из таблиц и полностью зависят от времени работы движка. Далее рассмотрим датчик массового наполнения. Он регулирует цикловое наполнение цилиндра. Это устройство рассчитывает массовый расход воздуха и переводит это число в цикловое наполнение. При выходе датчика из строя, расчет наполнения будет проходить по аварийным таблицам, а данные датчика – игнорироваться.

Датчик кислорода вычисляет концентрацию кислорода в выхлопных газах. Эти сведения электронный блок употребляет для корректировки топливных объемов. Но не все системы оборудованы этим устройством. Датчик устанавливают в системы Евро 2 и Евро 3, в зависимости от норм токсичности.

Датчик дроссельной заслонки регулирует положение заслонки в зависимости от циклового наполнения и оборотов движка. Этот датчик уменьшает нагрузку на двигатель.

Датчик детонации контролирует детонацию. В его функции входит запуск автоматического гашения детонации и корректировка угла опережения зажигания.

Датчик коленвала – единственное устройство, при выходе из строя которого система не заработает, соответственно, машина не заведется. При выключении остальных датчиков автомобиль поедет, и можно добраться до СТО самостоятельно.

Конечно же, в этом списке не все датчики инжектора, но основные мы перечислили. К тому же, их количество и комплектация зависят от системы впрыска и основных норм токсичности.

История появления инжекторов

На дворе были 70-е и автомобилисты особо не задумывались о вопросах экологии и экономии. Бензин был дешевый, и многолитровые автомобили употребляли его в неограниченных количествах. Воздух был чище, а природные залежи нефти казались неистощимыми. Но ситуация менялась. Новые промышленные предприятия загрязняли окружающую среду, к этому добавлялись и выхлопные газы автомобиля. К тому же, неожиданно возник нефтяной кризис. И люди стали искать из этого выход.

Перед конструкторами встали два вопроса: как снизить расход бензина и как уменьшить выбросы в окружающую среду. Для того чтобы понять, что привело их к инжектору, рассмотрим устройство карбюратора. В ДВС сгорает рабочая смесь, состоящая из топлива и бензина. Для её полного сгорания соотношение веществ нужно привести к 14,7:1. Эта смесь является стехиометрической, то есть, нормальной. Если же в этой смеси уменьшить объем воздуха, то она станет называться богатой. В двигателе она сгорает не полностью, а её ядовитые остатки выбрасываются в атмосферу. Именно эта богатая смесь образуется в карбюраторах при разгоне и торможении машины, а так же при работе на холостом ходу. К тому же, в карбюраторных двигателях повышенный расход топлива: во время его пути из карбюратора в цилиндр на стенках впускного коллектора оседает около 30% рабочей смеси.

Зная эти минусы, конструкторы должны были разработать топливную систему с точной подачей топлива и полным его сгоранием. Но карбюратору это было не под силу, т.к. в его основе лежит механическое устройство. Поэтому нужно было изобретать новую систему, а не усовершенствовать старую. И тогда конструкторы пришли к идее о системе впрыска. Она обеспечивает точную подачу бензина, а чем меньше размер «капель», тем лучше они соединяются с воздухом. Рабочая смесь выходит однородной и лучше сгорает в двигателе. Для снижения выброса отходов, в топливную инжекторную систему стали устанавливать каталитический нейтрализатор. Но возникала новая проблема. Катализатор – система нежная и дорогая. Он устанавливался в выхлопной части системы, а из-за изменения параметров системы впрыска, связанных с износом, в катализатор попадало топливо. Там оно догорало и выводило катализатор из строя. Поэтому конструкторы установили в систему датчики, управляющие впрыском и составом топлива. Для того чтобы ими руководить, потребовался электронный блок управления. Такая система с интеллектуальным управлением появилась в 1973 году.

ukrautoportal.com

принцип работы инжектора

Для понимания того, как работает система питания впрыскового автомобиля, нужно, во-первых, знать сам принцип работы инжектора  и иметь желание разобраться в этом, а во-вторых — нужна информация, которой очень и очень мало. Именно поэтому мы и попробуем сейчас в общих чертах дать описание функционирования системы впрыска TCCS (Toyota Computer Control System) фирмы Тойота, рассказать, как это все работает, и какие действия может предпринять автовладелец в случае, когда что-то не работает или работает не так.

Инжектор (фр. injecteur, от лат. injicio — вбрасываю),

Прежде всего, хотелось бы напомнить основной принцип работы инжектора любой современной автомобильной электронной системы впрыска. В двух словах процесс работы системы впрыска выглядит так: масса воздуха, поступающая в двигатель, измеряется датчиком расхода воздуха, эти данные передаются компьютеру, который на основе этой информации, а также на основе некоторых других текущих параметров работы двигателя, таких, как температура двигателя, температура воздуха, скорость вращения коленчатого вала, степень открытия дроссельной заслонки (и скорость ее открытия), расчитывает необходимое количество топлива, которое нужно сжечь в данном количестве воздуха. После этого компьютер подает на форсунки электрический импульс нужной длительности, форсунки открываются, и топливо, находящееся под давлением в топливной магистрали, впрыскивается во впускной коллектор. Все, дело сделано.

Как все просто, скажут многие и, в общем-то, будут правы — в системе впрыска есть одна-единственная сложность — это сложная программа, находящаяся в памяти компьютера и составленная таким образом, чтобы учитывать все разнообразие режимов работы двигателя и внешних условий, в которых ему приходится работать, а механические же узлы и составные части ничего сложного из себя не представляют и их можно перечислить по пальцам: это бензонасос, перепускной клапан топливной магистрали, клапан поддержания холостых оборотов (он же зачастую отвечает за прогревные обороты и компенсацию падения оборотов при включении кондиционера и других электроприборов), форсунки. Ну и, естественно, датчики. Один из таких датчиков, о котором в автомобильной среде ходит очень много разных слухов и «гаражных баек», является датчик кислорода или, иначе, лямбда-зонд. Чуть позже мы уделим ему особое внимание.

Итак, рассмотрим процесс функционирования системы TCCS. Следует сразу сказать, что автомобильные системы впрыска бывают двух типов — с обратной связью и без нее. Системами с обратной связью оснащаются автомобили, предназначеные для рынков развитых стран, таких как США, Япония, европейские страны, где нормы на содержание токсичных веществ в выхлопных газах очень строги и к автомобилям предъявляются соответствующие требования. В таких системах обязательно есть два компонента — каталитический нейтрализатор и лямбда-зонд. В системах без обратной связи ни лямбда-зонда, ни, как правило, нейтрализатора нет.

Система TCCS не является исключением и также выпускается в двух вариантах. Мы начнем с более сложного и передового варианта с обратной связью, тем более, что автомобили, приходящие из Японии, имеют именно этот вариант системы, ведь требования к чистоте выхлопа в Японии очень высоки.

Начнем мы, пожалуй, с компьютера управления, который общепринято называть ECU (Electronic Control Unit). В памяти компьютера находятся собственно программа управления и набор так называемых «карт» (maps), в которых отражена необходимая для работы программы информация. При этом сама программа более-менее стандартна для любого двигателя, а вот карты, используемые ею, уникальны для каждой модели и каждой модификации двигателя. Для большей наглядности можно представить себе простейшую программу, которая работает с двумя картами, одна из которых представляет собой трехмерную таблицу, в которой по горизонтали (вдоль оси X) заданы значения массы поступающего воздуха, по вертикали (вдоль оси Y) — значения оборотов двигателя, а вдоль оси Z — значения углов открытия дроссельной заслонки. На пересечении всех трех колонок и столбцов таблицы проставлены значения количества топлива, которое необходимо впрыснуть при данных условиях работы двигателя. Во второй карте, двумерной, заданы соответствия между количеством топлива и временем открытия форсунок, в результате из этой карты программа может узнать то, для чего и городился весь этот огород — длительность электрического импульса, который должен быть подан на форсунки. В процессе работы программа каждые несколько миллисекунд опрашивает датчики, сравнивает полученные значения с заданными в первой карте, выбирает из соответствующей ячейки содержащееся там значение количества топлива, потом переходит ко второй карте и выбирает исходя из этого значения требуемое время открытия форсунок. Далее следует импульс на форсунки — все, цикл завершен. Описанный процесс отличается от реального тем, что на самом деле таких карт больше и в них отражены взаимные зависимости гораздо большего числа параметров, чем было перечислено, в том числе нагрузка на двигатель, температура двигателя, температура воздуха и даже высота над уровнем моря.

[spoiler]

Но цель работы программы управления та же — конечным результатом сбора и обработки данных от датчиков должна быть длительность электрического импульса на форсунку.

Таким образом, вся сложность заключается не в написании собственно программы, которая всего-то и делает, что сверяется последовательно с несколькими картами и в результате «добирается» до некоторого значения, а в самих картах, которые должны быть очень точными и подобраны под конкретную модификацию двигателя.

Кроме этого, ECU системы TCCS управляет также и углом опережения зажигания, зависимость которого от различных текущих параметров работы двигателя также задается соответствующими картами.

Обратная связь

Обратная связь в системе TCCS, как и в любой другой системе впрыска, обеспечивается лямбда-зондом (датчиком кислорода). Необходимость ее обусловлена тем, что как бы ни были хороши и точны карты, находящиеся в памяти ECU, каждый экземпляр двигателя все равно в той или иной мере отличается от остальных и требует индивидуальной подстройки топливной системы. В процессе эксплуатации двигателя также происходят изменения, связанные с его старением и износом, и которые тоже было бы неплохо компенсировать. Кроме этого, сами карты могут быть изначально составлены неоптимально для некоторых сочетаний внешних условий и режимов работы двигателя и, таким образом, требовать корректировки. Именно эти задачи и позволяет решить наличие обратной связи. Но главная цель при решении всех этих задач — это достижение наиболее полного сгорания горючей смеси в цилиндрах двигателя для получения наилучших характеристик его токсичности. Известно, что оптимальным для полного сгорания топлива является соотношение воздух/топливо равное 14.7:1. Это отношение называют «стехиометрическим» или, иначе, «коэффициент лямбда» (именно отсюда и пошло название «лямбда- зонд»).

Выглядит обратная связь так. После того, как компьютер определил необходимое количество топлива, которое нужно впрыснуть в текущий момент работы двигателя исходя из текущих условий и режима его работы, топливо сгорает и выхлопные газы поступают в выпускную систему. В этот момент с датчика кислорода считывается информация о содержании кислорода в выхлопных газах, на основании чего можно сделать вывод, а так ли все прошло, как было расчитано, и не требуется ли коррекция состава горючей смеси. Образно говоря, компьютер постоянно проверяет свои расчеты по конечному результату, информацию о котором он получает от датчика кислорода, и, если это требуется, выполняет окончательную точную подстройку состава горючей смеси. В англоязычной литературе эта процедура обычно именуется «short term fuel trim». Но так происходит не всегда — в некоторых режимах работы двигателя компьютер игнорирует информацию от датчика кислорода и руководствуется только своими собственными расчетами. Давайте посмотрим, когда же это происходит.

Режимы управления

Компьютер любой системы управления впрыском с обратной связью, в том числе и TCCS, в процессе работы может находиться в одном из двух режимов управления — либо в режиме замкнутого контура (closed loop), когда он использует информацию датчика кислорода в целях точной корректировки, либо в режиме разомкнутого контура (open loop), когда он игнорирует эту информацию. Ниже мы рассмотрим основные режимы работы двигателя и режимы управления.

1. Запуск двигателя. В момент запуска требуется, в зависимости от температуры как самого двигателя, так и окружающего воздуха, обогащенная горючая смесь с повышенным процентным содержанием топлива. Это всем известный факт, характерный вообще для всех бензиновых двигателей внутреннего сгорания, как карбюраторных, так и двигателей с впрыском, поэтому мы не станем подробно останавливаться на причинах. Скажем только, что соотношение воздух/топливо в этом режиме варьируется в среднем от 2:1 до 12:1. В этом режиме компьютер системы TCCS работает в режиме разомкнутого контура.

2. Прогрев двигателя до рабочей температуры. После запуска двигателя компьютер системы TCCS постоянно проверяет текущую температуру двигателя и в зависимости от этого параметра производит расчет состава горючей смеси, а также устанавливает требуемую величину прогревных оборотов посредством воздушного клапана ISC (Idle Speed Control). В процессе прогрева двигателя с ростом температуры соотношение воздух/топливо изменяется компьютером в сторону обеднения, а прогревные обороты также уменьшаются. В это же время происходит разогрев датчика кислорода в выпускном коллекторе до рабочей температуры. Компьютер при этом работает в режиме разомкнутого контура.

3. Холостой ход. По достижении заданной температуры двигателя и при условии достаточного для работы разогрева датчика кислорода (датчик кислорода начинает выдавать правильные показания только при температуре от 300C и выше) компьютер переключается в режим замкнутого контура и начинает использовать показания датчика кислорода для поддержания стехиометрического состава горючей смеси (14.7:1), обеспечивающего наименьший уровень содержания токсичных веществ в выхлопных газах.

4. Движение с постоянной скоростью, плавное увеличение или уменьшение скорости. В этом случае компьютер TCCS также находится в режиме замкнутого контура и использует показания датчика кислорода. Вы можете раскрутить двигатель хоть до 6500 об/мин, наполовину нажав педаль газа, но компьютер все — равно будет оставаться в режиме замкнутого контура, обеспечивая состав горючей смеси в пределах примерно от 14.5:1 до 15.9:1.

5. Резкое ускорение. Как только Вы нажимаете педаль газа «в пол» и полностью открываете дроссельную заслонку — компьютер безоговорочно переходит в режим разомкнутого контура. Под нагрузкой (а компьютер всегда в состоянии определить, велика ли нагрузка на двигатель) компьютер может переключиться в режим разомкнутого контура несколько раньше — уже при открытии дроссельной заслонки на 68 или более процентов от ее хода. При этом он будет поддерживать состав горючей смеси в пределах от 11.9:1 до 12:1 для получения большей мощности.

6. Принудительный холостой ход (торможение двигателем). Компьютер также переходит в режим разомкнутого контура в случаях, когда текущие обороты двигателя превышают величину оборотов холостого хода, а дроссельная заслонка полностью закрыта — например, когда Вы движетесь под уклон, убрав ногу с педали газа и не выключив передачу. При этом компьютер обеспечивает обедненный состав горючей смеси.

Таким образом, мы видим, что большую часть времени компьютер TCCS находится в режиме замкнутого контура, который обеспечивает оптимальный состав горючей смеси. Более того, находясь в этом режиме, компьютер «самообучается», корректируя и модифицируя карты, используемые в режиме разомкнутого контура, адаптируя их к текущим условиям эксплуатации и состоянию двигателя. Т.е., если, скажем, компьютер замечает, что в режиме замкнутого контура для достижения оптимального сгорания ему приходится все время обогащать топливо — воздушную смесь на, скажем, 5% относительно базовых значений, прописанных в соответствующих картах, то через некоторое время, когда он удостоверится в стабильности этого корректирующего коэффициента, он соответствующим образом модифицирует сами карты, тем самым влияя и на смесеобразование в режиме разомкнутого контура. Это и есть тот самый процесс «самообучения», о котором тоже ходит столько слухов. «по-научному» ;) он называется «long term fuel trim». Следует заметить, что модифицированные карты сохраняются только в энергозависимой памяти компьютера, поэтому после отключения аккумулятора восстанавливаются заводские значения этих карт, и компьютер должен «самообучаться» заново.

Все было бы просто замечательно, если бы не один фактор, портящий эту красивую картину — лямбда-зонд имеет обыкновение выходить из строя в результате заправок этилированным бензином. В реальной жизни это приводит к тому, что рано или поздно после пробега по нашим дорогам система TCCS лишается своей способности к адаптации под текущие условия и работает строго по тем картам, которые изначально находились в памяти компьютера, постоянно находясь в режиме разомкнутого контура. Естественно, что ничего хорошего из этого не получается, ведь большинство автомобилей к тому времени, когда они попадают к нам, уже немало побегали по японским дорогам, и двигатели их, увы, уже не новые. Впрочем, практика показывает, что и ничего особенно плохого тоже не происходит. Более того, система TCCS «нативных» японских Тойот в случае выхода из строя лямбда-зонда даже не зажигает на панели лампочку «check engine» в отличие от Тойот для американского и/или европейского рынков.

Кстати, следует заметить, что каталитический нейтрализатор (именуемый в народе «катализатор») и лямбда-зонд — это совершенно разные устройства, хотя их и можно назвать «сладкой парочкой» — как правило, если в машине есть лямбда-зонд — то есть и нейтрализатор, и наоборот. Оба эти устройства служат одной и той же цели — снижению уровня токсичности выхлопа, но выполняют каждое свою часть работы: лямбда-зонд помогает системе управления впрыском готовить оптимальную с точки зрения полноты сгорания горючую смесь, а нейтрализатор эту смесь дожигает.

Каталитический нейтрализатор

Нейтрализатор, который представляет собой керамические «соты», покрытые активным слоем, способным дожигать остающиеся в выхлопных газах частички топлива, также выходит из строя после нескольких заправок этилированным бензином. Выходит из строя — это означает, что он теряет способность к дожиганию несгоревших частичек топлива. Известны случаи, когда соты катализатора оплавлялись, забивались нагаром и такой нейтрализатор уже создавал серьезную помеху на пути выходящих из двигателя выхлопных газов. Но следует сказать, что сама по себе заправка, даже неоднократная, этилированным бензином к такому результату не приведет. Причина оплавления нейтрализатора — это работа двигателя в течение длительного времени на обогащенной (или богатой) смеси, к чему может привести как выход из строя лямбда-зонда, так и неисправности в системе питания и зажигания.

Принцип работы датчика кислорода

Наиболее распространенный тип — циркониевый кислородный датчик. По сути дела он является переключателем, резко меняющим свое состояние на рубеже 0.5% кислорода в составе выхлопных газов. Это количество кислорода соответствует идеальному стехиометрическому соотношению воздух/топливо 14.7:1.

Обычно интерфейс датчика устроен таким образом: прогретый датчик (более 300 градусов Цельсия) при количестве кислорода менее 0.5% (богатая смесь), являясь слабым источником тока, выставляет на сигнальном выходе напряжение в диапазоне от 0.45 до 0.8 вольта, а при количестве кислорода более 0.5% (бедная смесь) — от 0.2 до 0.45 вольта. Какой точно уровень напряжения при этом — роли не играет, учитывается его положение относительно средней линии. Если ECU видит сигнал бедной смеси — топливо добавляется. Если в следующий измерительный период ECU видит сигнал богатой смеси — то подача топлива уменьшается. Таким образом состояние системы постоянно колеблется вокруг оптимальной величины и подача топлива настраивается по практическим результатам сгорания. Это позволяет системе адаптироваться к различным условиям работы. Частота колебаний напряжения на датчике кислорода составляет примерно 1-2 Гц на холостых оборотах и 10-15 Гц при 2000- 3000 об/мин.

Так как датчик работает надежно только в хорошо прогретом состоянии, то ECU системы TCCS начинает замечать его показания только после определенного уровня прогрева двигателя. Для ускорения прогрева датчика в него зачастую монтируют электрический подогреватель. Бывают датчики с одним проводом (сигнал), бывают с двумя (сигнал, земля сигнала), с тремя (сигнал, 2 провода подогревателя), с четырьмя (сигнал, земля сигнала, 2 провода подогревателя).

Самодиагностика компьютера системы TCCS

Любая современная система впрыска имеет встроенную подсистему самодиагностики, которая позволяет определить различного рода неисправности датчиков, исполнительных механизмов и узлов системы. В результате процедуры самодиагностики компьютер вырабатывает диагностические коды, которые можно тем или иным способом извлечь из памяти компьютера и расшифровать в соответствии с таблицами. Способ извлечения этих кодов у разных производителей — разный. В системе TCCS для этого используется лампочка «Check Engine» на панели приборов, а переключение компьютера в режим вывода диагностических кодов осуществляется путем закорачивания пары контактов на диагностическом разъеме в моторном отсеке автомобиля. Диагностический разъем обычно находится вблизи левой опоры стойки передней подвески и представляет собой черную или серую коробочку с надписью «DIAGNOSIS» на крышке.

Пошаговая процедура самодиагностики:

1. Начальные условия

- напряжение в бортовой сети превышает 11 вольт

- дроссельная заслонка полностью закрыта

- трансмиссия в положении «нейтраль» (или «парковка» для автоматических трансмиссий)

- кондиционер выключен

2. Металлическим проводником (провод, разогнутая канцелярская скрепка) замкнуть контакты T (или TE1) и E1 на диагностическом разъеме.

3. Повернуть ключ зажигания в положение «ON», но не запускать двигатель стартером.

4. Считать коды путем подсчета количества миганий лампочки «Check Engine».

Считывание кодов диагностики. При считывании кодов возможны две ситуации:

1. Неисправностей не обнаружено:

- лампочка будет мигать непрерывно с интервалом в 0.25 секунды

2. Обнаружены неисправности:

- последует серия миганий с интервалом 0.5 секунды — первая цифра кода (например, пять миганий — цифра 5)

- пауза 1.5 секунды

- серия миганий с интервалом 0.5 секунды — вторая цифра кода (например, четыре мигания — цифра 4)

- в случае, если кодов больше одного — пауза 2.5 секунды

- после отображения всех кодов следует пауза в 4.5 секунды и процесс повторяется сначала

Сброс кодов диагностики. Обнаруженные коды диагностики (за исключением кодов 51 и 53) будут находиться в памяти компьютера даже после устранения неисправности. Чтобы очистить область памяти компьютера, в которой хранятся коды, нужно при заглушенном двигателе вынуть на 30-60 секунд предохранитель EFI (15A) из блока предохранителей. Коды диагностики также сбрасываются при отключении аккумуляторной батареи.

Таблица диагностических кодов. Все коды системы TCCS унифицированы и значение их одинаково для всех двигателей Toyota, но для каждого конкретного двигателя используется специфичное для него подмножество кодов. Например, код 34 может присутствовать только на двигателях, оборудованных турбо наддувом. Типер вы знаете основной принцип работы инжектора

[/spoiler]

avto.win7ka.ru


Станции

Районы

Округа

RoadPart | Все права защищены © 2018 | Карта сайта